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Abstract. A cryptographic assumption is the (unproven) mathematical
statement that a certain computational problem (e.g. factoring integers)
is computationally hard. The leakage-resilience limit of a cryptographic
assumption, and hence of a computational search problem, is the maxi-
mal number of bits of information that can be leaked (adaptively) about
an instance, without making the problem easy to solve. This implies se-
curity of the underlying scheme against arbitrary side channel attacks by
a computationally unbounded adversary as long as the number of leaked
bits of information is less than the leakage resilience limit.

The hardness of a computational problem is typically characterized by
the running time of the fastest (known) algorithm for solving it. We
propose to consider, as another natural complexity-theoretic quantity,
the success probability of the best polynomial-time algorithm (which
can be exponentially small). We refer to its negative logarithm as the
unpredictability entropy of the problem (which is defined up to an additive
logarithmic term).

A main result of the paper is that the leakage-resilience limit and the
unpredictability entropy are equal. This demonstrates, for the first time,
the practical relevance of studying polynomial-time algorithms even for
problems believed to be hard, and even if the success probability is too
small to be of practical interest. With this view, we look at the best
probabilistic polynomial time algorithms for the learning with errors and
lattice problems that have in recent years gained relevance in cryptogra-
phy.

We also introduce the concept of witness compression for computational
problems, namely the reduction of a problem to another problem for
which the witnesses are shorter. The length of the smallest achievable
witness for a problem also corresponds to the non-adaptive leakage-
resilience limit, and it is also shown to be equal to the unpredictability
entropy of the problem. The witness compression concept is also of inde-
pendent theoretical interest. An example of an implication of our result
is that 3-SAT for n variables can be witness compressed from n bits (the
variable assignments) to 0.41n bits.



1 Introduction and Motivation

1.1 Leakage Resilience of Cryptographic Assumptions

There have been many recent works (e.g., [2, 3, 10, 13, 16, 14, 21, 33, 37, 38, 40, 42,
43], and the references therein) aimed at designing cryptographic schemes that
are secure against a large class of side-channel attacks. Some of these look at
side channel attacks where the adversary can obtain some function of the secret
key. We look at an even more general class of side-channel attacks where the
adversary can obtain a bounded amount of arbitrary information. We model
this kind of attack by allowing the adversary a bounded number of queries to
an infinitely powerful oracle O that can be asked arbitrary binary (YES/NO)
questions. This oracle was considered by Maurer [37] to study the hardness of
factoring N given queries to this oracle.

Goldwasser et al [24] raised a more general question regarding leakage which
is also the question that we are concerned with: Which of the cryptographic
assumptions (rather than cryptographic schemes) are secure in the presence of
leakage of some bits of information?

1.2 Complexity Notions

In this section, we introduce three notions, unpredictability entropy, oracle com-
plexity, and witness compressibility, whose relationship we study in this paper.

A well-studied and realistic approach in the study of the computational com-
plexity of a computational problem is to look at probabilistic polynomial time
(PPT) algorithms that solve the problem. We define the unpredictability entropy
[31] of a problem (essentially) as − log2 p, where p is the maximum possible
success probability of a PPT algorithm for solving the problem. A common un-
derstanding is that the study of probabilistic algorithms makes sense only if the
probability of success is non-negligible. While there have been a few results like
[6, 7, 9, 12, 17–19, 23, 44, 48] that look at the class of one-sided error probabilistic
polynomial time (OPP) algorithms for decision problems with negligible suc-
cess probability p, these are studied with the viewpoint of improving the bound
on the exact worst-case complexity of the problem by repeating the algorithm
O(1/p) times and hence amplifying the success probability to a non-negligible
quantity. However, we argue that PPT algorithms are interesting even if the
success probability p is negligible and even if there exist other exact algorithms
that run in time much less than O(1/p).

