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Abstract. We analyze the security of the TLS Record Protocol, a MAC-
then-Encode-then-Encrypt (MEE) scheme whose design targets confi-
dentiality and integrity for application layer communications on the In-
ternet. Our main results are twofold. First, we give a new distinguishing
attack against TLS when variable length padding and short (truncated)
MACs are used. This combination will arise when standardized TLS 1.2
extensions (RFC 6066) are implemented. Second, we show that when
tags are longer, the TLS Record Protocol meets a new length-hiding au-
thenticated encryption security notion that is stronger than IND-CCA.

1 Introduction

TLS is perhaps the Internet’s most widely used security protocol. At its heart
lies a sub-protocol for integrity-protecting and encrypting data, called the TLS
Record Protocol. The current version of this protocol, TLS 1.2, is specified in [12],
though earlier versions [10, 11] are still in widespread use. At a high level, the
TLS Record Protocol makes use of a MAC-then-Encode-then-Encrypt (MEE)
construction, where the “Encode” step takes care of any padding that might be
needed prior to the encryption step. For reasons that will become clear, we focus
on MEE when used with CBC mode.

In this case, TLS 1.2 works as follows to protect a message M whose bit-
length m = |M | must be a multiple of eight. Let n be the block size of the block
cipher underlying CBC. Then, one chooses a fresh n-bit IV to use with CBC
mode to encrypt the bit string M ‖ T ‖ P · · ·p+1 P . Here T is a τ -bit message
authentication tag produced by running HMAC over M and some header infor-
mation including a sequence number and P · · ·p+1 P is the bit string formed by
concatenating together p + 1 copies of the string P . The value P is the byte-
encoding of the number p, which indicates the number of padding bytes. It is
required that ` = m+ τ + 8(p+ 1) be a multiple of n. We refer to this scheme as
MEE-TLS-CBC. A common instantiation uses AES and HMAC-SHA1, making
n = 128 and τ = 160.

Implementations can choose p in different ways. One is to use minimal-length
padding by letting p ≥ 0 to be the smallest possible value that results in ` being
a multiple of n. Another is to use larger values of p in order to generate extra
padding. GnuTLS [14], for example, randomly selects p from the set of possible



MAC Encoding Security target

BN00 [3] SUF-CMA Concatenation IND-CPA + PTXT

K01 [15] SUF-CMA Concatenation, tag fills one block IND-CPA + CUF-CPA

K01∗ SUF-CMA Concatenation, tag fills one block IND-CPA + CTXT

MT10 [18] SUF-CMA Any function Secure channel

This work PRF TLS’s padding, m+ τ > n− 8 LHAE

Fig. 1. Summary of positive results known about MEE under various assump-
tions about the MAC. The restriction on padding of our result involves the mes-
sage length m, tag length τ , and block length n. Our attack shows the necessity
of this restriction for security.

values. As indicated in the TLS specification, the intent is to combat traffic
analysis attacks that exploit plaintext message lengths [16, 21, 23–26].

This paper. We provide the first analysis of the security of MEE-TLS-CBC as
an authenticated encryption (AE) scheme. We start by strengthening traditional
AE notions [3, 20] to cover the goal of hiding plaintext lengths that motivates
the use of extra padding. Using our new length-hiding AE (LHAE) notion, we
provide complementary negative and positive results about MEE-TLS-CBC for
general m, τ , and n. When m+ τ ≤ n− 8 and extra padding is used, we give an
attack that allows a man-in-the-middle to readily distinguish between messages
of different lengths. A variant of this attack rules out proving traditional AE
security as well. On the other hand, we show that when m + τ > n − 8 one
provably achieves LHAE security. This positive result holds for a generalization
of TLS encoding; it may be applicable in other settings where MEE is used with
CBC.

In the current TLS standard [12], the allowed primitives are such that n ≤ 128
and τ ≥ 160. Here the attack does not apply and our positive results pro-
vide strong evidence of security. More worrisome is the use of truncated MACs,
where τ = 80 and the attack would apply. Truncated MACs are used widely in
other protocols (e.g., IPSec [17]) and are standardized as a TLS extension in
RFC 6066 [13].

Prior work on MEE. Before describing our results in a bit more detail, we
briefly summarize the literature as it applies to MEE-TLS-CBC — see Figure 1.
Bellare and Namprempre (BN00) [3] introduced two notions of integrity: in-
tegrity of plaintexts (PTXT) and of ciphertexts (CTXT). They showed that
MEE with any invertible encoding step is IND-CPA and has integrity of plain-
texts (PTXT) assuming the mac is strongly unforgeable (SUF-CMA), but argue
that PTXT is insufficient for applications because one should target CTXT.
Meeting both IND-CPA and CTXT is one of several equivalent formulations for
AE security [20].

