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Abstract. Two fundamental building blocks of secure two-party com-
putation are oblivious transfer and bit commitment. While there exist
unconditionally secure implementations of oblivious transfer from noisy
correlations or channels that achieve constant rates, similar constructions
are not known for bit commitment.
In this paper, we show that any protocol that implements n instances
of bit commitment with an error of at most 2−k needs at least Ω(kn)
instances of a given resource such as oblivious transfer or a noisy channel.
This implies in particular that it is impossible to achieve a constant rate.
We then show that it is possible to circumvent the above lower bound
by restricting the way in which the bit commitments can be opened. We
present a protocol that achieves a constant rate in the special case where
only a constant number of instances can be opened, which is optimal.
Our protocol implements these restricted bit commitments from string
commitments and is universally composable. The protocol provides sig-
nificant speed-up over individual commitments in situations where re-
stricted commitments are sufficient.
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1 Introduction

Commitment schemes [4] are one of the basic building blocks of two-party com-
putation [42]. Commitments can be used in coin-flipping [4], zero-knowledge
proofs [21, 20], zero-knowledge arguments [7] or as a tool in general two-party
computation protocols to prevent malicious players from actively cheating (see
for example [14]).

A commitment scheme has two phases. In the commit phase, the sender has
to decide on a value b. After the commit phase the value b is fixed and cannot be
changed, while the receiver still does not get any information about its value. At
a later time, the players may execute the second phase, called the open phase,
where the bit b is revealed to the receiver. The scheme is called a bit commitment
if b is only one bit, and it is called a string commitment if b is a longer bit string.



Bit commitments can be implemented from a wide variety of information-
theoretic primitives [11, 16, 38, 41]. There are protocols which implement a single
string commitment from noisy channels at a constant rate, meaning that the
size of the string grows linearly with the number of instances of noisy channels
used, which is essentially optimal [38]. Protocols which implement individual
bit commitments at a constant rate, however, are not known. In [30] it has
been shown that in any perfectly correct and perfectly hiding non-interactive
bit commitment scheme from distributed randomness with a security of 2−k, the
size of the randomness given to the players must be at least Ω(k).

Another primitive that is of fundamental importance in two-party computa-
tion is oblivious transfer (OT) [36, 32, 19]. Oblivious transfer can be implemented
from noisy channels [10, 12, 11, 13], cryptogates [28] and weak variants of noisy
channels [16, 15, 40, 41]. While all these protocols require Ω(k) instances of a
given primitive to implement a single OT with a security of 2−k, it has been
shown in [23, 26, 25, 24] that there are more efficient protocols if many OTs are
implemented at once. In the semi-honest model and in some cases also in the
malicious model, it is possible to implement OT at a constant rate, which means
n instances of OT can be implemented from just O(n) instances of the given
primitive, if n is big enough compared to the security parameter. It is, therefore,
possible to achieve the lower bound for such reductions [17, 2, 39, 37] up to a
constant factor. In the following we address the question whether such efficient
protocols also exist in the case of bit commitment.

1.1 Contribution

We show that — in contrast to implementations of OT — no constant rate re-
duction of bit commitment to distributed randomness can exist. More precisely,
in Theorem 1 we show that if a protocol implements n bit commitments with
a security of at least 2−k from distributed randomness, then the mutual infor-
mation between the sender’s and the receiver’s randomness must be almost kn
or larger. Our proof is built on the insight that any such protocol must reveal
at least k bits of information about the receiver’s randomness for each commit-
ted bit that is opened. This implies that we need at least Ω(kn) instances of
oblivious transfer or noisy channels to implement n bit commitments. Thus, ex-
ecuting for each bit commitment a protocol that uses O(k) instances is optimal.
In combination with the lower bound from [38], this bound can be generalized
to string commitments: any protocol that implements n string commitments of
length ℓ needs at least Ω(n(ℓ+ k)) bits of distributed randomness.

However, in many applications of bit commitments the full strength of the
commitment scheme is not required. For example in the famous zero-knowledge
protocol of [20], it is only required that a constant number of committed bits can
be opened. We show that restricting the ways in which the bit commitments can
be opened enables us to implement more efficient schemes that circumvent our
impossibility result.4 We introduce a new concept that we call bit commitments

4 Note that for the specific case of zero-knowledge proofs other, more efficient, tech-
niques are known [29].



with restricted openings. It allows a sender to commit to N bits, from which he
may open up to r < N one by one. After that, he may only open all the remaining
bits at once. Our protocol uses so-called cover-free families, and implements
bit commitments with restricted openings from string commitments. Together
with a simple construction of a cover-free family from [18], our results imply
that for any prime power q, we can implement N = q2 bit commitments from
which r can be opened from (r + 1)q string commitments of length q. (See
Corollary 4 for the more general statement.) Together with the protocol from
[38], we get a constant-rate bit commitment protocol from noisy channels, for any
constant r. As bit commitments with restricted openings are strictly stronger
than a string commitment, this is optimal. Together with another construction
of a cover-free family from [6], it is possible to implement N = 2Ω(n/r2) bit
commitments from n string commitments. We prove our protocol secure in the
Universal Composability model (UC) [8].