Maurer [37] considered a class of PPT algorithms for search problems given
the oracle O. If the algorithm is allowed as many binary queries to the oracle
as is the length of the solution/witness, then there is a trivial algorithm that
solves the problem. Thus, this class of algorithms is looked at with the goal of
minimizing the number of queries. The minimum number of queries required by
a PPT algorithm for solving this problem with overwhelming probability is the
oracle complexity (which is the same as the leakage-resilience limit) of the prob-
lem. A motivation for looking at such an oracle, as pointed out by the author, is



to determine whether the difficulty of a certain problem can be concentrated in a
few difficult bits leading to a new complexity theoretic classification of problems.
This question was answered in the affirmative for the integer factorization prob-
lem in [37] but it remains open for other computational problems. Consider, for
instance, the problem of computing discrete logarithms modulo a prime q. One
can see that the hardness of this problem and the integer factorization problem
is closely related in the sense that almost all algorithms for solving the factoring
problem have a variant that solves the discrete logarithm problem modulo a
prime. A survey of this can be found in Chapter 3 of [28]. However, the hardness
of the two problems seems to differ significantly in terms of the number of queries
to O required in order to solve these problems in polynomial time. Factoring can
be solved with a small number of queries but, to the best of our knowledge, there
exists no algorithm that solves the discrete logarithm problem with a non-trivial
number (i.e., substantially less than the solution size) of queries to O. Thus,
finding the oracle complexity seems to be an interesting research area in itself.

We introduce another related notion called the witness compressibility of a
problem. This is the smallest size k such that there is a PPT reduction that
reduces the witness size of a given instance to at most k with overwhelming
probability. This quantity can be seen as the non-adaptive leakage-resilience
limit of an assumption about the hardness of the problem. A problem is not
resilient to k bits of non-adaptive leakage if and only if it is witness compressible
up to k bits. 1

Note that the three quantities, i.e., unpredictability entropy, oracle complex-
ity, and witness compressibility can only be defined up to an additive logarithmic
term (see Section 2.2).

1.3 Our Contributions

We show that for all search problems with an efficiently computable verification
predicate, the following are equivalent.

(i) There exists a PPT algorithm that solves a problem S with success proba-
bility Θ(2−k).

(ii) There exists a PPT algorithm that makes at most k queries to O and solves
the problem S with a constant success probability.

(iii) There exists a PPT reduction that reduces the witness size of a given
instance of S to at most k with constant probability.

This implies that the three quantities, i.e., unpredictability entropy, oracle com-
plexity, and witness compressibility are essentially equal.

From this result, we get an exact characterization of the leakage-resilience of
a cryptographic assumption about the hardness of some computational problem
S in terms of the best possible PPT algorithm for S. A cryptographic assumption
is robust up to k bits of leakage if and only if there is an algorithm that solves
1 Witness compression should not be confused with instance compression that has

been studied in [29, 20].



the corresponding problem with probability Θ(2−k). This provides motivation
for improving the success probability of PPT algorithms for various computa-
tional problems. With this goal in mind, we present in this paper the best PPT
algorithms for some problems relevant in cryptography - in particular for the
learning with errors and lattice problems that have recently gained substantial
importance in cryptography.

The results of this paper also raise some interesting questions in complex-
ity theory. One question this paper draws attention to is the following: Which
problems have optimal witness size, or stated differently, which problems can
or cannot be efficiently reduced to problems with a smaller witness size? Com-
bining the results of [44] with our result gives evidence that the witness size
of Circuit-SAT cannot be compressed under reasonable complexity theoretic as-
sumptions. However, for instance if we look at the 3-SAT problem, which is also
an NP-complete problem, combining our results with Schöning’s PPT algorithm
[48] that solves 3-SAT with probability (4/3)−n, we conclude that the witness of
3-SAT can be compressed to a log2 4/3-fraction, i.e., about 41.5% of its original
size.

1.4 Organization of this Paper

In Section 2, we introduce the definitions of problems and complexity notions
mentioned in the introduction. In Section 3, we prove the witness compression
lemma and establish the equivalence of (i), (ii) and (iii) mentioned in Section
1.2. In Section 4 we give/mention the best known PPT algorithms for some
problems relevant in cryptography. In Section 5, we conclude and give a list of
open problems that emerge from the results of this paper.

2 Definitions

2.1 Computational Search Problems

A computational search problem S is characterized by an instance space X , a
solution (or witness) space W, and a (verification) predicate V : X × W →
{0, 1}. Each element of X and W is assumed to be represented as a bitstring.
In this paper, unless otherwise stated, we consider problems for which there is
a polynomial time algorithm that computes the predicate V . We call this set of
problems PC.2

The instance space X can be partitioned into two sets: the set X1 and X0 of
instances for which there exists a witness and for which there exists no witness,
respectively, i.e.,

X1 := {x ∈ X | ∃ w ∈ W, V (x,w) = 1} , and

X0 := {x ∈ X | ∀ w ∈ W, V (x,w) = 0} .