Krawczyk (K01) [15] analyzed a variant of MEE-TLS-CBC in whichmmust be
a multiple of n, the tag length is τ = n, and no padding is used. He showed that
this variant —which does not arise in TLS— achieves a notion of integrity he calls
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CUF-CPA. This is weaker than CTXT, though a straightforward extension of
K01’s techniques prove that this variant is both IND-CPA and CTXT secure; we
list this as K01∗ in Figure 1. While we will build on the techniques underlying
these results, the fact that they ignore padding makes them of limited direct
relevance to TLS security. Indeed, as the attacks in [9, 22], discussed further
below, indicate, the way padding is handled is crucial to the (in)security of
MEE-TLS-CBC.

Maurer and Tackmann (MT10) [18] considered MEE with encoding steps
being any function, thus restricting attention to minimum-length padding only.
They provide a secure channel notion formalized within a new constructive cryp-
tography framework, but the details of this framework (at the time of our writ-
ing) have not yet emerged, making comparison with our results for minimum-
length padding TLS premature. Our approach uses a more traditional game-
based treatment.

As it stands, none of the prior works analyze the AE security of the version
of MEE-TLS-CBC used within the standard nor do they treat the length-hiding
goal of extra padding.

Length-hiding encryption. Our technical results begin by generalizing en-
cryption to consider the length-hiding goal targeted by TLS. The explicitly
stated intent is that applications should be able to hide the length of plaintexts
up to some granularity. As mentioned above, the GnuTLS client [14] attempts
to obfuscate plaintext length patterns by selecting the amount of padding for
each message randomly. This means that for a given message length, the appli-
cation may vary the amount of padding used. Standard-compliant decryption
implementations must support ciphertexts including such extra padding.

This choice was perhaps prescient: attacks taking advantage of leaked plain-
text lengths allow inferring web browsing habits [16, 21, 26] and voice-over-IP
conversations [23–25]. Note that even when only minimal-length padding is used,
MEE-TLS-CBC nevertheless seemingly should hide lengths that are padded to the
same multiple of n. Given [16, 21, 23–26], MEE-TLS-CBC seems to have a small
security advantage over MEE using OTP — the latter always leaks precise plain-
text lengths. Traditional security notions that explicitly allow message lengths
to leak (e.g., IND-CPA, IND-CCA) are too weak to surface this distinction.

To treat MEE-TLS-CBC in its full generality, then, we formalize length-hiding
encryption. We extend the usual syntax of authenticated encryption scheme with
associated data (AEAD) to allow the encryption algorithm to take an extra
ciphertext-length parameter, in addition to the usual key, header, and message.
This allows the user to indicate the desired length of ciphertext.

We correspondingly upgrade the traditional security notions, which do not
capture length hiding, and introduce a length-hiding authenticated encryption
(LHAE) security notion. Our all-in-one definition gives an attacker access to a
left-or-right encryption oracle on pairs of chosen messages M0,M1 of arbitrary
lengths and a chosen ciphertext-length. As usual, the attacker’s job is to out-
put its guess for a hidden bit b. The LHAE definition captures length hiding
in settings where applications may adaptively vary padding per message (such
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as GnuTLS). Of course, a special case of our security notion is arrived at by
restricting to same-length messages: this corresponds to a left-or-right indistin-
guishability variant of the all-in-one AE notion of Rogaway and Shrimpton [20].
Proving LHAE security therefore establishes AE security as a special case.

New attacks against MEE-TLS-CBC. Our work brings to light interesting
new attacks against TLS. Consider MEE-TLS-CBC with when m + τ ≤ n − 8.
This means that a complete message M (of m bits), a tag, and at least one
padding byte can fit into a single CBC block of size n. Then an attacker, given
an encryption C of a message M that is created using longer-then-minimum
padding, is able to create another encryption C ′ of the same message M ; we call
this a decryption collision.4 This immediately violates the ciphertext integrity
(CTXT) of MEE-TLS-CBC, thereby ruling out AE or LHAE security, and can
easily be extended to build an IND-CCA distinguisher as well.

It may seem that this deficiency is not dangerous. After all it just shows
that an attacker can generate a new ciphertext that decrypts to an already
legitimately encrypted message, and this does not threaten the security of TLS
as a secure channel protocol. Indeed, some formulations of channel security [6–
8], including that of [18], explicitly exclude decryption collisions from being
considered as an insecurity. Nevertheless, it rules out meeting the AE security
notion targeted, and met, by other designs.

What’s more, decryption collisions prove obviously damaging in the length-
hiding setting. We will show that they can be used to allow an attacker to
distinguish between encryptions of messages of different lengths, for example
“YES” and “NO”. This defeats the TLS design intention of hiding plaintext
lengths at this level of granularity. The distinguishing attack would be simple to
mount in practice by a man-in-the-middle.

TLS 1.2 (and older versions) specifies n ∈ {64, 128} (DES, AES) and τ ≥ 160
(HMAC-SHAx), so this attack does not affect the security of TLS as specified
in version 1.2. However 80-bit truncated MACs are explicitly defined for use
in extensions to TLS 1.2 [13]. Our attack would therefore apply to TLS using
CBC-AES with these truncated MACs and extra padding. We are unaware of
any current implementations that are vulnerable, but this will change if, for
example, GnuTLS implemented the TLS 1.2 truncated MAC extension.

