
A Framework for Practical Universally
Composable Zero-Knowledge Protocols?

Jan Camenisch1, Stephan Krenn2, and Victor Shoup3

1 IBM Research – Zurich, Rüschlikon, Switzerland
jca@zurich.ibm.com

2 Bern University of Applied Sciences, Biel-Bienne, Switzerland, and
University of Fribourg, Switzerland

stephan.krenn@bfh.ch
3 Department of Computer Science, New York University, USA

shoup@cs.nyu.edu

Abstract. Zero-knowledge proofs of knowledge (ZK-PoK) for discrete
logarithms and related problems are indispensable for practical crypto-
graphic protocols. Recently, Camenisch, Kiayias, and Yung provided a
specification language (the CKY-language) for such protocols which al-
lows for a modular design and protocol analysis: for every zero-knowledge
proof specified in this language, protocol designers are ensured that there
exists an efficient protocol which indeed proves the specified statement.
However, the protocols resulting from their compilation techniques only
satisfy the classical notion of ZK-PoK, which is not retained are when
they used as building blocks for higher-level applications or composed
with other protocols. This problem can be tackled by moving to the
Universal Composability (UC) framework, which guarantees retention of
security when composing protocols in arbitrary ways. While there exist
generic transformations from Σ-protocols to UC-secure protocols, these
transformation are often too inefficient for practice.
In this paper we introduce a specification language akin to the CKY-
language and a compiler such that the resulting protocols are UC-secure
and efficient. To this end, we propose an extension of the UC-framework
addressing the issue that UC-secure zero-knowledge proofs are by defini-
tion proofs of knowledge, and state a special composition theorem which
allows one to use the weaker – but more efficient and often sufficient –
notion of proofs of membership in the UC-framework. We believe that
our contributions enable the design of practically efficient protocols that
are UC-secure and thus themselves can be used as building blocks.
Keywords: UC-Framework; Protocol Design; Zero-Knowledge Proof;

1 Introduction

The probably most demanding task when designing a practical cryptographic
protocol is to define its security properties and then to prove that it indeed

? This work was in part funded by the Swiss Hasler Foundation, and the EU FP7
grants 216483 and 216499, as well as by the NSF grant CNS-0716690.

http://www.primelife.eu/
http://www.cace-project.eu/


satisfies them. For this security analysis it is often assumed that the “world”
consists only of one instance of the protocol and only of the involved parties,
rather than of many parties running many instances of the same protocol as well
as other protocols at the same time. While this approach allows for a relatively
simple analysis of protocols, it does not properly model reality and therefore
provides little if any security guarantees. Also, this approach does not allow for
a modular usage of the protocols, i.e., when a protocol is used as a building block
for another protocol, the security analysis must be all done from scratch.

To address these problems, a number of frameworks have been proposed over
the years, e.g., [1–3]. The so-called Universal Composability (UC) framework by
Canetti [2] seems to be the most prevalent one. A fundamental result in this
model is its very strong composition theorem: once a protocol is proved secure in
this model, it can be used in arbitrary contexts retaining its security properties.
This allows one to split a protocol into smaller subroutines so that the security of
each subprotocol can be analyzed separately, making the security of the overall
protocol much easier. In particular, each (sub-)protocol needs to be analyzed
only once and for all and does not have to be repeated for each specific context.

This modularity and the high security guarantees suggest that protocols
should always be designed and proven secure in the UC-framework. However,
this is only the case for a small fraction of the proposed cryptographic schemes,
such as oblivious transfer [4] and encryption- [5,6], and commitment schemes [7].
Furthermore, only very few UC-secure protocols are actually deployed in the real
world, e.g., [8,9]. We believe that one main reason for this is the high computa-
tional overhead which is often required to achieve UC-security.

When designing practical cryptographic protocols, efficient zero-knowledge
proofs of knowledge (ZK-PoK) for discrete logarithms and related problems have
turned out to be indispensable. On a high level, these are two party protocols
between a prover and a verifier which allow the former to convince the latter
that it possesses some secret piece of information, without the verifier being able
to learn anything about it. This allows protocol designers to enforce one party
to assure other parties that its actions are consistent with its internal knowledge
state. The shorthand notation for such proofs, introduced in [10], has been ex-
tensively used in the past and contributed to the wide employment of ZK-PoK
in cryptographic design. This notation suggests using, e.g., PK [(α) : y = gα] to
denote a proof of the discrete logarithm α = logg y, and it has appeared in many
works sometimes with quite complex statements, e.g., [11–23]. This informal no-
tion was recently formalized and refined by Camenisch, Kiayias and Yung who
have provided a specification language (CKY-language) for such protocols [24].
The language allows for the modular design and analysis of cryptographic pro-
tocols: protocol designers just needs to specify the statement the ZK-PoK shall
prove and, if the specification is in the CKY-language, they are ensured that the
proof protocol exists and indeed proves the specified statement.

The realizations given by Camenisch et al. [24] are based on Σ-protocols and
satisfy the classical notion of ZK-PoK but not that of UC zero-knowledge. On a
high level, the problem here is that the classical notion only requires that a valid

2



witness can be extracted from every convincing prover given rewindable access
to that prover. However, in the UC-framework this has to be possible without
rewinding. While generic transformations from Σ-protocols to UC-ZK protocols
are known [25], they come along with a significant computational overhead,
making the resulting protocols impracticable for real-world usage.

However, the security proofs of many cryptographic protocols only require the
existence of a witness, and not that the prover actually knows it. Intuitively, this
should be easier to achieve than proofs of knowledge. Yet, in the UC-framework
zero-knowledge proofs are always proofs of knowledge. This is because otherwise
the ideal functionality generally could not decide whether or not a given state-
ment is true in polynomial time. In this paper we are aiming at closing the gap
between high security guarantees and modularity on the one hand, and practical
usability and efficiency of the resulting protocols on the other hand.

Our Contributions. We first present an exhaustive language and a compiler
which allow protocol designers to efficiently and modularly specify and obtain
UC-ZK protocols. We then give an extension of the UC-framework allowing
protocol designers to also make usage of the more efficient proofs of existence
(as opposed to proofs of knowledge), which we also incorporate into our language.
Let us explain this in more detail in the next paragraphs.