We will prove our lower bounds for independent bit commitments in Sec-
tion 2. In Section 3, we introduce commitments with restricted openings and
give reductions to string commitments. Note that Section 3 can be read without
reading Section 2.

1.2 Notation

In the following, the probability distribution of a random variable X is denoted
by PX(x). The joint distribution PXY (x, y) defines a conditional distribution
PX|Y (x, y) = PXY (x, y)/PY (y) for all y with PY (y) > 0. The statistical distance
between the distributions PX and PX′ over the domain X is defined as

δ(PX , PX′) := max
D

| Pr[D(X) = 1]− Pr[D(X ′) = 1] | ,

where we maximize over all (inefficient) distinguishers D : X → {0, 1}. We use
the notation [n] for the set {1, . . . , n}. For a sequence x = (x1, . . . , xn) and
t ∈ [n], we denote by xt the subsequence (x1, . . . , xt).

1.3 Information Theory

We will use the following tools from information theory in our proofs. We assume
that the reader is familiar with the basic concepts of information theory, and
refer to [9, 22] for more details. The conditional Shannon entropy of X given Y
is defined as5

H(X | Y ) := −
∑

x,y

PXY (x, y) logPX|Y (x, y) .

We use the notation

h(p) = −p log(p)− (1− p) log(1− p)

5 All logarithms are binary, and we use the convention that 0 · log 0 = 0.



for the binary entropy function, i.e., h(p) is the entropy of the Bernoulli distribu-
tion6 with parameter p. The mutual information of X and Y given Z is defined
as

I(X;Y | Z) = H(X | Z)−H(X | Y Z) .

The mutual information satisfies the following chain rule

I(X1 . . . Xn;Y ) =

n
∑

i=1

I(Xi;Y | X1 . . . Xi−1).

The Kullback-Leibler divergence or relative entropy of two distributions PX and
QX on X is defined as

D(PX ‖ QX) =
∑

x∈X

PX(x) log
PX(x)

QX(x)
.

The conditional divergence of two distributions PXY and QXY on X × Y is
defined as

D(PY |X ‖ QY |X) =
∑

x∈X

PX(x)D(PY |X=x ‖ QY |X=x) .

The binary divergence of two probabilities p and q is defined as the divergence
of the Bernoulli distributions with parameters p and q, i.e.,

d(p ‖ q) = p log
p

q
+ (1− p) log

1− p

1− q
.

The divergence (and hence also the conditional divergence) is always non-negative.
Furthermore, we have the following chain rule

D(PXY ‖ QXY ) = D(PX ‖ QX) + D(PY |X ‖ QY |X) . (1)

This implies

D(PXPY |X ‖ PXQY |X) = D(PY |X ‖ QY |X). (2)

Let QX and PX be two distributions over the inputs to the same channel
PY |X . Then the divergence between the outputs PY =

∑

x PXPY |X and QY =
∑

x QXPY |X of the channel is not greater than the divergence between the in-
puts, i.e., the divergence satisfies the data-processing inequality

D(PX ‖ QX) ≥ D(PY ‖ QY ) . (3)

Furthermore, for random variables X,Y and Z distributed according to PXY Z

I(X;Y | Z) = D(PX|Y Z ‖ PX|Z) . (4)

Let PX|Y=y = PX|Y=y,Z=z for all y, z (or PZ|Y=y = PZ|Y=y,X=x for all
y, z, which is equivalent). Then we say that X, Y and Z form a Markov-chain,
denoted by X ↔ Y ↔ Z. If W ↔ XZ ↔ Y , then

I(X;Y | ZW ) ≤ I(X;Y | Z) . (5)