LHAE security of MEE-TLS-CBC. Now the good news. We complement our
negative results by proving LHAE security for MEE-TLS-CBC exactly when the
above attacks do not work: when m+τ > n−8 or no extra padding is used. The
analysis is involved, as one may expect given the sharp divide between security
and insecurity. Let us look at it from a high-level.

The natural starting point for our analysis is the K01∗ result for concate-
nation encoding, τ = n, block-aligned tags, and no padding. Here one splits
the task of proving authenticated encryption security into two key steps (lever-

4 The terminology from [6] would call this a replay. We reserve replay for the more
traditional security goal of not accepting the same message twice, even if derived
from the same ciphertext. Achieving replay resistance requires stateful decryption.
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aging techniques from [20]): showing separately IND-CPA and CTXT security.
IND-CPA security is immediate from the IND-CPA security of CBC mode. A
general result gives that many-query CTXT is implied by qd times the advantage
of single-query CTXT where qd is the number of decryption queries. So what
remains is showing single-query CTXT. The K01∗ analysis applies the security
of the block cipher as a strong PRP to move to a setting in which the adver-
sary learns nothing about MAC tags from encryption queries and, moreover, for
its single decryption query submits a ciphertext consisting of blocks that were
output during encryption. The proof concludes via a case analysis partitioned
according to which ciphertext blocks are used and how they relate to where tags
were located within the encryption queries. The alignment of tags with block
boundaries eases this analysis, but it is still relatively involved.

Several new difficulties arise in applying this approach to MEE-TLS-CBC.
Foremost of these is that the case analysis becomes significantly more complex,
as tags may (for example) span multiple blocks and variable-length padding is
allowed. Also the K01∗ approach only provides a loose bound, approximately
2n/3, because it proves single-query CTXT and then uses a general hybrid argu-
ment to conclude multi-query CTXT. Finally, none of the general results apply
to length-hiding encryption. The last issue is the easiest to handle, and in the
full version we show that length-hiding IND-CPA and CTXT together imply
LHAE. The other issues prove more troublesome. We therefore first simplify our
task by introducing a new security notion that will enable further modularity.

Collision-resistant decryption security. Recall that our attack above
found decryption collisions: the adversary computed a new ciphertext that de-
crypts to a previously encrypted message. We formalize resistance to such attacks
and call the resulting notion collision-resistant decryption (CRD). It turns out
that CRD exactly characterizes the gap between CTXT and PTXT: we prove
that a scheme is CTXT if and only if it is both PTXT and CRD.

With this new characterization of CTXT in hand, we proceed as follows. We
show (in the full version) that MEE is length-hiding IND-CPA secure and PTXT
secure. Both of these results follow straightforwardly from the techniques of [3].
Thus to show LHAE of MEE-TLS-CBC reduces to proving CRD security. Here
we still have technical hurdles, including the fact that we must directly analyze
multi-query CRD, deal with arbitrary tag locations and sizes, and account for
variable length padding. What’s more, we must observe precise requirements on
tag and message lengths to avoid our attacks. To make this task slightly easier,
we assume that the MAC is a secure PRF. While this is a stronger assumption
than SUF-CMA, the MAC used by TLS is HMAC, which must be a good PRF
in other parts of the TLS protocol.

Stateful LHAE. In fact the TLS record protocol uses both stateful encryption
and stateful decryption, enabling replay resistance. We handle this, too. In the
full version we formalize a stateful LHAE notion (generalizing a definition of [4])
and show that one can easily lift all our results to the stateful setting.
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Prior versions of TLS. We have concentrated on the TLS 1.2 standard,
though all our results apply to TLS 1.1 as well. TLS 1.0 differs in two key ways,
changing the applicability of our results. First, standard-compliant implemen-
tations of TLS 1.0 allowed an attacker to distinguish between decoding failures
(arising from incorrectly formatted padding) and authentication failures (aris-
ing from MAC verification failures). It was shown in [9, 22] how this difference
could be exploited to decrypt ciphertexts in the OpenSSL implementation of
TLS. Consequently, the TLS 1.1 and 1.2 specifications mandate that implemen-
tations prevent such attacks by enforcing uniform error reporting (both in terms
of timing and the actual message returned). Our positive results are in this uni-
form error reporting model and don’t necessarily apply when non-uniform error
reporting is in effect.

The second difference is that in TLS 1.0 CBC mode used chained IVs, mean-
ing that the IV used to encrypt a message is set to the last ciphertext block
from the previously sent ciphertext. As reported in [19], Rogaway and Dai found
distinguishing attacks that exploit chained IVs, and so in TLS 1.1 and beyond,
dedicated IVs are required. Our attacks and proof only apply when dedicated
IVs are used as in TLS 1.1 and 1.2.