2 The name of this class, PC, is taken from [26].



The sets X1 and X0 are sometimes referred to as the set of YES instances and
that of NO instances, respectively.

We define γV : X1 7→ N as the size of the smallest witness for a given x, i.e.,

γV (x) := min
w∈W,V (x,w)=1

|w| .3

A search problem is the problem of finding, for a given element x ∈ X1, a
witness w ∈ W such that V (x,w) = 1. By O, we denote the infinitely powerful
oracle that can answer arbitrary binary questions. The oracle, and hence the
language in which questions are asked can be defined freely, and hence need not
be specified (it can be thought of as being universally quantified).

Let p : N× N 7→ [0, 1] and q : N× N 7→ N ∪ {0} be functions.

Definition 1. Let S = (X ,W, V ) be a search problem. An algorithm F is called
a (p, q)-solver for S if for all m,n ∈ N and for all x ∈ X1 such that |x| ≤ m and
γ(x) ≤ n, F makes at most q (m,n) queries to O, and with probability at least
p (m,n), computes a w ∈ W such that V (x,w) = 1.

In the above definition, F is called efficient if it runs in time polynomial in
the size of input.

2.2 Complexity Notions

Now, we introduce the notion of witness compressibility. A problem is k-witness
compressible if there exists another predicate V ′ such that for any given instance
of the problem, there exists a witness of length at most k with respect to V ′,
and given this witness one can efficiently compute a witness with respect to V .
More formally,

Definition 2. A search problem S defined by S = (X ,W, V ) is (deterministic)
k-witness compressible if there exists a witness setW ′, a predicate V ′ : X×W ′ 7→
{0, 1}, and a polynomial time algorithm T : X×W ′ 7→ W such that for all x ∈ X1,

– γV
′
(x) ≤ k(|x|, γV (x)).

– For all w ∈ W ′, V ′(x,w) = 1 if and only if V (x, T (x,w)) = 1.

As has been often seen in complexity theory, the best known PPT algo-
rithm/reduction is significantly faster than the best known deterministic poly-
nomial time algorithm/reduction, e.g. primality testing. In fact sometimes the
former exists but the latter eludes discovery. Thus it is reasonable to look at the
following randomized version of the above definition.

Definition 3. A search problem S defined by S = (X ,W, V ) is k-witness com-
pressible within ε if there exists a witness setW ′, an efficiently samplable random
variable S that takes values from a set S, a set of predicates V ′

S : X×W ′ 7→ {0, 1},
and polynomial time algorithms TS : X ×W ′ 7→ W parametrized by S such that
for all x ∈ X1,
3 We omit the predicate V if it is clear from the context.



– Pr
(
γV

′
S (x) ≤ k

(
|x|, γV (x)

))
≥ 1− ε(|x|, γV (x)).4

– For all w ∈ W ′, s ∈ S , V ′
s (x,w) = 1 if and only if V (x, Ts(x,w)) = 1.

With these definitions in place we now define the three quantities that we
show, in this paper, are (essentially) equal. Let k = k(m,n) be some integer
valued function.

Definition 4. A search problem S has unpredictability entropy at most k if there
exists an efficient (2−k, 0)-solver for S.

Definition 5. A search problem S has oracle-complexity at most k if there exists
an efficient (1− ε, k)-solver for S for some negligible function ε(m,n).5

Definition 6. A search problem S is k-witness compressible if S is k-witness
compressible within ε for some negligible function ε(m,n).

Note that in these definitions, k(m,n) is unique only up to an additive term
of O(log2 m). Also note that we can have an alternative version of these defini-
tions where, for instance, the unpredictability entropy is equal to k(m,n) (again,
up to an additive term of O(log2 m)) by saying that there exists an efficient
(2−k(m,n), 0)-solver but no efficient (2−k(m,n)+ω(log2m), 0)-solver for S. However,
it would be cumbersome to make these alternative definitions precise and so we
avoid them.

3 Relations Between Complexity Notions for Search
Problems

3.1 Two Simple Results

In this section, we give two simple relations between complexity notions for
search problems.