A language for UC-ZK protocols. We provide an intuitive language for spec-
ifying ZK-PoK for discrete logarithms akin to the CKY-language [24] where the
specification also allows one to assess the complexity of the specified protocol.
We then provide a compiler which translates these specifications into concrete
protocols. Even though this compiler is mainly based on existing techniques, it
offers unified and unambiguous interfaces and semantics for the associated pro-
tocols for the first time. It thus enables protocol designers to treat specifications
in our language as black-boxes, while having clearly defined security guarantees.

Proving existence rather than knowledge. In the UC-framework, all ZK proofs
are necessarily proofs of knowledge. However, when designing higher-level proto-
cols, it is often sufficient to prove that some computation was done correctly, but
not to show that the secret quantities are actually known. To allow protocol de-
signers to also make use of these more efficient protocols (which are not proofs of
knowledge any more), we extend our language and provide the necessary frame-
work to prove UC-security. Loosely speaking, we therefore formulate the gullible
ZK ideal functionality FgZK, and provide a special composition theorem which
allows protocol designers to use existence-proofs “as if they were ideal function-
alities,” if they are later instantiated as described in our compiler. Roughly, the
theorem states that proving the correctness of a protocol using FgZK in a slightly
non-UC-compliant way is sufficient for the protocol where FgZK is instantiated
by the real-world protocol to be UC-secure in the standard sense.

Related Work. The UC-framework has first been introduced by Canetti [2].
The notion of Ω-protocols was introduced in [25, 26], and so far the most effi-
cient UC-secure zero-knowledge proofs of knowledge have been proposed in [27].
Further, [28] analyzes UC-ZK in the presence of global setup [29]. The idea
of committed proofs was first mentioned in [30]. We combine the techniques

3



of [27, 30] to compile proof specifications in our language to real protocols. In
particular this allows us to realize proofs of existence.

A language for specifying ZK-PoK for discrete logarithms was presented by
Camenisch and Stadler [10] and later refined by Camenisch et al. [24], but neither
of their realizations are UC-secure. Our notation is strongly inspired by theirs. In
fact, our language has already turned out to be very useful to describe ZK-PoK
in a companion paper [31], and in this paper we fulfill the promises given there.

Functionalities similar to FgZK have already been used by Lindell [32,33] and
Pass and Rosen [34] in different contexts. That is, all this work is on two-party
protocols which preserve their security guarantees under bounded-concurrent
self-composition and not on full UC-security. Prabhakaran and Sahai [35, 36]
also suggest generalizations of the UC-framework in which functionalities can be
realized that cannot be realized in the plain UC-framework. Their work differs
from ours in that they leave the standard model of polynomial time computa-
tion by granting the adversary access to some super-polynomially powerful oracle
(“imaginary angel”), while our approach works in the standard computational
model. Furthermore, they suggest generic solutions for ZK-PoK while we are
aiming at practically efficient protocols. Finally, ideas similar to ours have also
been suggested in unpublished work by Nielsen [37].

Roadmap. After introducing some notation, recapitulating fundamental theory
and presenting two running examples in §2, we describe a basic language for
specifying UC-secure ZK-PoK protocols in detail in §3. In §4, we show how
proofs of existence rather than knowledge can be UC-realized, resulting in much
more efficient protocols, and extend our language accordingly. In this section we
further show how such specifications can be compiled to actual protocols. We
give several extensions to our basic language in §5 and briefly conclude in §6.

2 Preliminaries

Let us introduce some notation first. By s ∈R S we denote the uniform random
choice of some element s in set S. The group of signed quadratic residues [38]

for some modulus n is denoted by SRn. For two random ensembles,
s
≈ denotes

statistical indistinguishability. Finally, two party protocols between parties P and
V with common input y and private input w to P are written as (P(w),V)(y).

We assume that the reader is familiar with the notion of Σ- and Ω-protocols,
and only give informal definitions here. A protocol (P(w),V)(y) is called a Σ-
protocol [39], if it is an honest verifier ZK-PoK in the non-UC model, consisting
of three messages being exchanged (a commitment t, a challenge c ∈R C =
{0, 1}k, and a response r), such that the secret w can be computed from any two
valid protocol transcripts with the same commitment but different challenges. A
protocol is called an Ω-protocol [25], if it further takes a common reference string
σ as additional input, such that when knowing a trapdoor to σ it is possible to
compute the prover’s secret input from any successful run of the protocol.

An Ω-protocol is said to be f -extractable, if it is not possible to compute w
from any successful run, but only f(w) for some function f . In particular, we will

4



make use of two types of f -extractable protocols: one the one hand we will use
f(w1, . . . , wn) = (w1, . . . , wk) for some k ≤ n, i.e., protocols which only allow to
extract parts of the witness. On the other hand, we will have f(w1, . . . , wn) =
(w1, . . . , wn,A(w1, . . . , wn)), i.e., functions f which in addition to all witnesses
additionally output some further values depending on these witnesses. These
constructions will allow for an efficiency speedup compared to using plain Ω-
protocols, while often still ensuring appropriate security guarantees.

2.1 The UC-Model

We next briefly recapitulate the Universal Composability (UC) framework [2].
A party is a probabilistic polynomial time interactive Turing machine. Each

party P is uniquely determined by a pair (PIDP , SIDP ), where PIDP and SIDP
are its party ID and its session ID. Two parties share the same session ID if and
only if they are participants of the same instance of a protocol. Party IDs are
solely used to distinguish between participants of the same protocol instance.
Following [31], we assume that session IDs are structured as pathnames. That
is, for a protocol with session ID SID, the session ID of any of its subprotocols
is given by SID/subsession, where subsession is a unique local identifier, con-
taining the party IDs of all participating parties and shared public parameters.

The main concept of the UC framework is that of UC-emulation. Loosely
speaking, a protocol ρ UC-emulates some protocol φ, if ρ does not affect the
security of anything else than φ would have, no matter how many other instances
of ρ or other protocols are executed concurrently. This implies that ρ can safely
be used on behalf of φ without compromising security. The most interesting
case is where φ is some ideal functionality F, which can be thought of as an
incorruptible trusted party that takes inputs from all parties, performs some
local computations, and hands back outputs to the parties. Ideal functionalities
can be seen as formal specifications of cryptographic tasks and are secure by
definition. Now, if ρ UC-emulates F, one can infer that ρ does not leak any other
information to an adversary than F would have, and therefore securely realizes
the given task in arbitrary contexts. For a more precise description see [2].