Recap and discussion. Putting together all our results, we see that the ex-
act nature of encoding in MEE must be carefully considered when analysing
protocols based upon it. Our attacks and positive results characterize the pa-
rameters under which MEE-TLS-CBC falls to (at least) distinguishing attacks
and those under which we can have significantly better confidence in security
via our proofs. To recap, tag size matters: too small and security fails, large
enough and LHAE security can be proved.

We are in contact with those involved in TLS standardization, and hope
that vulnerabilities in future versions can be avoided. There are several ways to
protect TLS from these problems. For example, one could include the padding
length in the MAC scope. Our attacks would no longer work and, in fact, one
should be able to prove LHAE security. The best solution is to stop using us-
ing MEE-based encryption within TLS (and elsewhere). Instead, one could use
Encrypt-then-MAC or one of the dedicated AE schemes. We note that our LHAE
notion is interesting for these as well, allowing one to show, for example, that
Encrypt-then-MAC achieves some degree of length hiding in the case where one
uses CBC.

2 Notation, Syntax and Basic Security Notions

Notation. When X is a set, we writeX ←$ X to mean that a element (namedX)
is uniformly sampled from X . We overload the notation for probabilistic or state-
ful algorithms, writing X ←$ M to mean that algorithm M runs and outputs
value named X. The set {0, 1}≤n contains all bitstrings of length at most n bits,
and as usual {0, 1}∗ is the set of all finite length strings. When X and Y are
strings, we writeX‖Y for their concatenation. WhenX ∈ {0, 1}∗ we write |X| for
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its length. For a tuple of strings (X1, X2, . . . , Xb) we define |(X1, X2, . . . , Xb)| =
|X1 ‖X2 ‖ · · · ‖Xb|.

We often use the notation M ⇒ x to denote the event (defined over some
specified probability space) that at some algorithm M outputs value x.

An adversary A is a probabilistic algorithm that takes zero or more oracles,
these denoted as superscripts.

Function Families, PRFs and SPRPs. Fix sets D,R and non-empty set
K. Let F : K × D → R be a mapping. For each K ∈ K we write FK(·) for
F (K, ·) and thus think of F as a function family indexed by K. Let Func(D,R)
denote the set of all functions from D to R. Let A be an adversary. We define
Advprf

F (A) = Pr
[
K←$K ; AFK(·)⇒ 1

]
− Pr

[
f ←$ Func(D,R) : Af(·)⇒ 1

]
to be the PRF -advantage of A attacking F . We overload notation and write
Advprf

F (t, q, µ) to mean the maximum of Advprf
F (A) over all adversaries A that

run in time t, ask q queries, these totalling µ bits in length.
Fix integers k, n > 0, and let E : {0, 1}k × {0, 1}n → {0, 1}n be a function

family. If for every K ∈ {0, 1}k we have that EK(·) is a permutation (bijec-
tive mapping), then E is a blockcipher, and we call n the blocksize. We write
Perm(n) for the set of all permutations over {0, 1}n. We define Advsprp

E (A) =

Pr
[
K←$ {0, 1}k : AEK(·),E−1

K (·)⇒ 1
]
− Pr

[
π←$ Perm(n) : Aπ(·),π−1(·)⇒ 1

]
to be the strong PRP -advantage of A attacking F . Again, we overload our nota-
tion and write Advsprp

E (t, q1, q2) to mean the maximum of Advsprp
E (A) over all

adversaries A that run in time t, asking a total of q queries to its oracles.

Encryption Schemes and MACs. An encryption scheme SE = (Kse,Enc,Dec)
is a triple of algorithms. The probabilistic algorithm Kse samples from a finite and
non-empty set Kse. The encryption algorithm Enc and decryption algorithm Dec
take an input (K, `,H,M) ∈ Kse×N×{0, 1}∗×{0, 1}∗ (the key, output length,
associated data, and message or ciphertext) and outputs either a string or the
distinguished output ⊥. The encryption algorithm can be probabilistic while
decryption is always deterministic. We assume there are sets H ⊆ {0, 1}∗ (the
header space), L ⊆ N (the requested length space), M ⊆ {0, 1}∗ (the message
space) such that for all K ∈ Kse it holds that Pr[EncK(`,H,M) ∈ {0, 1}∗] = 1 if
(`,H,M) ∈ L×H×M and Pr[EncK(`,H,M) = ⊥] = 1 if (`,H,M) /∈ L×H×M.
For correctness we require that for all (K, `,H,M) ∈ Kse × L,H,M) it holds
that Pr[DecK(H,EncK(`,H,M)) = M ] = 1.

We further make a restriction that whether or not Enc returns ⊥ does not
vary with the message length (all other inputs kept equal). Formally, for all keys
(K, `,H) ∈ Kse × L × H and for all M,M ′ ∈ M×M such that |M | = |M ′| it
holds that for all coins EncK(`,H,M) = ⊥ iff EncK(`,H,M ′) = ⊥.