6 The Bernoulli distribution with parameter p ∈ [0, 1] takes on the value 1 with prob-
ability p and 0 otherwise.



2 Impossibility Results

2.1 Model and Security Definition

We will consider the following model: a trusted third party holds random vari-
ables (U, V ) with a joint distribution PUV and sends U to the sender and V
to the receiver. The sender receives an input bit b ∈ {0, 1}. In the commit
phase, the players exchange messages in several rounds. Let all the messages
exchanged be M , which is a randomized function of (U, V, b). In the open phase,
the sender sends b together with a value D1 to the receiver. The receiver then
sends a message E1 to the receiver, who replies with a message D2 and so
on. Let N := (D1, E1, D2, E2, . . . , Et−1, Dt) be the total communication in the
open phase. (We assume that the number of rounds in the open phase is upper
bounded by a constant t. By padding the protocol with empty rounds we can
thus assume without loss of generality that the protocol uses t rounds in every
execution.) Finally, the receiver accepts or rejects, which we model by a random-
ized function F (b, V,M,N) that outputs 1 for accept and 0 for reject. Let the
distribution in the honest setting be PUVMN |B=b. We define three parameters
that quantify the security for the sender and the receiver, respectively, and the
correctness of the protocol.

– ε-correct : Pr[F (b, V,M,N) = 1] ≥ 1− ε.
– β-hiding : δ(PVM |B=0, PVM |B=1) ≤ β.
– γ-binding : For any b ∈ {0, 1} and for any malicious sender that is honest

in the commit phase on input b and tries to open 1 − b, we have Pr[F (1 −
b, V,M,N ′) = 1] ≤ γ, where N ′ is the communication between the malicious
sender and the honest receiver in the open phase.

Note that the above security conditions are not sufficient to prove the security of
a protocol7, but any sensible security definition for commitments implies these
conditions. Since we only use the definition to prove the non-existence of certain
protocols, this makes our result stronger.

2.2 Lower Bound for Multiple Bit Commitments

In the following we prove a lower bound on the mutual information between
the randomness of the sender and the randomness of the receiver in any bit
commitment protocol. First, we show the following technical lemma.

Lemma 1. If a protocol that implements bit commitment from distributed ran-
domness (U, V ) is γ-binding, ε-correct and β-hiding, then for b ∈ {0, 1}

d(1− ε ‖ γ + β) ≤
t

∑

i=1

I(Di;V | MDi−1Ei−1, B = b). (6)

7 To prove the security of a protocol one had to consider for example a malicious
sender in the commit phase.



Proof. Let b ∈ {0, 1} and b̄ := 1 − b. Assume that the sender in the commit
phase honestly commits to b. If she honestly opens b in the open phase, the
communication can be modeled by a channel PDE|VM (that may depend on b)
and the resulting distribution is

PDEVM |B=b = PDE|VMPVM |B=b ,

We have omitted U as it does not play a role in the following arguments. The
correctness property implies that an honest receiver accepts values drawn from
this distribution with probability at least 1 − ε. Let the sender commit to b̄
and then try to open b by sampling her messages according to the distributions
PD1|M and PDi|MDi−1Ei−1 for 2 ≤ i ≤ t. (Note that the sender does not know V
and, therefore, chooses her messages independently of V .) The communication
in the opening phase can be modeled by a channel

QDE|VM := PD1|MPE1|VMD1
. . . PDt|MDt−1Et−1 .

The binding property implies that the receiver accepts values distributed accord-
ing to PVM |B=b̄QDE|VM with probability at most γ. δ(PVM |B=b, PVM |B=b̄) ≤ β
implies that

δ(PVM |B=bQDE|VM , PVM |B=b̄QDE|VM ) ≤ β,

and hence values drawn from the distribution PVM |B=bQDE|VM are accepted
with probability at most γ+β. Note that the bit indicating acceptance can also
be modeled by a channel PF |DEVM . Thus, we can apply the data-processing
inequality (3) to bound d(1− ε ‖ γ + β). Using the chain rule (1) and the non-
negativity of the relative entropy, we have (we omit conditioning on B = b in
the following)

d(1− ε ‖ γ + β) ≤ D(PVMPDE|VM ‖ PVMQDE|VM )

= D(PDE|VM ‖ QDE|VM )

=
t

∑

i=1

D(PDi|VMDi−1Ei−1 ‖ PDi|MDi−1Ei−1)

+

t−1
∑

i=1

D(PEi|VMDiEi−1 ‖ PEi|VMDiEi−1)

=
t

∑

i=1

D(PDi|VMDi−1Ei−1 ‖ PDi|MDi−1Ei−1)

=

t
∑

i=1

I(Di;V | MDi−1Ei−1)

⊓⊔

The following lemma follows easily from Theorem 2.1 in [31]. We will use it
to bound the right-hand side of (6) in the following.



Lemma 2. Let ε = β = γ = 2−k. Then, for k ≥ 3, we have

d(1− ε ‖ γ + β) ≥ (k − 2) ·
2k−2 − 2

2k−2 − 1
.