Protocols using an ideal functionality F as a subroutine are called F-hybrid.
If not stated otherwise, all protocols we are going to present are Fach-hybrid
protocols, where Fach is an ideal functionality realizing authenticated (but not
necessarily private) channels. The functionality takes as input a message x from
some a sender, and forwards it to a receiver. The adversary learns x, and, upon
corruption of the sender, is allowed to change it before it is delivered.

The corruption model underlying our discussion is adaptive corruptions with
erasures. This can be seen as a bit of a compromise: while only considering
static corruptions would not properly reflect reality, assuming secure data era-
sures is necessary to obtain efficient protocols in this setting. However, even if
implementing erasures might be difficult, it is not impossible.

The Basic UC-ZK Ideal Functionality. In the following we discuss the
basic ideal zero-knowledge functionality, which is formally specified in Figure 1.

5



The zero-knowledge functionality FR,R′

ZK

1. Wait for an input (prove, y, w) from P such that (y, w) ∈ R if P is honest, or
(y, w) ∈ R′ if P is corrupt. Send (prove, `(y)) to A. Further wait for a message
ready from V , and send ready to A.

2. Wait for a message lock from A.
3. Upon receiving a message done from A, send done to P . Further wait for an

input proof from A and send (proof, y) to V .

Corruption rules:

. If P gets corrupted after sending (prove, y, w) and before Step 2, A is given
(y, w) and is allowed to change this value to any value (y′, w′) ∈ R′ at any
time before Step 2.

Fig. 1: The basic zero-knowledge functionality FR,R
′

ZK , parametrized by two binary
relations R,R′ such that R′ ⊇ R [31].

It is parametrized by two binary relations, R and R′, which have the following
meaning: the relation R specifies the set of inputs (y, w) the functionality accepts
from an honest prover. For such inputs, the functionality informs the verifier that
the prover knows a witness for y, while an adversary does not learn w. Yet, if the
prover is corrupted, it is allowed to supply inputs from a binary relation R′ ⊇ R,
in which case the ZK property does not have to be satisfied any more.

The relationR might itself be parametrized by system parameters, specifying,
e.g., the concrete groups being used. We will model all such parameters as public
coin parameters, i.e., the environment might know the random coins being used
to generate the system parameters. This is helpful if the same parameters are
used in other protocols as well, e.g., to sign messages.

The functionality defined in Figure 1 differs from the standard one found in
the literature in two ways. Firstly, we delay revealing the claimed statement y to
V and A until the last possible moment, and only give `(y) to the adversary in
the first step, where ` is a leakage function, which roughly gives some information
about the “size and shape” of y to A (to be precise, `() is a parameter of FZK

as well which will be disregarded in the remaining discussion). This approach
prevents the simulator from being over-committed in our constructions, and to

the best of our knowledge FR,R
′

ZK can safely be used instead of the standard UC-
ZK functionality in any application. Secondly, we allow corrupt parties to supply
witnesses from a larger set than honest parties. This relaxation stems from the
soundness gap of most known efficient constructions for ZK-PoK for discrete
logarithms in the non-UC case [40] (which are underlying the constructions for
UC-ZK protocols): there, the verifier can only infer that the prover knows a
witness w such that (y, w) ∈ R′, whereas an honest prover is ensured that for
(y, w) ∈ R the verifier cannot learn the secret. We further elaborate on this in §3.

The same formalization of the ZK functionality was also used in [31].

6



2.2 Running Examples

We next introduce two running examples, which we are going to use throughout
the discussion to illustrate our techniques.

Example 2.1 (Running Example 1). Let be given an integer commitment y ∈
SRn for some safe RSA modulus n. Let further be given two generators g, h of
SRn. In this example, a prover is interested in proving knowledge of integers ω, ρ
such that y = gωhρ and ω ≥ 0. ut

Numerous practically relevant applications require such proof goals as basic
building blocks for more complex protocols, e.g., [14, 16].

Example 2.2 (Running Example 2). Let be given a cyclic group H of prime order
q, and two generators, g, h ofH. Let further be given a triple (u1, u2, e) ∈ H3, and
let one be interested in proving that (u1, u2, e) is a valid encryption of gα ∈ H for
some α ∈ Zq known to the prover under the semantically secure version of the
Cramer-Shoup cryptosystem [30,41]. That is, the task is to prove that (u1, u2, e)
is of the form (gρ, hρ, gαcρ) for a publicly known c ∈ H. ut

This example stems from [31], where such proofs are repeatedly needed in the
context of credential-authenticated key-exchange and identification protocols.

3 A Language For Specifying UC-ZK Protocols

As shown in [42], any ideal functionality can be UC-realized given only function-
alities realizing commitments and ZK proofs, respectively. This result suggests
that ZK proofs are important building blocks of higher-level applications, and
will thus often be deployed when UC-realizing cryptographic tasks.

Taking this as a motivation, we describe an intuitive language for specifying
universally composable zero-knowledge protocols. The language is strongly in-
spired by the standard notation for describing ZK-PoK in the non-UC case which
was introduced in [10]. We stress that similar to there, our notation does not
only specify proof goals (i.e., what one wants to prove), but concrete protocols.
Especially for our results given in §4, this unambiguity is important.

We start by describing a basic language, which allows one to specify arbitrary
Boolean combinations of protocols proving knowledge of discrete logarithms (or
representations) in arbitrary groups. In many cases the complexity of the result-
ing protocol can be inferred directly from the proof specification.

A protocol proving knowledge of integers ω1, . . . , ωn satisfying a predicate
φ(ω1, . . . , ωn) is denoted as follows:

Kω1 ∈ I∗(mω1), . . . , ωn ∈ I∗(mωn) : φ(ω1, . . . , ωn) . (1)

Here, each witness ωi belongs to some integer domain I∗(mωi
). The predicate

φ(ω1, . . . , ωn) is a Boolean formula containing ANDs (∧) and ORs (∨), built

7



from atomic predicates of the following form:

y =

u∏
i=1

g
Fi(ω1,...,ωn)
i .

The gi and y are elements of some commutative group, and the Fi are integer
polynomials, i.e., Fi ∈ Z[X1, . . . , Xn]. Similar to [10], we make the convention
that values of which knowledge has to be proved are denoted by Greek letters,
whereas all other quantities are assumed to be publicly known.

We next discuss the single components of our basic language in more detail.

Groups. Different atomic predicates may use different groups. Besides effi-
ciently evaluable group operations we only require that group elements are effi-
ciently recognizable, and that the group order does not contain any small prime
divisors, where “small” can be seen as an implementation dependent parame-
ter which typically will have 160 − 256 bits. In particular, we do not make any
intractability assumption for the groups.