Let us make a few comments on what this syntax captures. First, because ` is
a parameter of encryption, the syntax supports encryption schemes that return
variable-length ciphertexts of the same plaintext M . Second, for any fixed plain-
text length m, either all M ∈ {0, 1}m encrypt to valid ciphertexts, or none of
them do. Third, if ` and M are such that encryption would return ⊥ (e.g. because
` < |M |, or the encryption algorithm does not support ciphertexts of length `),
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then it does so always. Finally, since decryption does not take the length pa-
rameter `, our correctness requirement implicitly demands that the length of the
underlying plaintext can be inferred given (K,H,C) where C = EncK(`,H,M).

Let E : {0, 1}k × {0, 1}n → {0, 1}n be a block cipher. Then the encryption
scheme CBC[E] has message space {0, 1}n+ (all strings that are a multiple of n
bits). Key generation Kse outputs a random K←$ {0, 1}k. On input including a
message M = M1‖ · · · ‖Mm ∈ {0, 1}nm, encryption ignores any requested length
or header inputs and returns the ciphertext C0 ‖ . . . ‖Cm+1 where C0←$ {0, 1}n
and Ci ← EK(Ci−1 ⊕Mi) for 1 ≤ i ≤ m.

Fix an integer τ > 0. A message authentication code (MAC) is a function
family F : Kma ×D → {0, 1}τ , where τ is the tag length of the MAC.

Conventions. The running time of algorithms (e.g. adversaries) is relative to
some implicit underlying RAM model of computation. The running time of an
adversary is assumed to include the time to execute the entire experiment in
which it executes, including (for example) the time for its oracles to execute.
Throughout we fix the convention that adversaries do not ask pointless queries:
they do not query an oracle on a value outside of its domain, nor on values
that are defined to cause a ⊥ return value. Also, adversaries are assumed not to
repeat queries to deterministic oracles. This convention is made without loss of
generality.

3 MAC-Encode-Encrypt and the TLS Record Protocol

The TLS Record Protocol uses the MAC-then-encode-then-encrypt paradigm.
The algorithm first applies a message authentication scheme to the message
and header to derive a tag. The message and tag are then encoded into a bit
string according to some encoding rules. Finally an encryption scheme is used
to encrypt the result.

Encoding schemes. An encoding scheme CODE = (encode, decode) is a pair of
deterministic algorithms. The encoding algorithm encode takes an input (`,M, T ) ∈
N× {0, 1}∗ × {0, 1}∗ (the output length, message, and tag) and returns a string
of length ` or the distinguished symbol ⊥. An encoding scheme is assume to have
a fixed maximum allowable output length `max. If ` < |M |+ |T | or ` > `max then
encode returns ⊥. The decoding algorithm decode takes an input in {0, 1}∗ and
returns an element of {0, 1}∗ × {0, 1}∗ or (⊥,⊥). If either algorithm is called on
an input outside of its specified domain, it returns an appropriate failure symbol.
For correctness we require that, for all `,M , and T such that encode(`,M, T ) 6= ⊥
we have decode(encode(`,M, T )) = (M,T ).

The MEE AEAD scheme. We define the MEE scheme that forms the basis
for encryption in TLS, some modes of IPSec, and elsewhere. Fix some block
size n. Let SE = (K,Enc,Dec) be an encryption scheme with a message space
{0, 1}n+ (all strings of length a multiple of n). We assume that, given inputs of
an appropriate length, the algorithms Enc, Dec are failure-free. Let F : Kma ×
{0, 1}∗ → {0, 1}τ be a function. Let CODE = (encode, decode) be an encoding
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alg. K:

Kse←$ K

Kma←$Kma

Ret (Kma,Kse)

alg. EncK(`,H,M):

(Kma,Kse)← K

T ←$ FKma(H,M)

X ← encode(`− n,M, T )

If X = ⊥ then Ret ⊥
Ret Y ←$ EncKse(X)

alg. DecK(H,C):

(Kma,Kse)← K

X ← DecKse(C)

(M,T )← decode(X)

If (M,T ) = (⊥,⊥) then Ret ⊥
If FKma(H,M) 6= T then Ret ⊥
Ret M

Fig. 2. Algorithms for the MEE generic composition.

scheme for which the outputs of encode all have bit lengths a positive multiple
of n. Then MEE[F,CODE,SE] = (K,Enc,Dec) is defined as shown in Figure 2.

Notice that Enc takes as input a requested ciphertext length `, as well as
associated data H and message M . The inclusion of ` allows for variable length
padding to be used, while the inclusion of H allows us to incorporate additional
fields in the MAC scope, for example, TLS’s sequence numbers and compression
type and version fields. Notice that Dec can fail either because of a failure to
properly decode the message X, or because of a failure to verify the MAC tag
T . However, in our specification of the MEE scheme, these error events are not
distinguishable. This prevents the attacks of [9, 22] and is in-line with the TLS
specification [12]. In TLS, any such errors are fatal, leading to the destruction
of the TLS connection and the disposal of the keys, meaning that an attacker
can no longer interact with the protocol. In our description of MEE, these errors
are non-fatal, allowing an attacker to continue to interact with the MEE scheme
after an error has arisen. It is easy to see that security with non-fatal errors
immediately implies security with fatal errors, since any adversary in the former
case is more powerful than in the latter case. Thus any security results we prove
about MEE will imply security for the more realistic version of MEE in which
errors are fatal.