The following lemma generalizes the lower bounds on the size of the random-
ness for perfectly correct and perfectly hiding non-interactive schemes from [30]
to arbitrary protocols. However, it also provides a more powerful result, namely a
lower bound on the information that the communication in the open phase must
reveal about the receiver’s randomness V for any protocol that implements bit
commitment from a shared distribution PUV . The lower bound is essentially k
if the error of the protocol is at most 2−k. This stronger statement will allow
us in the following to prove that there are no constant rate reductions of bit
commitment to distributed randomness, the main result of this section.

Lemma 3. Let k ≥ 3. Then any 2−k-secure bit commitment must have for
b ∈ {0, 1}

I(N ;V | M,B = b)− I(N ;V | UM,B = b)

= I(U ;V | M,B = b)− I(U ;V | MN,B = b) ≥ (k − 2) ·
2k−2 − 2

2k−2 − 1
.

Proof. Again, we omit conditioning on B = b in the following. Consider a
protocol over t rounds in the open phase, i.e., the whole communication is
N = (D,E) = (D1, E1, . . . , Dt). Since Di ↔ UMDi−1Ei−1 ↔ V , we have
I(Di;V | UMDi−1Ei−1) = 0. Hence,

I(NU ;V | M) = I(U ;V | M) +

t−1
∑

i=1

I(Ei;V | UMDiEi−1) .

Furthermore, from Ei ↔ VMDiEi−1 ↔ U and inequality (5) follows that for
all i

I(Ei;V | MDiEi−1) ≥ I(Ei;V | UMDiEi−1) .

Hence, we have

I(N ;V | M) =
∑

i

I(Ei;V | MDiEi−1) +
∑

i

I(Di;V | MDi−1Ei−1)

≥
∑

i

I(Ei;V | UMDiEi−1) +
∑

i

I(Di;V | MDi−1Ei−1)

and

I(U ;V | MN) = I(NU ;V | M)− I(N ;V | M)

= I(U ;V | M) +
∑

i

I(Ei;V | UMDiEi−1)− I(N ;V | M)

≤ I(U ;V | M)−
∑

i

I(Di;V | MDi−1Ei−1) .

The statement now follows from Lemma 1 and Lemma 2. ⊓⊔



Next, we consider implementations of n individual bit commitments. The
sender gets input bn = (b1, . . . , bn) and commits to all bits at the same time,
which results in the overall distribution

PUVM |Bn=bn = PUV PM |UV,Bn=bn .

after the commit phase. To reveal the ith bit, the sender and the receiver inter-
act resulting in the transcript Ni. The following theorem says that the mutual
information between the sender’s randomness U and the receiver’s randomness
V must be almost kn to implement n bit commitments with an error of at most
2−k. The proof uses Lemma 3 to lower bound the information that the sender
must reveal about V for every bit that he opens.

Theorem 1. Let k ≥ 3. Then any 2−k-secure protocol that implements n bit
commitments from randomness (U, V ) must have for all bn ∈ {0, 1}n

I(U ;V ) ≥ I(U ;V | M,B = bn) ≥ n(k − 2) ·
2k−2 − 2

2k−2 − 1
.

Proof. Let î ∈ [n]. We first construct a commitment to a single bit, which will
allow us to apply the bound from Lemma 3. This bit commitment is defined as
follows: to commit to the bit b, the players execute the commit phase on input
bn, which is equal to the input bit b on position î and equal to the constant
b̂n ∈ {0, 1}n on all other positions. Additionally, (still as part of the commit
phase), the sender opens the first î − 1 commitments, which means that the

messages N î−1 get exchanged. To open the commitment, the sender opens bit
î. This bit commitment scheme has at least the same security as the original
commitment. Thus, Lemma 3 implies that (we omit conditioning on B = b̂n in
the following)

I(U ;V | MN î) ≤ I(U ;V | MN î−1)− (k − 2) ·
2k−2 − 2

2k−2 − 1
. (7)

Since this holds for all î, we can apply (7) repeatedly to get

0 ≤ I(U ;V | MNn)

≤ I(U ;V | MNn−1)− (k − 2) ·
2k−2 − 2

2k−2 − 1

≤ I(U ;V | M)− n(k − 2) ·
2k−2 − 2

2k−2 − 1

By induction over all rounds of the commit protocol using (5) (see, for example,
[37] for a detailed proof) it follows that

I(U ;V | M) ≤ I(U ;V ) .