We stress that the group of quadratic residues modulo a safe RSA modulus
n (i.e., n = pq, where p, q, p−12 , q−12 are prime, denoted by QRn) does not satisfy
the above requirements, as group membership cannot be efficiently verified. We
recommend using the group of signed quadratic residues instead [38].

Predicates. We allow predicates to be arbitrary combinations of atomic pred-
icates by the Boolean connectives AND and OR. Also, witnesses may be reused
across different atomic predicates.

Domains. We allow the secret values ω1, . . . , ωn to be arbitrary integers. How-
ever, for implementation issues, for each i an integer mωi

satisfying

ωi ∈ I(mωi) := {l ∈ Z : −mωi ≤ l ≤ mωi}

is required. The value of mωi
can be chosen arbitrarily large, and is only needed

for the protocols resulting from the construction in §4.1 to be statistically zero-
knowledge for any ωi ∈ I(mωi

). They then guarantee that the prover knows
witnesses in a larger interval, i.e., they prove knowledge of witnesses ω∗i satisfying

ω∗i ∈ I∗(mωi) := {l ∈ Z : −tmωi ≤ l ≤ tmωi},

where t is an implementation dependent parameter, which usually will have
about 160−256 bits and which is independent of the groups used in the predicate.
In particular, I∗(mωi

) is thus uniquely defined even if ωi is used across different
atomic predicates. More precisely, we have t ≈ 2k+l + 2k − 1, where 2−k is the
success probability of a malicious prover, and l is a security parameter controlling
the tightness of the statistical ZK property of the protocol.

Formally, the gap between I(mωi
) and I∗(mωi

) is modeled by allowing cor-
rupt provers to hand in values satisfying a relation R′ ⊇ R to the ideal function-
ality, whereas honest parties have to supply values in R, cf. §2.1.

8



As a special case, we allow to define I∗(mωi
) = I(mωi

) = Zq, if (i) the
secret ωi only occurs in atomic predicates for which the order of the group is
known, and (ii) the integer q is a common multiple of all these group orders.
This slightly increases the efficiency of the resulting protocols because of shorter
exponents in the modular exponentiations in the protocol.

Induced Relation. Each proof specification spec of the form (1) induces two
binary relations, R = R(spec) ⊆ R′(spec) = R′, and a protocol π = π(spec),

cf. §4.1. The protocol π then UC-emulates FR,R
′

ZK , i.e., it is zero-knowledge for
(y, w) ∈ R, and guaranteed the verifier that the prover supplied (y′, w′) ∈ R′.

Let us now illustrate our basic language by means of our two running examples.

Example 3.1 (Running Example 1). We start by resolving the condition ω ≥ 0

into the form (1) by rewriting it to ω =
∑4
i=1 χ

2
i [43]. Let ω be an element of

[−T, T ], i.e., mω = T . Then, clearly, we have that mχi
= b
√
T c for all i. Also,

for y to be blinding, we can assume that mρ = bn/4c.
The proof goal is thus given by:

Kρ ∈ I∗(bn/4c), {χi}4i=1 ∈ I∗(b
√
T c) : y = gχ

2
1+χ

2
2+χ

2
3+χ

2
4hρ . ut

Example 3.2 (Running Example 2). In this case, all secret values are elements of
Zq, where q is the order of H. We therefore get the following proof specification:

Kα, ρ ∈ Zq : u1 = gρ ∧ u2 = hρ ∧ e = gαcρ .

In particular note that the requirement that ordH does not have small prime
divisors is satisfied as q was assumed to be prime, cf. Example 2.1. ut

4 Proving Existence Rather Than Knowledge

Realizing ZK-PoK in the UC-framework is a computationally expensive task. On
a high level this is because the simulator needs to be able to extract the secret
witness without rewinding, and the most efficient currently known way to achieve
this is to include Paillier encryptions of the witnesses into the proof. Now, in
larger protocols, ZK-PoK are often only used to ensure that a computation was
done correctly, and the simulators of these higher-level protocols do not make
usage of the witnesses. For instance, in Example 2.2 proving the existence of ρ
is sufficient to imply the required well-formedness of the ciphertext.

Thus, often a functionality realizing the following steps would be sufficient:

1. Wait for an input (prove, y, w) from P such that there is a w̃ satisfying
(y, w̃) ∈ R and f(w̃) = w, and send (prove, `(y)) to A. Further wait for a
message ready from V , and send ready to A.

2. Wait for a message lock from A.

9



3. Upon receiving a message done from A, send done to P . Further wait for an
input proof from A and send (proof, y) to V .

That is, one is aiming for a functionality which checks whether the prover
knows some (partial) information w = f(w̃) for a full witness w̃, and informs the
verifier if this is the case. However, the problem is that by definition any zero-
knowledge proof in the UC-Framework is always a proof of knowledge. This is,
because in general the existence of w̃ cannot be checked efficiently, and thus the
witness has to be given as an input for the functionality to be able to check
whether the statement is true. We now propose a framework that circumvents
this problem and allows one to use proofs of existence in the UC-model.

We extend our basic language by the additional E-quantifier. For secrets
quantified under E(instead of K) only their existence (instead of their knowl-
edge) is proved. A generalized specification of a proof goal now looks as follows:

K{ωi ∈ I∗(mωi
)}ni=1 : E

{
χj ∈ I∗(mχj

)
}m
j=1

: φ(ω1, . . . , ωn, χ1, . . . , χm) (2)

In the following we show how such specifications are compiled into protocols,
and then describe the underlying theory and composition theorem which allow
to use such specifications as modular building blocks in larger protocols.

4.1 Compiling Specifications to Protocols

Due to space limitations we here only give a brief overview about how protocol
specifications are compiled into protocols. For a detailed description we refer to
the full version of this paper [44].

. First, the proof specification is rewritten to a predicate which only contains
atomic predicates having homogeneous linear relations in their exponents.
This can be done by applying standard techniques [40,43,45–48].

. In a second step, the prover computes integer commitments yi to all secret
witnesses ωi quantified by K.

. Next, using the technique proposed in [40], each conjunctive term in the
specification (i.e., each subformula of φ not containing any OR connectives)
is translated into a Σ-protocol which additionally proves that the witnesses
being used are the same as in the yi.

. Now, the different Σ-protocols are combined by the Boolean connectives as
specified by the predicate φ [48, 49].