TLS encoding. Let TLScode = (TLSencode,TLSdecode) be the encoding scheme
defined in Figure 3. This scheme is parameterized by the integers ψ, n, and τ ,
representing the maximal padding length, a block length, and a tag length. Re-
call that we work with bits in our algorithmic descriptions and cryptographic
analysis, rather than with bytes as in the TLS specification [12].

For TLS, ψ can be as large as 2048, since the longest padding pattern that
is permitted consists of 256 copies of the byte value FFx. However, an imple-
mentation may select a smaller value of ψ. Note that this scheme has a decoding
algorithm permitting variable length padding of any length (not limited by ψ).
This decoding algorithm checks every byte of padding to ensure that it is correct.
It also allows the final message M (obtained after removing padding and parsing
the resulting string into message M and MAC tag T ) to be of zero length. Again,
these choices are in accordance with the TLS specification [12].
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alg. TLSencode(`,M, T ):

If ` mod n 6= 0 then Ret ⊥
p← `− (|M |+ |T |)
If p < 8 then Ret ⊥
If p > ψ then Ret ⊥
If p mod 8 6= 0 then Ret ⊥
P ← int2byte(p/8)− 1

X ←M ‖ T ‖ P · · ·P+1 P

Ret X

alg. TLSdecode(X):

If |X| mod n 6= 0 then Ret (⊥,⊥)

(X,P )← split|X|−8,8(X)

b← byte2int(P )

p← 8 · b
If |X| − p− τ < 0 then Ret (⊥,⊥)

For i = 1 to b do

(X,P ′)← split|X|−8,8(X)

If P 6= P ′ then Ret (⊥,⊥)

(M,T )← split|X|−τ,τ (X)

Ret (M,T )

Fig. 3. Algorithms for the TLS encoding scheme.

Generalizing TLS encoding. For the purposes of our positive results, we
will analyze a generalization of TLS encoding. An encoding scheme CODE =
(encode, decode) is MEE sufficient if it is parameterized by a block length n and
tag length τ and has the following properties:

(1) The output encode(`,M, T ) consists of a string M ‖ T ‖ P ∈ {0, 1}in for
some i ≥ 1 and where |P | = ` − |M | − |T |. The particular padding P is
uniquely determined by |P |.

(2) Algorithm decode(X) for |X| = ` returns (M,T ) only if encode(`,M, T )
outputs M ‖ T ‖ P .

(3) CODE yields prefix-free padding, which means that for any M,M ′ such that
|M | = |M ′|, for any T, T ′, the padding P returned by encode(`,M, T ) is
not a prefix of the padding returned by encode(`′,M ′, T ′) for any ` 6= `′.

One may be able to relax property (1) in various ways and still prove security, but
we focus on this case for greatest simplicity (while still covering TLS encoding).
Property (1) and the invertibility of encoding indicate that for any strings M,T
and number ` for which encode(`,M, T ) does not output ⊥, there is a single
string P such that encode(`,M, T ) outputs M ‖ T ‖ P .

In the proof of our main technical result, Theorem ??, it will be useful to
assume that one can extract from encode a routine called Pad that, on input
(|M |, `), simply returns the padding P from M ‖ T ‖ P . Similarly, it will be
useful to assume that one can extract from decode: (1) a routine called Parse
that, on input X, returns the appropriate triple M,T, P ; and (2) a routine called
PadCheck that, on input (|M |, P, |X|), returns 1 if P is the correct padding, and
0 otherwise. It is easy to see that such routines can be extracted from TLSencode
and TLSdecode.

For notational clarity and letting F be some function family that will be clear
from context, we let MEE-GEN-CBC = MEE[F,CODE,CBC] be a mnemonic
defining the scheme that uses a MEE-sufficient encoding scheme CODE with
CBC. In particular, we let MEE-TLS-CBC = MEE[F,TLScode,CBC]. When we
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main LHAESE:

K←$Kse

b←$ {0, 1}
b′ ← AEnc,Dec

Ret (b′ = b)

procedure Enc(`,H,M0,M1):

C0←$ EncK(`,H,M0)

C1←$ EncK(`,H,M1)

If C0 = ⊥ or C1 = ⊥ then

Ret ⊥
C ∪← Cb ; Ret Cb

procedure Dec(H,C):

If b = 1 ∧ C /∈ C then

Ret DecK(H,C)

Ret ⊥

Fig. 4. Length-hiding AEAD security game.

need to be explicit, we write CBC[E] to mean that CBC encryption is done over
a function family E.