Lemma 1. For any search problem S and any functions p = p(m,n), q =
q(m,n), and k = k(m,n) ≤ q(m,n), if there exists an efficient (p, q)-solver
for S, then there exists an efficient (p · 2−k, q − k)-solver for S.

Proof. Let S be a search problem and let F be an efficient (p, q)-solver for S.
Let F ′ be an algorithm that simulates F except that it guesses the answer to
the last k oracle queries uniformly at random. Thus F ′ makes q− k queries and
guesses the answer to the k queries correctly with probability 2−k and hence
succeeds in solving S with probability at least p · 2−k.
4 The witness length is at most k with probability at least 1 − ε, where k and ε are

both functions of |x| and γV (x).
5 The term negligible, like the term efficient, is in terms of the input size m. So, for

any m large enough, and any n, and any polynomial P (.), ε(m, n) < 1/P (m).



It is folklore as observed by a number of papers, e.g., [40, 3, 4] that non-
adaptive leakage-resilience is the same as adaptive leakage-resilience. This can
be seen in our terminology by the following lemma.

Lemma 2. For any functions k = k(m,n) and ε = ε(m,n), every search prob-
lem is k-witness compressible within ε if and only if it has an efficient (1− ε, k)-
solver.

Proof. ( ⇒ ) The idea is that, with probability 1 − ε, the witness size of an
instance is reduced to size k, and hence we can use k queries to O to obtain a
witness for the resulting instance.

Let S = (X ,W, V ) be the search problem. There exists some W ′, V ′
S : X ×

W ′ 7→ {0, 1} and TS : X ×W ′ 7→ W as in Definition 3. We give a polynomial
time algorithm F that is a (1− ε, k)-solver for S. On input x ∈ X , F generates
S = s and then uses k queries to O to ask for w′, the string formed from the last
k bits of a smallest length witness w ∈ W ′ (if it exists) such that V ′

s (x,w) = 1.
Then the algorithm outputs Ts(x,w′).

Let m = |x| and n = γV (x). With probability at least 1 − ε, S = s such
that the conditions of Definition 3 hold. Thus, w′ = w since γV

′
s (x) ≤ k. Hence

V ′
s (x,w′) = 1, which implies V (x, Ts(x,w′)) = 1.

( ⇐ ) Let F be a (1− ε, k)-solver for S. Define W ′ as the set of all bitstrings
and let S denote the random choices made by F . Define Ts(x,w) to be the
output of F on input x, S = s and the result of the oracle queries equal to w.
Further, define V ′

s (x,w) as V (x, Ts(x,w)). This gives the desired result.

3.2 The Witness Compression Lemma

We state a few lemmas that we need in order to prove the main lemma of this
section.

Lemma 3. Let Y1, . . . , Yt be pairwise independent binary random variables where
Pr (Yi = 1) = p for 1 ≤ i ≤ t. Then

Pr (∃i ∈ {1, . . . , t} : Yi = 1) ≥ max(tp− t2p2

2
, 1− 1

tp
)

Proof. We give two ways to bound the term on the left. Using Bonferroni in-
equalities [15],

Pr (∃i ∈ {1, . . . , t} : Yi = 1) = Pr (Y1 = 1 ∨ Y2 = 1 ∨ · · · ∨ Yt = 1)

≥
∑

1≤i≤t

Pr (Yi = 1)−
∑

1≤i1<i2≤t

Pr (Yi1 = 1 ∧ Yi2 = 1)

= tp− t (t− 1)
2

p2

≥ tp− t2p2

2
.



Now, let Y = Y1 + · · · + Yt. The expected value of Y is E(Y ) = tp and the
variance of Y is V ar(Y ) = tp(1− p). Thus,

Pr (∃i ∈ {1, . . . , t} : Yi = 1) = 1− Pr(Y = 0)
≥ 1− Pr (|Y − E(Y )| ≥ E(Y ))

≥ 1− V ar(Y )
E(Y )2

= 1− 1− p

tp
≥ 1− 1

tp
,

where the second last inequality follows from the Chebyshev’s inequality.