. As a fifth step, the Σ-protocol is transformed into an Ω-protocol [25, 26].
This is achieved by Paillier-encrypting the witnesses quantified by K[50],
and proving that the encrypted witnesses are the same as in the yi.

. Using a simulation sound trapdoor commitment [27] and the committed-

proof idea of [30], one finally obtains a protocol UC-emulating FR,R
′

gZK .

Theorem 4.1. Let spec be a proof specification of the form (1), and let R =

R(spec), R′ = R′(spec), and π = π(spec). Then π UC-realizes FR,R
′

ZK with
respect to adaptive corruptions, assuming that securely erasing data is possible.

If this is not the case, it still UC-realizes FR,R
′

ZK with respect to static corruptions.

10



The proof of this theorem is a straightforward adaption of that in [27] and
is omitted due to space limitations.

Let us discuss the potential speed-up and the semantical consequences coming
along with the usage of the E-quantifier by means of our two running examples.

Example 4.2 (Running Example 1). For being able to see the speed-up, we first
have to resolve the polynomial relation of Example 3.1. Using the technique
from [43], we obtain the following equivalent proof specification:

K{ρi}4i=1 ∈ I∗(bn/4c), {χi}4i=1 ∈ I∗(b
√
T c), ρ′ ∈ I∗((4b

√
T c+ 1)bn/4c) :

4∧
i=1

yi = gχihρi ∧ y = yχ1

1 yχ2

2 yχ3

3 yχ4

4 hρ
′

Keeping in mind that the χi, ρi and ρ′ can be computed efficiently from ω, ρ
using Lagrange’s Four Square Theorem and the Rabin-Shallit algorithm [51], it
is easy to see that this specification is semantically equivalent to the following:

Kω ∈ I∗(T ), ρ ∈ I∗(bn/4c) : E{ρi}4i=1 ∈ I∗(bn/4c), {χi}4i=1 ∈ I∗(b
√
T c),

ρ′ ∈ I∗((4b
√
T c+ 1)bn/4c) : y = gωhρ ∧

4∧
i=1

yi = gχihρi ∧ y =

4∏
i=1

yχi

i h
ρ′

This rewriting yields a significant efficiency speedup, as only Paillier encryptions
for 2 instead of 9 values are required. Overall, the prover (verifier) thus saves 14
(7) Paillier encryptions and evaluations of the integer commitment scheme. ut

In this example, changing from the K- to the E-quantifier is a purely syn-
tactical step, which increases the efficiency of the protocol. This can be seen by
considering the underlying Ω-protocol as f -extractable, where f(w) = (w,A(w))
and A is the algorithm of [51]. However, in general it is not possible to efficiently
compute the witnesses quantified by E, and even their existence cannot be ver-
ified efficiently, as is illustrated by the following example.

Example 4.3 (Running Example 2). The following specification is sufficient for
proving the required well-formedness of the ciphertext:

Kα ∈ Zq : Eρ ∈ Zq : u1 = gρ ∧ u2 = hρ ∧ e = gαcρ .

This observation reduces the complexity of the prover’s algorithms in the proto-
col by 2 Paillier encryptions and 2 evaluations of the integer commitment scheme
(one each for their computation and their commitment in the Σ-protocol). ut

Here, the underlying Ω-protocol is f -extractable, where f is of the form
f(w1, . . . , wn) = (w1, . . . , wk) for k < n, such that the remaining wi cannot be
computed. This implies that in general it is not possible to construct an ideal
functionality which captures the semantics of an expression such as (2), as it
would have to run in probabilistic polynomial time by definition [2].

11



The gullible zero-knowledge functionality FR,R′

gZK

1. Wait for an input (prove, y, (w, x)) from P and send (prove, `(y)) to A. Further
wait for a message ready from V , and send ready to A.

2. Wait for a message lock from A.
3. Upon receiving a message done from A, send done to P . Further wait for an

input proof from A and send (proof, y) to V .

Corruption rules:

. If P gets corrupted after sending (prove, y, (w, x)) and before Step 2, A is
given (y, (w,⊥)) and is allowed to change this value at any time before Step 2.

Fig. 2: The gullible zero-knowledge functionality FR,R
′

gZK always informs the veri-
fier that the proof was correct.

4.2 The Gullible ZK Functionality and a Composition Theorem

In the following we describe the theoretical framework which allows protocols
designers to treat specifications containing values quantified by E(almost) as if
they were quantified by K.

The gullible zero-knowledge functionality FR,R
′

gZK expects the prover to supply
an image y and a pair (w, x) as inputs, and always informs the verifier that
(y, (w, x)) ∈ R′, no matter whether this is the case or not, cf. Figure 2. For an
honest prover, w will be the part of the witness for which knowledge has to be
proved, whereas x is the part for which only existence has to be proved. Upon
corruption of the prover, the adversary only learns y and w, but not x. This is
to model the intuitive goal of proofs of existence appropriately.

Our special composition theorem guarantees that ρπ/F
R,R′
gZK UC-emulates some

other protocol φ, if ρ UC-emulates φ with respect to a certain type of environ-
ments, called nice environments, which we define next. On a high level, these are
environments which (almost) never ask the dummy adversary to send incorrect
inputs to the gullible zero-knowledge functionality:

Definition 4.4. Let A∗ be the dummy adversary attacking some FR,R
′

gZK -hybrid
protocol ρ. We call an environment Z nice (with respect to ρ), if the statements

it requires A∗ to send to FR,R
′

gZK acting as a prover are true with overwhelm-
ing probability. That is, with overwhelming probability Z asks A∗ to send pairs

(y, (w, x)) to FR,R
′

gZK , for which there is an w̃ satisfying (y, w̃) ∈ R and f(w̃) = w.

Note that the value of x submitted by a nice environment is not restricted
by this definition, but only w has to be a valid partial witness.

We now define UC-emulation with respect to nice environments:

Definition 4.5. Let ρ be an FR,R
′

gZK -hybrid protocol. We say that ρ UC-emulates
a protocol φ with respect to the dummy adversary A∗ and nice environments
(w.r.t. ρ), if there is an efficient simulator S such that no nice environment can

12



s

 

with respect to nice environments for arbitrary environments

s




',RR

gZK
F

*A S




*A Ŝ

Fig. 3: Illustration of Theorem 4.6: for proving that ρπ/F
R,R′
gZK UC-emulates φ, it

is sufficient to show that ρ emulates φ for nice environments.

distinguish whether it is interacting with ρ and A∗ or with φ and S. That is, for
every nice environment Z it holds that EXEC(ρ,A∗,Z) ≈ EXEC(φ,S,Z).