This implies the statement. ⊓⊔



It is possible to securely implement 1-out-of-2 bit oblivious transfer
((

2
1

)

-OT
1
)

from randomness distributed according to PUV with I(U ;V ) = 1 [3, 1]. A binary
symmetric noisy channel ((p)-BSNC) with crossover probability p can be imple-
mented from randomness distributed according to PUV with I(U ;V ) = 1−h(p).
Together with these reductions, Theorem 1 implies that (almost) kn instances
of

(

2
1

)

-OT
1 or kn/(1− h(p)) instances of a (p)-BSNC are needed to implement n

bit commitments with an error of at most 2−k.
There exists a universally composable protocol8 that implements bit com-

mitment from 2k instances of
(

2
1

)

-OT
1 with an error of at most 2−k. Thus, n

bit commitments can be implemented from 2n(k + log(n)) instances of
(

2
1

)

-OT
1

with an error of at most n · 2−(k+log(n)) = 2−k using n parallel instances of this
protocol. Theorem 1 shows that this is optimal up to a factor of 4 if k ≥ log(n).

2.3 Lower Bounds for Multiple String Commitments

A string commitment is a generalization of bit commitment where the sender
may commit to a bit-string of length ℓ ≥ 1. It is weaker than ℓ instances of
bit commitment because the sender has to reveal all bits simultaneously. In [38]
a lower bound on the conditional entropy of the sender’s randomness U given
the receiver’s randomness V for any string commitment protocol from random-
ness (U, V ) has been shown. This bound essentially says that H(U | V ) must be
greater than or equal to ℓ to implement a string commitment of length ℓ. The
following lemma provides a similar bound for the security definition considered
here. (The proof can be found in the full version of this paper [33].)

Lemma 4. If any protocol implements an ℓ-bit string commitment from ran-
domness (U, V ) is ε-correct, β−hiding and γ-binding, then

H(U | V ) ≥ (1− ε− β − γ)ℓ− h(β)− h(ε+ γ).

Together with the bound of Theorem 1, we obtain the following lower bound
on the randomness of the sender in any bit commitment protocol.

Corollary 1. Let k ≥ 3. For any protocol that implements n individual ℓ-bit
string commitments from randomness (U, V ) with an error of at most 2−k

H(U) ≥ n(k + ℓ− 2) ·
2k−2 − 2

2k−2 − 1
− 3 · 2−k · nℓ− 3h(2−k).

Proof. Using Lemma 4 and Theorem 1, we get

H(U) = I(U ;V ) + H(U | V )

≥ n(k − 2) ·
2k−2 − 2

2k−2 − 1
+ (1− 3 · 2−k)nℓ− h(2−k)− h(2−k+1)

≥ n(k + ℓ− 2) ·
2k−2 − 2

2k−2 − 1
− 3 · 2−k · nℓ− 3h(2−k).

⊓⊔
8 See for example Claim 33 in the full version of [8].



In [5] it has been shown that any non-interactive perfectly hiding and perfectly
correct bit commitment protocol from distributed randomness PUV is at most
(2−H(V |U))-binding. This result implies stronger bounds than Theorem 1 and
Lemma 4 for certain reductions. The following lemma provides a lower bound
on the uncertainty of the sender about the receiver’s randomness for any bit
commitment protocol. This lower bound is essentially equal to k if the protocol
is 2−k-secure and implies, in particular, the result from [5].

Lemma 5. If a protocol that implements bit commitment from randomness (U, V )
is γ-binding, ε-correct and β-hiding, then

d(1− β − ε ‖ γ) ≤ H(V | UM) ≤ H(V | U).

where M is the whole communication in the commit phase. If β = γ = ε = 2−k,
then

H(V | U) ≥ (k − 1) ·
2k−1 − 4

2k−1 − 1
. (8)

Proof. We have δ(PVM |B=b, PVM |B=b̄) ≤ β. This implies that the distribution
PU |VM,B=b̄PVM |B=b is β-close to PUVM |B=b̄. Thus, when the sender honestly

opens b̄ starting from values distributed according PU |VM,B=b̄PVM |B=b, the re-
ceiver accepts the resulting values with probability at least 1−β−ε. We consider
the following attack: the sender honestly commits to b, generates v′ by applying
PV |UM,B=b and then generates u by applying the channel PU |VM,B=b̄ to (v′,m).

When the sender now tries to open b̄, the binding property guarantees that the
receiver accepts the resulting values with probability at most γ. Thus, we can
apply the data-processing inequality (3) to bound d(1− β − ε ‖ γ). Let V ′ be a
copy of V , i.e., a random variable with distribution PV V ′(v, v) = PV (v). Using
the chain rule (2), we have

d(1− β − ε ‖ γ) ≤ D(PV V ′|UM,B=bPUM |B=b ‖ PV |UM,B=bPV |UM,B=bPUM |B=b)

≤ D(PV V ′|UM,B=b ‖ PV |UM,B=bPV |UM,B=b)

= H(V | UM,B = b)

≤ H(V | U).