Lemma 4. Let F be a finite field of cardinality 2`, let φ be a bijection from F to
{0, 1}`, and let T ⊂ {0, 1}`. Further, let y1, . . . , yt be some fixed distinct elements
of F. Then, for randomly chosen A,B ∈R F, the probability that φ (Ayi + B) ∈ T

for some 1 ≤ i ≤ t is at least max
( t|T |

2` − t2|T |2
2(2`)2

, 1− 2`

t|T |
)
.6

Proof. Define binary random variables Y1, . . . , Yt such that Yi = 1 if φ (Ayi + B) ∈
T . Thus,

Pr(Yi = 1) =
|T |
2`

,

and it can be easily seen that the Yi’s are pairwise independent random variables.
Therefore, by Lemma 3, the probability that φ (Ayi + B) ∈ T for some 1 ≤ i ≤ t
is at least

max
( t|T |

2`
− t2|T |2

2(2`)2
, 1− 2`

t|T |
)
.

Now, we state the main lemma of this section.

Lemma 5. [Witness Compression Lemma] Let k = k(m,n) and k′ =
k′(m,n) ≥ k(m,n) be any functions. Every search problem with an efficient
(2−k, 0)-solver is k′-witness compressible within 1

2k′−k .

Proof. Let S = (X ,W, V ) be a search problem and let F be an efficient (2−k, 0)-
solver for S. For a given input instance x ∈ X1, let R ∈ {0, 1}` denote the random
choices made by F . Then,

Pr (V (x,F (x,R)) = 1) ≥ 2−k . (1)

We define the set R (x) as the set of r such that F is successful in finding a
witness for x for this choice of r, i.e.,

R (x) = {r ∈ {0, 1}` | V (x,F (x, r)) = 1} .

From (1), it follows that |R (x) | ≥ 2`−k for all x ∈ X1.

6 Note that the result of this lemma will hold for any pairwise independent random
function from F to itself, instead of Ay + B.



Now, let F, φ, A,B and y1, . . . , yt be as in Lemma 4. Thus, by using the
second bound from Lemma 4, with t = 2k

′
, and T = R(x), we get

Pr
(
∃1 ≤ i ≤ 2k

′
: φ (Ayi + B) ∈ R(x)

)
≥ 1− 1

2k′−k
.

Then, let S = (A,B) be uniformly distributed over F×F. Furthermore, define
W ′ = {0, 1}∗,

TS(x,w) = F(x, φ(Ayw + B)), and V ′
S(x,w) = V (x, TS(x,w)) .

In the above argument, we can also use the first bound from Lemma 4 to show
that the problem is k-witness compressible within 1

2 .

3.3 The Main Result

Combining the results of Lemma 1, 2, and 5, we get the following result:

Theorem 1. For any search problem S, and for any functions k = k(m,n) and
c = c(m,n) = ω(log2 m):

– If S is k-witness compressibile, then S has oracle complexity at most k.
– If S has oracle complexity at most k, then S has unpredictability entropy at

most k.
– If S has unpredictability entropy at most k, then S is k+c-witness compress-

ibile.

Note that the results of this section are useful only if k(m,n) = ω(log2 m) be-
cause otherwise the corresponding search problem is solvable in expected polyno-
mial time. Thus, without loss of generality, we can assume k(m,n) = ω(log2 m)
and then choosing c(m,n) as any function asymptotically smaller than k but
larger than log2 m (e.g. c =

√
k), we get that the three quantities in Theorem 1

are essentially equivalent for functions in k + o(k).
Remark 1: Theorem 1 implies that an assumption of the hardness of a search

problem S is secure up to k bits of leakage of arbitrary information if and only if
there is no PPT algorithm that succeeds in solving S with probability Θ(2−k).
However, the hardness assumptions we consider are worst case assumptions and
not average case assumptions, which are more relevant in practice. Note that this
is not a disadvantage, since our result implies a corresponding result for average
case assumptions, just by restricting the set of instances of the problem to those
where the problem is successful with significant (though possibly exponentially
small) probability.

Remark 2: A similar result as Theorem 1 can also be proved for decision prob-
lems (using essentially the same proofs) but for that we need to be more careful
in defining the oracle complexity of a problem and also the success probability
of a PPT algorithm and we do not do so in this version of the paper.