Here, EXEC(ρ,A,Z) denotes the random variable given by the output of Z
when interacting with ρ and A, and analogously for EXEC(φ,S,Z).

Note that any non-nice environment could potentially distinguish between ρ
and φ by just submitting a false statement, which will always be accepted by

FR,R
′

gZK . Informally, our special composition theorem now states that every non-

nice environment can be detected if FR,R
′

gZK is instantiated by π as described in

the previous section, and thus ρπ/F
R,R′
gZK is secure against arbitrary environments.

This allows a protocol designer to use ZK proofs of existence in a UC-compliant
way, almost as if they were ZK-PoK. The theorem is illustrated in Figure 3.

Theorem 4.6. Let spec be a proof specification of the form (2), and let R =

R(spec), R′ = R′(spec), and π = π(spec). Let further ρ be an FR,R
′

gZK -hybrid
protocol, such that ρ UC-emulates a protocol φ with respect to the dummy adver-

sary and nice environments, and let ρ, φ be subroutine respecting. Then ρπ/F
R,R′
gZK

UC-emulates φ (in the standard sense) with respect to adaptive corruptions if
securely erasing data is possible.

Proof (Sketch). We omit a full proof here, and only give the underlying intuition.
Let therefore S be the simulator for nice environments, which exists by assump-
tion. We have to show that there exists an efficient simulator Ŝ such that for arbi-

trary environments Z we have that EXEC(ρπ/F
R,R′
gZK ,A∗,Z)

s
≈ EXEC(φ, Ŝ,Z).

The idea is that Ŝ runs a copy of S and one of A∗ internally, and all messages
sent to or received from Z are routed through the simulated A∗. In general, all
communication is further forwarded to S, and Ŝ outputs whatever S does. The
only exception is made when encountering a call to π between two parties, P
and V . In this case Ŝ internally executes the protocol on the given inputs and
behaves as follows (independent of the corruption state of the parties):

. If the run is successful, then with overwhelming probability the input was
correct (i.e., Z “behaved nicely”), as the underlying Σ-protocol is an interac-
tive proof system [52]. Thus, Ŝ proceeds like the simulator for Theorem 4.1,
cf. [30] and [27], expect for the following difference: secret values quantified
by Eare given to the attacker in the real protocol π, but not in the ideal

13



functionality FgZK. This can be simulated because of the committed proof
technique by choosing these secrets at random within their domains when-
ever necessary. Then, Ŝ computes the corresponding image y′ and opens the
commitment made in its first message accordingly. As in [27], this is possi-
ble because of the trapdoor property of the used commitment scheme. Note
here that these values are deleted before sending out the final message, so
the simulator never has to supply them after the adversary learned y.

. If however the run of π is not successful, the given input was incorrect. In
this case, Ŝ behaves as S in the case that no proof-message had been sent
by the attacker. ut

The theorem can be applied as follows by a protocol designer: He first designs
a high-level protocol using proofs of existence as if there was a corresponding
ideal functionality. Then, in the security proof, he shows that the protocol using

FR,R
′

gZK UC-emulates a target functionality φ, where he may restrict himself to

nice environments only. Finally, after instantiating FR,R
′

gZK by π(spec), he obtains
a protocol emulating φ in the full UC-sense.

5 Enhancing the Basic Language

Even if the basic language presented in §3 allows one to describe almost arbitrary
algebraic properties of and relations among the secret values, it might often
be more convenient to declare them explicitly. Also, the requirement that all
witnesses must be integers may seem overly restrictive.

To solve this problems, we next give some enhancements of our basic lan-
guage. More precisely, we will first define a set of macros for specifying algebraic
properties of the secret witnesses, and then give conditions under which knowl-
edge of group elements can be proved instead of integers.

5.1 Using Macros to Specify Algebraic Properties of Witnesses

The language described in §3 does not allow to directly specify algebraic prop-
erties of the secrets or algebraic relations among them, and thus it becomes
inconvenient to use for complex proof goals. We therefore extend the set of
atomic predicates by so-called macros, which allow one to directly describe al-
gebraic properties of the integer witnesses ωi. In particular, we allow additional
atomic predicates of the following forms, all of which can easily be translated
into polynomial relations:

. ω ≥ 0. Such statements can easily be translated into statements of the above
form by proving knowledge of integers χ1, . . . , χ4 such that ω =

∑4
i=1 χ

2
i ,

see [43].
More generally, we also allow expressions of the form ω ∈ [a, b], where a, b ∈ Z
are public. Such an expression is equivalent to ω − a ≥ 0 ∧ b − ω ≥ 0. If
b − a is even, this can be rewritten to the even more efficient proof goal
−(ω −m)2 ≥ d2, where m = a+b

2 and d = b−a
2 .

14



. gcd(ν1, ν2) = 1, where each ν1, ν2 can be either public or private. As be-
fore, such expressions can be rewritten to a polynomial form by introducing
additional integers α1, α2 and proving knowledge of α1, α2, ν1, ν2 such that
α1ν1 + α2ν2 = 1.

. ν1|ν2, where ν1, ν2 can be either public or private. By introducing an ad-
ditional secret δ, such relations can be expressed in polynomial form as
δν1 − ν2 = 0.

Example 5.1 (Running Example 1). Using the first of our specific macros, a pro-
tocol for proving knowledge of a non-negative opening of the integer commitment
y can be described as follows:

Kω ∈ I∗(T ), ρ ∈ I∗(bn/4c) : y = gωhρ ∧ ω ≥ 0 ut

Before moving to the next extension of our basic language, we point out
that using macros impedes the possibility of estimating the computational costs
of the protocol from its specification, which was a favorable property of our
basic language. This can be seen by comparing Example 5.1 to Example 3.1: the
seemingly simple macro w ≥ 0 entails 5 atomic predicates, and 9 secret witnesses,
and thus conceals very much of the computational costs of the resulting protocol.

As an important remark we note that every auxiliary variables χi, which has
to be introduced when resolving any of these macros, can be quantified by E.
This can easily be seen by noting that considering the resulting Ω-protocol as
f -extractable for f(w) = (w,A(w)), where A is the algorithm the honest prover
used to compute the χi from ω.