Using Lemma 2 this implies inequality (8). ⊓⊔

Consider a protocol that implements n bit commitment with security of 2−k

from n′ instances of
(

2
1

)

-OT
ℓ′ . Since

(

2
1

)

-OT
ℓ′ can be reduced to a shared distri-

bution PUV with H(V |U) = 1, Lemma 5 implies that n′ ≥ (k − 1) · 2k−1−4
2k−1−1

, i.e.,
one needs, independently of ℓ′, almost k instances of OT.

Together with Theorem 1 and Lemma 4, this implies the following lower
bound on the number of instances of OT needed to implement multiple string
commitments, which demonstrates that all three lower bounds can be meaningful
in this scenario.



Corollary 2. Let k ≥ 3. For any protocol that implements n individual ℓ-bit

string commitments with an error of at most 2−k from n′ instances of
(

2
1

)

-OT
ℓ′

n′ ≥ max

(

ℓn

ℓ′
(1− 3 · 2−k)−

3h(2−k)

ℓ′
,
(k − 2)n

ℓ′
·
2k−2 − 2

2k−2 − 1
, (k − 1)

2k−1 − 4

2k−1 − 1

)

.

3 Commitments with restricted openings

In this section, we will present a protocol that implements commitments with
restricted openings from several instances of string commitment. We will use the
Universal Composability model [8], and assume that the reader is familiar with
it. In our proof, we will only consider static adversaries. For simplicity, we omit
session IDs and players IDs.

String Commitment is a functionality that allows the sender to commit to a
string of n bits, and to reveal the whole string later to the receiver. The receiver
does not get to know the string before it is opened, and the sender cannot change
the string once he has sent it.

Definition 1 (String-Commitment). The functionality Fn
SCOM behaves as fol-

lows:

– Upon input (commit, b) with b ∈ {0, 1}n from the sender: check that commit
has not been sent yet. If so, send committed to the receiver and store b.
Otherwise, ignore the message.

– Upon input openall from the sender: check if there has been a commit
message before, and the commitment has not been opened yet. If so, send
(openall, b) to the receiver and ignore the message otherwise.

Note that given Fn
SCOM

, it is possible to commit to individual bits at different
times: the sender simply commits to a random string b′ = (b′1, . . . , b

′
n), and

whenever he wants to commit to a bit bi for i ∈ [n], he sends bi ⊕ b′i to the
receiver. On the other hand, it is not possible to open bits at different times
using Fn

SCOM
.

Bit commitment is a string commitment of length 1, i.e., FBCOM := F1
SCOM

.
We denote n independent bit commitments by (FBCOM)

n
. Since (FBCOM)

n
does

allow bits to be opened at different times, it is strictly stronger than Fn
SCOM

.
However, as we have seen in the last section, (FBCOM)

n
is also quite expensive to

implement in terms of resources needed. Therefore, we define a primitive that
is somewhere between these two: commitments with restricted openings allow a
sender to commit to n bits, but then he may only open r individual bits of his
choice one by one. To open more than r bits, he has to open the remaining bits
all at once.

Definition 2 (Commitments with restricted openings). The functionality
Fn,r
RCOM behaves as follows:



– Upon input (commit, b) with b ∈ {0, 1}n from the sender: check that commit
has not been sent yet. If so, send committed to the receiver and store b.
Otherwise, ignore the message.

– Upon input (open,i) with i ∈ [n] from the sender: check that there has been
a commit message before, and that i has not been opened yet. Also check that
the number of opened values so far is smaller than r. If so, send (open, i,
bi) to the receiver and ignore the message otherwise.

– Upon input openall from the sender: check if there has been a commit mes-
sage before, and no openall message has been received yet from the sender.
If so, send (openall, b) to the receiver and ignore the message otherwise.

For r = 0 and r = n, commitment with restricted openings are equivalent to
string commitments and individual bit commitments, respectively: Fn

SCOM
= Fn,0

RCOM

and (FBCOM)
n
≡ Fn,n

RCOM
.

Our protocol makes use of cover-free families [27, 18, 35, 6], which are a gener-
alization of Sperner sets [34]. Cover-free families are also known as superimposed
codes and require that no set is covered by the union of r other sets.