4 PPT Algorithms for Problems Relevant in
Cryptography

In this section, we give the best PPT algorithms known for various search prob-
lems relevant in cryptography. We look in more detail at the learning with errors
and lattice problems that have been of interest in cryptography in recent years.

4.1 Factoring and Discrete Logarithms

There is a sequence of results [47, 11, 30] that show that partial information
about p and q is enough to factor the RSA modulus pq. The best result in this
direction is the result in [37] that, under a conjecture, shows that there is a
polynomial time algorithm that factors N given ε log2 N questions to O where
ε is some arbitrary constant. Equivalently, there exists a PPT algorithm that
factors N with probability 2−ε log2N .

Even though the problem of computing discrete logarithms modulo a prime is
closely related to the problem of factoring integers, to the best of our knowledge,
there exists no non-trivial PPT algorithm for solving discrete logarithms in Zp.
The same holds for the Computational Diffie Hellman problem.

It would be interesting to come up with an algorithm for solving discrete
logarithm modulo a prime p that runs in time polynomial in log2 p and succeeds
with probability better than the trivial poly(log2 p)

p .

4.2 Lattices

Preliminaries An n-dimensional lattice is a discrete additive subgroup of Rn.
A set of linearly independent vectors that generates a lattice is called a basis
and is denoted by B = {b1, . . . ,bn} ⊂ Rn. The lattice Λ generated by the basis
B is

Λ = L(B) =
{
Bz =

n∑
i=1

zibi : z ∈ Zn
}

.

For any point t ∈ Rn, the distance of t to the closest point in the lattice is
written as dist(t, Λ).

The Gram Schmidt orthogonalization of B, denoted as {b̃1, . . . , b̃n}, is de-
fined as

b̃i = bi −
i−1∑
j=1

µi,jb̃j , where µi,j =
〈bi, b̃j〉
〈b̃j , b̃j〉

.

By λ1(Λ), we denote the length of the shortest non-zero vector of the lattice
Λ. For this paper, the lengths are always assumed to be in the `2 norm. If the
lattice is clear from the context, then we write it simply as λ1. It is well known
and can be shown easily that

λ1 ≥ min
i
‖b̃i‖ .



Definition 7. A basis B = {b1, . . . ,bn} is a δ-LLL Reduced Basis [35] if the
following holds:

– ∀ 1 ≤ j < i ≤ n, µi,j ≤ 1
2 ,

– ∀ 1 ≤ i < n, δ‖b̃i‖
2
≤ ‖µi+1,ib̃i + b̃i+1‖2.

We choose δ = 3
4 and then it can be easily seen (e.g., refer to [25]) from the

above definition that for a δ-LLL reduced basis, ∀ 1 ≤ i < n, ‖bi‖ ≤
√

2‖bi+1‖.
Since there is an efficient algorithm [35] to compute an LLL-reduced basis, we
assume, unless otherwise stated, that the given basis is always LLL-reduced and
hence satisfies the above mentioned properties.

Now, we define some problems over lattices that we are interested in for this
paper.

Definition 8. The shortest vector problem is defined as follows: Given a basis
B of an n-dimensional lattice Λ = L(B), it is required to find a vector v ∈ Λ
such that ‖v‖ = λ1.

A decision variant, whose hardness many cryptographic schemes are based
on, is the gap shortest vector problem defined as follows.

Definition 9. The gap shortest vector problem GapSVPγ for some γ = γ(n) is
defined as follows: Given a basis B of an n-dimensional lattice Λ = L(B) and
d > 0 such that d /∈ [λ1/γ, λ1), decide whether d ≥ λ1 or d < λ1/γ.

Next we define the closest vector problem (CVP) and bounded distance de-
coding (BDD) which is a special case of the CVP.

Definition 10. The closest vector problem CVP is defined as follows: Given a
basis B of an n-dimensional lattice Λ = L(B), and t ∈ Rn, find v ∈ Λ such that
‖v − t‖ = dist(t, Λ).

Definition 11. The α-bounded distance decoding problem BDDα for some 0 <
α = α(n) < 1/2 is defined as follows: Given a basis B of an n-dimensional
lattice Λ = L(B), and t ∈ Rn such that dist(t, Λ) ≤ αλ1, find v ∈ Λ such that
‖v − t‖ = dist(t, Λ).