5.2 Proving Knowledge of Group Elements

Sometimes it is required to prove knowledge of group elements instead of integers,
which is not possible in our basic language. For instance, one might be interested
in proving possession of a digital signature on a given message, which, in the
case of CL-signatures [53], essentially boils down to proving knowledge of a group
element ω such that e(ω, z) = y, where e is a bilinear map, and y, z are publicly
known.

We thus also allow one to specify protocols proving knowledge of a preimage
ω ∈ G under some group homomorphism ψ : G → H, if ψ satisfies two basic
properties: (i) the finite group G comes along with a generator g and an upper
bound B on its order, and (ii) the discrete logarithm problem is hard in H. Then
expressions of the following form, which, of course, can arbitrarily be combined
with expressions of the basic language, may be used:

Kω ∈ G : y = ψ(ω) .

When compiling protocol specifications containing such expressions, one first
has to perform the following steps, and then proceeds as in §4.1. The idea of the
construction is to first blind the secret preimage ω using g, and then to prove
knowledge of the blinding:

15



1. Set m′ = 2lB, where l is a security parameter.
2. Choose ω′ ∈R I(m′), and set u = gω

′
ω, y′ = ψ(u)y−1, and g′ = ψ(g).

3. Rewrite the proof goal to Kω′ ∈ I∗(m′) : y′ = g′ω
′
, and add u to commit-

ment of the Σ-protocol.

6 Conclusion

We presented a framework enabling the use of efficient zero-knowledge protocols
in the construction of UC-secure protocols. These protocols can be specified in
a unified and unambiguous notation and then generated by a compiler. To make
proving security of construction that make use proof of existence protocols easy,
we provide a special composition theorem. By means of two running examples we
illustrated that using proofs of existence (as opposed to proofs of knowledge) can
significantly reduce the computational overhead required to achieve UC-security
for many practical applications without affecting security.

We believe that by reducing the costs of UCZK protocols to a practically
acceptable level in many cases our result can contribute to a wider employment
of UC-secure protocols in the real world.

References

1. Backes, M., Pfitzmann, B., Waidner, M.: The reactive simulatability (RSIM) frame-
work for asynchronous systems. Information and Computation 205(12) (2007)
1685–1720

2. Canetti, R.: Universally Composable Security: A New Paradigm for Cryptographic
Protocols. In: FOCS ’01, IEEE (2001) 136–145 Revised version at http://eprint.
iacr.org/2000/067.

3. Pfitzmann, B., Waidner, M.: Composition and integrity preservation of secure
reactive systems. In: ACM CCS ’00. (2000) 245–254

4. Peikert, C., Vaikuntanathan, V., Waters, B.: A Framework for Efficient and Com-
posable Oblivious Transfer. In: CRYPTO ’08. Vol. 5157 of LNCS., Springer (2008)
554–571

5. Küsters, R., Tuengerthal, M.: Universally Composable Symmetric Encryption. In:
Computer Security Foundations Symposium – CSF 09, IEEE (2009) 293–307

6. Laud, P., Ngo, L.: Threshold Homomorphic Encryption in the Universally Com-
posable Cryptographic Library. In: ProvSec ’08. Vol. 5324 of LNCS., Springer
(2008) 298–312

7. Lindell, Y.: Highly-Efficient Universally-Composable Commitments based on the
DDH Assumption. In: EUROCRYPT ’11. Vol. 6632 of LNCS., Springer (2011)
446–466

8. Canetti, R., Krawczyk, H.: Security Analysis of IKE’s Signature-Based Key-
Exchange Protocol. In: CRYPTO ’02. Vol. 2442 of LNCS., Springer (2002) 143–161

9. Krawczyk, H.: HMQV: A High-Performance Secure Diffie-Hellman Protocol. In:
CRYPTO ’05. Vol. 3621 of LNCS., Springer (2005) 546–566

10. Camenisch, J., Stadler, M.: Efficient Group Signature Schemes for Large Groups
(Extended Abstract). In: CRYPTO ’97. Vol. 1294 of LNCS., Springer (1997) 410–
424

16

http://eprint.iacr.org/2000/067
http://eprint.iacr.org/2000/067


11. Ateniese, G., Song, D.X., Tsudik, G.: Quasi-Efficient Revocation in Group Signa-
tures. In: FC ’02. Vol. 2357 of LNCS., Springer (2002) 183–197

12. Boudot, F.: Efficient Proofs that a Committed Number Lies in an Interval. In:
EUROCRYPT ’00. Vol. 1807 of LNCS., Springer (2000) 431–444

13. Bresson, E., Stern, J.: Efficient Revocation in Group Signatures. In: PKC ’01. Vol.
1992 of LNCS., Springer (2001) 190–206

14. Brickell, E., Camenisch, J., Chen, L.: Direct Anonymous Attestation. In: ACM
CCS ’04, ACM Press (2004) 132–145

15. Bussard, L., Roudier, Y., Molva, R.: Untraceable Secret Credentials: Trust Estab-
lishment with Privacy. In: PerCom Workshops, IEEE (2004) 122–126

16. Camenisch, J., Herreweghen, E.V.: Design and implementation of the idemix
anonymous credential system. In: ACM CCS ’02, ACM Press (2002) 21–30

17. Camenisch, J., Shoup, V.: Practical Verifiable Encryption and Decryption of Dis-
crete Logarithms. In: CRYPTO ’03. Vol. 2729 of LNCS. (2003) 126–144

18. Furukawa, J., Yonezawa, S.: Group Signatures with Separate and Distributed
Authorities. In: SCN’ 04. Vol. 3352 of LNCS., Springer (2004) 77–90

19. Nakanishi, T., Shiota, M., Sugiyama, Y.: An Efficient Online Electronic Cash with
Unlinkable Exact Payments. In: ISC ’04. Vol. 3225 of LNCS., Springer (2004)
367–378

20. Song, D.X.: Practical Forward Secure Group Signature Schemes. In: ACM CCS ’01,
ACM press (2001) 225–234

21. Tang, C., Liu, Z., Wang, M.: A Verifiable Secret Sharing Scheme with Sta-
tistical zero-knowledge. Cryptology ePrint Archive, Report 2003/222 (2003)
http://eprint.iacr.org/.