Definition 3. Let X be a set of n elements and let B be a set of subsets of X ,
then (X ,B) is a r-cover-free family r−CFF(X ,B) if for any r sets Bi1 , . . . Bir ∈
B, and any other B ∈ B, it holds that

B 6⊆
r
⋃

j=1

Bij .

Example 1. All subsets of [n] of size s form a cover-free family for r = 1, because
there is no subset that completely covers any other subset.

Here is a simple example of a cover-free family for r > 1 given in [18].

Example 2 ([18]). Let q be a prime power, and d, r ∈ N such that rd < q. Let
X = Y×GF (q), where Y ⊆ GF (q) and |Y| = rd+1. An element B in the family
B is constructed from a polynomial p(y) := a0+y·a1+...+yd·ad of degree d where
ai ∈ GF(q) by B := {(y, p(y)) : y ∈ Y)}. Two polynomials of degree d intersect
at most d times. Therefore, any union of r elements B1, . . . Br intersects any
other element B at most rd < |Y| times, and therefore cannot cover B. (X ,B)
is therefore a r-cover-free family with |X | = (rd+ 1)q and |B| = qd+1.

We now give a protocol that implements FN,r
RCOM

from n instances of FN
SCOM

using
a r−CFF(X ,B), where X = {1, . . . , n} and B = {B1, B2, ..., BN}.



Protocol 1:

– When the sender receives (commit, b), he chooses n uniformly chosen
strings c1, . . . cn ∈ {0, 1}N , with the restriction that for all i ∈ [N ] we
have

⊕

j∈Bi

cj,i = bi .

For j ∈ [n], the sender sends (commit, cj) to the jth instances of FN
SCOM

.
After that he ignores all messages (commit, b′).

– When the receiver has received committed from all instances of FN
SCOM

,
he outputs committed.

– For the first r times when the sender receives (open,i), he sends
(open,i) to the receiver and openall to all instances of FN

SCOM
in Bi,

if they have not been opened yet. After that, he ignores all messages
(open,i).

– For the first r times when the receiver receives (open,i) from the
sender and (open, cj) from all instances FN

SCOM
in Bi, he outputs (open,

⊕

j∈Bi
cj,i). After that, he ignores these messages.

– When the sender receives openall, he sends openall to the receiver and
to all instances of FN

SCOM
. After that, he ignores all openall messages.

– When the receiver receives openall from the sender and (open, cj)
from all instances of FN

SCOM
, he outputs (openall, (b′1, . . . , b

′
N )), where

b′i := ⊕j∈Bi
cj,i. After that, he ignores all messages openall.

Theorem 2. Given an r−CFF(X ,B) where |X | = n and |B| = N , Protocol 1

UC-implements FN,r
RCOM from n instances of FN

SCOM.

Proof. It is easy to verify that the protocol is correct if the two players are
honest.

Corrupted sender. First, we consider the case where the comitter is corrupted.
He may send messages (commit, cj) or openall to the instances of FN

SCOM
, and

message (open,i) or openall to the receiver.
Our simulator simulates the adversary, and records all messages sent out by

the adversary. After receiving all messages (commit, cj) to the instances of FN
SCOM

,

he calculates bi := ⊕j∈Bi
cj,i for all i and sends (commit, (b1, . . . , bN )) to FN,r

RCOM
.

After receiving (open,i) and all messages openall sent to the instances of FN
SCOM

in Bi, he sends (open,i) to FN,r
RCOM

. After receiving openall sent to the receiver

and all instances FN
SCOM

, he sends openall to FN,r
RCOM

. It is not difficult to verify
that our simulation is perfect, and we get real≡ ideal.

Corrupted receiver. Let the receiver be corrupted by the adversary. He receives
committed and (open,cj) messages from the instances of FN

SCOM
, and messages

(open,i) and openall from the sender.



Our simulator simulates the adversary, and interacts with FN,r
RCOM

and the

adversary. After receiving the committedmessage from FN,r
RCOM

, it sends committed

from all FN
SCOM

to the adversary. After receiving message (open,i,bi) from FN,r
RCOM

,
he first sends (open,i) to the adversary. Then for all instances of FN

SCOM
in Bi

which have not been opened yet, he chooses strings cj uniformly at random, with
the restriction that ⊕j∈Bi

cj,i = bi, and sends (open,cj) from the jth instance

of FN
SCOM

to the adversary. After receiving message (openall,b) from FN,r
RCOM

, he
first sends openall to the adversary. Then for all instances of FN

SCOM
which have

not been opened yet, he chooses the strings cj uniformly at random, with the
restriction that ⊕j∈Bi

cj,i = bi, and sends (open,cj) from the jth instance of
FN
SCOM

to the adversary.
To show that this simulation in the ideal setting is identical to the real setting,

we have to show that they are identical after each step. It is easy to see that
this is the case before anything has been opened, and after openall has been
executed.