Shortest Vector Problem In this section, we give a polynomial time algorithm
that computes the shortest vector of a lattice with probability 1

2(n+1)(n+2)/4 . This
algorithm, of course, also solves the GapSVP problem.

Theorem 2. There exists a polynomial algorithm that, given a basis B of a
lattice Λ = L(B), finds the shortest vector of Λ with probability 1

2(n+1)(n+2)/4 .

Proof. Since an LLL-reduced basis can be computed efficiently, we assume with-
out loss of generality that B is an LLL-reduced basis. Let the shortest vector u
of the lattice be u = a1b̃1 + a2b̃2 + · · ·+ anb̃n. Since b̃1 = b1 is a lattice vector,
therefore ‖u‖ ≤ ‖b̃1‖. By the property of the LLL basis, ‖b̃1‖ ≤ 2(i−1)/2‖b̃i‖,



which implies ‖u‖ ≤ 2(i−1)/2‖b̃i‖. Thus, |ai| ≤ 2(i−1)/2. The component ai is
determined by the coefficients of bi, . . . ,bn in u. Thus, given the coefficients
of bn, . . . ,bi+1, the coefficient of bi can be chosen correctly with probability
1/(2 · 2(i−1)/2) = 2−(i+1)/2. This gives a polynomial time algorithm that suc-
ceeds in finding the shortest vector with probability

n∏
i=1

2−(i+1)/2 = 2−(n+1)(n+2)/4 .

Closest Vector Problem In this section, we give a polynomial time algorithm
that solves the closest vector problem with probability 1

2n(n+1)/4 .

Theorem 3. There exists a polynomial time algorithm that, given a basis B
of an n-dimensional lattice Λ = L(B), and t ∈ Rn, finds v ∈ Λ such that
‖v − t‖ = dist(t, Λ) with probability 1

2n(n+1)/4 .

Proof. Let t = ρ1b̃1 + . . . ρnb̃n and let the closest vector to t in the lattice
be u = a1b1 + a2b2 + · · · + anbn. Babai’s algorithm [5] returns a vector x
such that ‖x − t‖ ≤ 1

22n/2‖b̃n‖. Thus ‖u − t‖ ≤ ‖x − t‖ ≤ 1
22n/2‖b̃n‖, which

implies |an − ρn| ≤ 1
22n/2. Thus the algorithm proceeds as follows: Choose ân

uniformly at random from (ρn− 1
22n/2, ρn+ 1

22n/2) and recursively compute the
closest vector to t − ânbn in the lattice L(b1, . . . ,bn−1). The probability that
(â1, . . . , ân) = (a1, . . . , an) is

n∏
i=1

2−i/2 = 2−n(n+1)/4 .

Bounded Distance Decoding (BDD) Problem The algorithm given in the
previous section, of course, also solves the BDD problem since BDD is a special
case of the closest vector problem. However, there exists an algorithm for BDDα

with a larger success probability 1
αn2(n+1)(n+2)/4 as given below.

Theorem 4. There exists a polynomial time algorithm that, given a basis B of
an n-dimensional lattice Λ = L(B), and t ∈ Rn such that dist(t, Λ) ≤ αλ1 for
some 0 < α(n) < 1/2, finds v ∈ Λ such that ‖v− t‖ = dist(t, Λ) with probability

1
αn2(n+1)(n+2)/4 .

Proof. Since an LLL-reduced basis can be computed efficiently, we assume with-
out loss of generality that B is an LLL-reduced basis. Let t = t1b̃1 + t2b̃2 + · · ·+
tnb̃n and the closest vector u of the lattice be u = u1b̃1 + u2b̃2 + · · · + unb̃n.
Since b̃1 = b1 is a lattice vector, therefore ‖u − t‖ ≤ α‖b̃1‖. By the property
of the LLL basis, ‖b̃1‖ ≤ 2(i−1)/2‖b̃i‖, which implies ‖u − t‖ ≤ 2(i−1)/2α‖b̃i‖.
Thus, |ui−ti| ≤ α2(i−1)/2. The component ui is determined by the coefficients of
bi, . . . ,bn in u. Thus, given the coefficients of bn, . . . ,bi+1, the coefficient of bi
can be chosen correctly with probability 1/(2α · 2(i−1)/2) = 2−(i+1)/2α−1. This



gives a polynomial time algorithm that succeeds in finding the shortest vector
with probability

n∏
i=1

1
2(i+1)/2α

=
1

αn2(n+1)(n+2)/4
.