4 Length-hiding Authenticated Encryption

Here we formalize security goals for the TLS Record Protocol, and establish
some basic results about these goals. We target authenticated encryption secu-
rity, which requires (informally) that an adversary cannot generate new, valid
ciphertexts itself, nor learn partial information about encrypted plaintexts. Note
that this implies traditional chosen-ciphertext attack security. One security as-
pect traditional AE security goals do not treat, however, is length hiding. As we
saw in the previous section, the TLS standard includes the option for variable-
length-padding so that applications can choose to hide exact message lengths.
Even in the minimal-length-padding case some amount of length hiding could
exist since one must pad to the next block boundary. Classical security goals,
such as semantic security and the stronger AE notion mentioned above, ex-
plicitly leak message lengths. Thus one cannot use these to reason about the
length-hiding capabilities of MEE-TLS-CBC. We therefore give a new security
notion to capture length hiding under chosen-length attacks. It generalizes the
randomized AEAD security notion given in [20].

Length-hiding AEAD security. Let SE = (Kse,Enc,Dec) be an encryption
scheme and let A be an adversary. Figure 4 details a security length-hiding
authenticated-encryption game. We define the LHAE-advantage (of A) to be
Advlh-ae

SE (A) = 2 · Pr
[

LHAEASE ⇒ true
]
− 1. Let LHAE1 (resp. LHAE0) be the

LHAE game except with b set to one (resp. zero). Then a standard argument
gives that Advlh-ae

SE (A) = Pr
[

LHAE1ASE ⇒ true
]
−Pr

[
LHAE0ASE ⇒ false

]
. We

write Advlh-ae
SE (qe, µe, qd, µd) to mean the maximum of Advlh-ae

SE (A) taken over
all adversaries A that run for t computational steps, asking at most qe queries to
its left oracle that result in ciphertexts of total length µe bits, and qd queries to
its right oracle that total µd bits in length. Restricting attention to adversaries
A for which qd = µd = 0 yields a length-hiding version of the IND-CPA notion,
which we denote by LH-IND-CPA. We let Advlh-ind-cpa

SE (A) = Advlh-ae
SE (A) for

A that make no decryption queries.
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The LHAE notion captures chosen-length attacks along two dimensions.
First, we allow |M0| 6= |M1| unlike in previous formulations of encryption secu-
rity. This captures that an attacker cannot distinguish between the encryptions
of two chosen messages of arbitrary lengths. We only require that queried mes-
sages both encrypt to a ciphertext (not ⊥). This restriction is necessary to avoid
trivial wins in which an attacker abuses two tuples (`,H,M0) and (`,H,M1)
for which only one is handled by encryption. Second, we allow the adversary to
adaptively pick ` for each query. A weaker notion restricts attention to a specific
` for the entire experiment. Indeed, this fixed-ciphertext-length notion may be
sufficient for some applications. Our attacks (in the next section) show insecu-
rity against this weaker notion, and so, by extension, the LHAE notion. On the
other hand, our proofs target the stronger notion, meaning when the proofs are
applicable, length-hiding security is achieved even if applications dynamically
change ciphertext lengths for a single key as done by GnuTLS [14] or if one
implemented traffic morphing [27] using MEE.

5 Attacking TLS for Short Messages and Tags

Next we sketch attacks against the MEE scheme as used in TLS and as described
in Section 3. In this section, for convenience, we work bytewise.

We give an attack that causes a decryption collision (recall: two valid ci-
phertexts that decrypt to the same plaintext). For concreteness, let n = 128
and τ = 80. This would be the case for truncated MACs [13]. Now suppose
the attacker can obtain a ciphertext C = C0||C1||C2 for a message M with
|M | = 40. Then the attacker computes a new ciphertext C ′ = C ′0 ‖ C1 where
C ′0 = C0 ⊕ 0x00 · · ·14 0x00 0x00 0x10, where 0xab . . .k 0xab signifies a total of k
copies of the byte value 0xab. The plaintext underlying the CBC mode ciphertext
C is M ‖ T ‖ 0x11 · · ·20 0x11. It is easy to verify that the plaintext underlying C ′

is M ‖ T ‖ 0x01, which is correctly formatted and, since it has the same message
and tag as in C, will verify.

This attack can be extended to break MEE-TLS-CBC in the traditional IND-
CCA sense. With parameters as before, suppose the attacker receives from its
encryption oracle a 3-block encryption C of Mb, one of two 5-byte messages
M0,M1. (The messages are the same length.) Then the attacker can modify C
by truncation and bit flipping in the IV to produce a fresh ciphertext C ′ which
is a valid encryption of Mb. At this point C ′ may be submitted to the decryption
oracle and the returned plaintext will be Mb, allowing the attacker to win the
IND-CCA game with probability 1. While this attack rules out MEE meeting
IND-CCA security (for short messages and MACs), notice that it does not seem
to translate into a mountable attack on TLS. This is because an attacker that
intercepts C and sends C ′ instead will not see any difference in the behaviour of
the TLS connection as compared to having just sent C. One may conclude from
this that CTXT security, which is violated here, is overly strong and the abilty
to find decryption collisions does not endanger security.
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This intuition is wrong, and in fact what we’ll see is that IND-CCA is in
fact too weak to capture the problem that decryption collisions give rise to.
Consider a client sending a short message, either “YES” or ”NO” encoded as
a 3-byte string or 2-byte string. Note these are of two different lengths, and so
the IND-CCA security definition excludes such a pair from consideration. Let
M ∈ {YES,NO} denote the message the client encrypts, which is not known to
the attacker. Assume the client uses extra padding (such as done by GnuTLS)
to mask lengths; say the chosen extra padding during encryption was enough to
fill up one extra block. The attacker intercepts the ciphertext C = C0 ‖ C1 ‖ C2

generated by the client. It then generates a new ciphertext C ′ = C ′0 ‖ C1 where

C ′0 = C0 ⊕ 0x00 · · ·12 0x00 0x10 0x10 0x10 0x10 .