FN,r
RCOM

allows the sender to open at most r values. Assume that s ≤ r have
been opened so far. Since B is a r−CFF(X ,B), there is at least one instance of
FN
SCOM

in Bi for all the remaining i ∈ [N ] that has not been opened yet. Since
the ith bit of that string is uniform and all the ith bits of the strings in Bi add
up to bi, the bits at the ith position of all the opened strings are uniform and
independent of each other and of the bit bi. Therefore, the simulated values cj
sent to the adversary have the same distribution in the real and in the ideal
setting. The simulation is again perfect, and we get real≡ ideal. ⊓⊔

Note that in each instance of FN
SCOM

in Protocol 1, only a subset of the bits are
actually used. Since they are at fixed positions and both players know where they
are, they can be removed without changing the properties of the protocol. If we
use the cover-free family from Example 1, the length of the string commitments
used can be reduced to Ns/n, and we get the following corollary.

Corollary 3. For any n ≥ s ≥ 1 and N =
(

n
s

)

there exists a protocol that

UC-implements FN,1
RCOM from

(

F
Ns/n
SCOM

)n

.

The protocol is optimal in the length of the strings up to a factor s; otherwise it
would be possible to implement a string commitment of length bigger than n · ℓ
from n instances of string commitment of length ℓ, which is not possible. Thus,
we can build N = n(n − 1)/2 bit commitments (choosing s = 2), from which
one can be opened, from n string commitments of length n− 1. When choosing
s = n/2, we obtain an exponential number of committed bits from n strings,
since N =

(

n
n/2

)

> 2n/2.

If we use the cover-free family of Example 2, then the size of the commitments
can be reduced by a factor of q because we can let all the bit commitments which
have different values a0 but the same values a1, ..., ad share the same position in
the string commitments. We get the following corollary.

Corollary 4. Let q be a prime power, d < q and N := qd+1. There exists a

protocol that UC-implements FN,r
RCOM from (rd+ 1)q instances of F

N/q
SCOM .



This is optimal in the length of the strings up to a factor rd + 1; otherwise it
would again be possible to implement a string commitment of length bigger than
n · ℓ from n instances of string commitment of length ℓ, which is not possible.
Choosing d = 1, we get N = q2 and n = (r + 1)q. Thus, there exists a pro-
tocol that uses (r + 1)q string commitments of length q and implements q2 bit
commitments from which r can be opened.

To obtain an exponential number of bit commitments from n string commit-
ments, we can use Corollary 1 in [6] which gives an explicit construction of a
t−CFF(X ,B) where |X | < 24t2 log(|B|+ 2). Hence, we get the following result.

Corollary 5. There exists a protocol that from FN,r
RCOM from 24r2 log(N + 2) in-

stances of FN
SCOM.

This is close to the optimal efficiency we can expect from Protocol 1, as it
has been shown in Theorem 1.1 in [35] that t−CFF(X ,B) must have

|X | ≥ c ·
t2

log t
log |B| ,

for a constant c.
Our protocols can be generalized in a simple way as follows: let FN,r,c

RCOM
be

the same functionality as FN,r
RCOM

except that every bit is replaced by a block of
size c. The sender can open up to r blocks, or all N blocks at the same time.
It is not difficult to see that if Protocol 1 implements FN,r

RCOM
from n instances of

Fℓ
SCOM

, then it can be transformed into a protocol that implements FN,r,c
RCOM

from
n instances of Fℓc

SCOM
.

3.1 Commitments from Noisy Channels at a Constant Rate

From Corollary 4 with d = 1 in combination with the string commitment pro-
tocol presented in [38], we get the following corollary.

Corollary 6. For any constant r, there exists a protocol that implements Fn,r
RCOM

using only O(n) noisy channels.

This is optimal up to a constant factor.

4 Conclusions

In this work we have shown a strong lower bound for reductions of multiple bit
commitments to other information theoretic primitives, such as oblivious transfer
or noisy channels. Our bound shows that every single bit commitment needs at
least Ω(k) instances of the underlying primitive. This makes bit commitments
often much more costly to implement than oblivious transfer, for example. It
would be interesting to see whether these results can be generalized to other
functionalities.



We have presented a protocol that implements bit commitments more effi-
ciently, when the number of bits that can be opened is restricted. Our protocol
implements commitments with restricted openings from string commitments.
We think that for some resources more efficient protocols might be possible by
implementing them directly, instead of using string commitments as a building
block.
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