4.3 Learning with Errors and its Relation to Lattice Problems

In this section, we mention the best PPT algorithm for the learning with errors
(LWE) problem and its relation to the lattice problems with respect to leakage.
The proofs and other details are omitted.

Theorem 5. For some function β = β(n) such that βq = ω(log2 n), β(n) =
o(1/ log2 n) and m ≥ n, there is a polynomial time algorithm that solves search-
LWEn,q,m,ψβ

with probability (βq log2 n)−n for a constant fraction α of the inputs.

Note that it is straightforward to interpret the above mentioned algorithms
for LWE and lattice problems as PPT algorithms that succeed with constant
probability given − log2 p queries to O (or equivalently − log2 p bits of leakage),
where p is the success probability of the algorithm. We do not need the witness
compression lemma to make this conclusion. The witness compression lemma
however implies that if there is any PPT algorithm for any of these problems
that succeeds with probability p′ < p, then there is a PPT algorithm that makes
− log2 p′ queries to O and succeeds with constant probability.

It is common practice to base the LWE-based schemes on the hardness of
lattice based schemes. In the same spirit, by a careful inspection of the reduction
of BDD to LWE from [46], we get the following result:

Theorem 6. If there exists a PPT algorithm that solves search-LWEn,q,m,ψβ

with probability p then there exists a PPT algorithm that solves BDD β
n

with

probability cpdn/ log2 qe) for some constant c.

By Theorem 6, we can base the LWE assumption with leakage on the expo-
nential hardness of the BDD assumption as follows.

Corollary 1. If there exists no polynomial time algorithm that solves BDD β
n

with probability 2−δn
2
, then the search-LWEn,q,m,ψβ

assumption is robust to δn log2 q−
o(log2 q) bits of leakage.

5 Conclusions and Open Problems

We show that the unpredictability entropy of a problem is equal to its leakage-
resilience limit. This provides motivation to look at PPT algorithms for problems
relevant in cryptography with maximum possible success probability. A question
that is wide open is to what extent can the success probability of PPT algo-
rithms be improved for various problems like the discrete logarithm problem,



search LWE problem or various lattice problems. Note that if we repeatedly run
algorithms for lattice problems given in Section 5 to amplify the success proba-
bility to a non-negligible quantity, we get algorithms with running time 2O(n2),
which is much worse than the best known algorithms that run in time 2O(n) [1,
39]. Due to this large gap, one might expect that it should be possible to im-
prove the success probability of a PPT algorithm and this has eluded discovery
because of lack of attention to this question.

The witness compression lemma implies that the best known PPT algorithms,
for instance [6, 7, 9, 12, 17–19, 23], immediately give a lower bound on the maxi-
mum witness compressibility of the corresponding problems.

The results of [44] give evidence that perhaps Circuit-SAT is not witness
compressible to any non-trivial witness size. In fact the result of [44], which
shows that there exists no non-trivial PPT algorithm for Circuit-SAT (and hence
for all NP problems) under reasonable complexity assumptions, can be proved
by proving a decision version of the witness compression lemma. If there exist
non-trivial PPT algorithms for all NP problems, we can repeatedly apply the
witness compression lemma until the witness size is reduced to a constant, thus
resulting in a sub-exponential time algorithm for any NP problem, which is not
believed to be possible. It is interesting to look at the question of which are the
other problems that, like Circuit-SAT are not witness compressible. The discrete
logarithm problem modulo a prime seems to be a candidate.

Another interesting research direction is to look at PPT-reductions, i.e., PPT
algorithms for solving one “hard” problem given a PPT algorithm for solving
another problem (with possibly negligible success probability). Consider, for in-
stance, the reduction of [36] from GapSVP to BDD. This reduction was derived
from the main idea of [41] in obtaining the first public key cryptosystem whose
hardness was based on the GapSVP. This reduction does not seem to translate
easily to the case of PPT algorithms, since given a BDD oracle that solves the
problem with an exponentially small probability, it is not clear how to use it to
solve the GapSVP problem. If such a reduction was possible, we could base the
leakage-resilience of the search LWE assumption on the exponential hardness of
the GapSVP problem.
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