22. Tsang, P., Wei, V.: Short Linkable Ring Signatures for E-Voting, E-Cash and
Attestation. In: ISPEC ’05. Vol. 3439 of LNCS., Springer (2005) 48–60

23. Tsang, P., Wei, V., Chan, T., Au, M.H., Liu, J.K., Wong, D.S.: Separable Linkable
Threshold Ring Signatures. In: INDOCRYPT ’04. Vol. 3348 of LNCS., Springer
(2004) 384–398

24. Camenisch, J., Kiayias, A., Yung, M.: On the Portability of Generalized Schnorr
Proofs. In: EUROCRYPT ’09. Vol. 5479 of LNCS., Springer (2009) 425–442

25. Garay, J.A., MacKenzie, P., Yang, K.: Strengthening Zero-Knowledge Protocols
Using Signatures. Journal of Cryptology 19(2) (2006) 169–209

26. Garay, J.A., MacKenzie, P., Yang, K.: Strengthening Zero-Knowledge Protocols
Using Signatures. In: EUROCRYPT ’03. Vol. 2656 of LNCS., Springer (2003)
177–194

27. MacKenzie, P., Yang, K.: On Simulation-Sound Trapdoor Commitments. In:
EUROCRYPT ’04. Vol. 3027 of LNCS., Springer (2004) 382–400

28. Dodis, Y., Shoup, V., Walfish, S.: Efficient Constructions of Composable Commit-
ments and Zero-Knowledge Proofs. In: CRYPTO ’08. Vol. 5157 of LNCS., Springer
(2008) 515–535

29. Canetti, R., Dodis, Y., Pass, R., Walfish, S.: Universally Composable Security with
Global Setup. In: TCC ’07. Vol. 4392 of LNCS., Springer (2007) 61–85

30. Jarecki, S., Lysyanskaya, A.: Adaptively Secure Threshold Cryptography: Intro-
ducing Concurrency, Removing Erasures. In: EUROCRYPT ’00. Vol. 1807 of
LNCS., Springer (2000) 221–242

31. Camenisch, J., Casati, N., Groß, T., Shoup, V.: Credential Authenticated Identifi-
cation and Key Exchange. In: CRYPTO ’10. Vol. 6223 of LNCS., Springer (2010)
255–276

32. Lindell, Y.: Bounded-concurrent secure two-party computation without setup as-
sumptions. In: STOC ’03, ACM Press (2003) 683–692

17

http://eprint.iacr.org/


33. Lindell, Y.: Protocols for Bounded-Concurrent Secure Two-Party Computation
in the Plain Model. Chicago Journal of Theoretical Computer Science 2006(1)
(2006) 1–50

34. Pass, R., Rosen, A.: Bounded-Concurrent Secure Two-Party Computation in a
Constant Number of Rounds. In: FOCS ’03, IEEE (2003) 404–413

35. Prabhakaran, M., Sahai, A.: New notions of security: achieving universal compos-
ability without trusted setup. In: STOC ’04, ACM Press (2004) 242–251

36. Prabhakaran, M., Sahai, A.: Relaxing Environmental Security: Monitored Func-
tionalities and Client-Server Computation. In: TCC ’05. Vol. 3378 of LNCS.,
Springer (2005) 104–127

37. Nielsen, J.: Universally Composable Zero-Knowledge Proof of Membership. Tech-
nical report, University of Aarhus (2005)

38. Hofheinz, D., Kiltz, E.: The Group of Signed Quadratic Residues and Applications.
In: CRYPTO ’09. Vol. 5677 of LNCS., Springer (2009) 637–653

39. Cramer, R.: Modular Design of Secure yet Practical Cryptographic Protocols. PhD
thesis, CWI and University of Amsterdam (1997)

40. Damg̊ard, I., Fujisaki, E.: A Statistically-Hiding Integer Commitment Scheme
Based on Groups with Hidden Order. In: ASIACRYPT ’02. Vol. 2501 of LNCS.,
Springer (2002) 77–85

41. Cramer, R., Shoup, V.: A Practical Public Key Cryptosystem Provably Secure
Against Adaptive Chosen Ciphertext Attack. In: CRYPTO ’98. Vol. 1462 of LNCS.,
Springer (1998)

42. Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-
party and multi-party secure computation. In: STOC ’02, ACM Press (2002)
494–503

43. Lipmaa, H.: On Diophantine Complexity and Statistical Zero Knowledge Argu-
ments. In: ASIACRYPT ’03. Vol. 2894 of LNCS., Springer (2003) 398–415

44. Camenisch, J., Krenn, S., Shoup, V.: A Framework for Practical Universally Com-
posable Zero-Knowledge Protocols. Cryptology ePrint Archive, Report 2011/228
(2011) http://eprint.iacr.org/.

45. Brands, S.: Rapid Demonstration of Linear Relations Connected by Boolean Op-
erators. In: EUROCRYPT ’97. Vol. 1233 of LNCS., Springer (1997) 318–333

46. Cramer, R., Damg̊ard, I.: Zero-Knowledge Proofs for Finite Field Arithmetic; or:
Can Zero-Knowledge be for Free? In: CRYPTO ’98. Vol. 1462 of LNCS., Springer
(1998) 424–441

47. Fujisaki, E., Okamoto, T.: Statistical Zero Knowledge Protocols to Prove Modular
Polynomial Relations. In: CRYPTO ’97. Vol. 1294 of LNCS., Springer (1997) 16–30

48. Smart, N.P., ed.: Final Report on Unified Theoretical Framework of Efficient Zero-
Knowledge Proofs of Knowledge. http://www.cace-project.eu (2009) CACE
Project Deliverable.

49. Cramer, R., Damg̊ard, I., Schoenmakers, B.: Proofs of Partial Knowledge and
Simplified Design of Witness Hiding Protocols. In: CRYPTO ’94. Vol. 839 of
LNCS., Springer (1994) 174–187

50. Paillier, P.: Public-Key Cryptosystems Based on Composite Degree Residuosity
Classes. In: EUROCRYPT ’99. Vol. 1592 of LNCS., Springer (1999) 223–238

51. Rabin, M., Shallit, J.: Randomized Algorithms in Number Theory. Communica-
tions in Pure and Applied Mathematics 39(S1) (1986) 239–256

52. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof-systems. In: STOC ’85, ACM Press (1985) 291–304

53. Camenisch, J., Lysyanskaya, A.: Signature Schemes and Anonymous Credentials
from Bilinear Maps. In: CRYPTO ’04. Vol. 3152 of LNCS., Springer (2004) 56–72

18

http://eprint.iacr.org/
http://www.cace-project.eu

	A Framework for Practical Universally Composable Zero-Knowledge Protocols
	Jan Camenisch, Stephan Krenn, and Victor Shoup