The attacker then forwards C ′ in place of C to the server and observes whether
decryption succeeds (say, by seeing if the session is torn down). If decryption suc-
ceeds, the attacker knows that M = NO and otherwise that M = YES. Why does
this work? The plaintext for CBC underlying C is either NO‖Tno‖0x14 · · ·20 0x14
or YES ‖ Tyes ‖ 0x13 · · ·19 0x13. If the former, then decrypting C ′ succeeds since
the padding underlying C ′ is exactly 0x04 · · ·4 0x04. But in the latter case, the
CBC decryption step applied to C ′ yields YES ‖ T ′yes ‖ 0x03 0x03 0x03 where
T ′yes = Tyes ⊕ 0x00 · · ·9 0x00 0x10. Since the MAC tag is deterministic, it cannot
be that this MAC verifies and so decryption fails.

This attack extends immediately to handle TLS’s sequence numbers and
associated data. It also extends to give LHAE attacks for a variety of pairs
of message lengths, including combinations where one message is short (a few
bytes) and the other is long (even up to 15 blocks in size). The example can
be generalised to a variety of MAC sizes. Indeed, the attack still works in the
extreme case where the MAC size is just 8 bits less than the block size5, in which
case one of the messages in the attack is of zero length, a length permitted in
the TLS specification [12].

This distinguishing attack can be mounted in practice against TLS if an
implementation uses sufficiently short MAC tags, such as those arising from the
widespread use of truncated MACs (as done in IPsec and SSH). Fortunately
TLS 1.2 does not support short enough MACs, but 80-bit truncated MACs
are explicitly defined for use in extensions to TLS 1.2 [13]. In these extensions,
then, we have a vulnerability: a man-in-the-middle attacker can violate TLS’s
confidentiality design goal.

6 The CRD Security Notion

We saw in the last section that MEE with TLS paddding is always LHAE inse-
cure when τ + |M | ≤ n− 8 (where n is the underlying blockcipher length). Our
goal in the rest of the paper is therefore to prove that when τ + |M | > n− 8 the
MEE scheme is LHAE secure for the generalized TLS encoding scheme described

5 This case is extreme because TLS is a byte-oriented protocol.
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in Section 3. This will yield as a special case the first proof that the full TLS
Record Protocol is secure for standard chosen-ciphertext attack models.

Consider first the non-length-hiding case. Then a natural approach is to
target the two properties IND-CPA and ciphertext integrity (CTXT). Recall that
CTXT [3] rules out the ability of an attacker to produce a valid ciphertext not
before returned by an encryption oracle. A result of Rogaway and Shrimpton [20]
states that satisfying both IND-CPA and CTXT is equivalent to AE security.
In the full versionwe state and prove a generalization of this equivalence for the
length hiding setting and also show that MEE is length-hiding IND-CPA (LH-
IND-CPA). The proofs are easy extensions of the proofs in the non-length-hiding
setting.

The complexity of the analysis lies in showing CTXT. Consider the analysis
by Krawczyk [15] for a restricted version of MEE with CBC that, unfortunately,
does not cover any usage case of TLS. His proof shows that MEE is single-query
CTXT in the case that τ = n, and encoding is both injective and ensures that
the tag fills exactly one plaintext block for the underlying encryption. These
restrictions make a proof more manageable, in particular leading to a simpler
final case analysis. In our setting, a direct CTXT analysis would require many
more cases, these induced by the relaxation to variable length padding and the
fact that tags may span multiple plaintext blocks. To ameliorate this complexity,
we takemore modular approach to proving CTXT.

CRD security. We introduce a new notion of security for encryption schemes
called collision-resistant decryption (CRD). This enables proofs of CTXT to be
split into two self-contained parts and helps modularize our analysis further.
Recall that plaintext integrity (PTXT) requires that an adversary not be able
to construct a ciphertext that decrypts to a valid message that was not before
queried to the encryption oracle. As mentioned above, CTXT rules out con-
structing any new ciphertext. As shown by Bellare and Namprempre [3], PTXT
is a strictly weaker property than CTXT. We show that CRD is exactly the
“gap” between the two properties. Informally, CRD security requires that an
attacker cannot produce a new ciphertext that decrypts to a message previously
queried to the encryption oracle. One can see, in fact, that the attacks of the
previous section are, at their core, breaking MEE in the sense of CRD.

Let SE = (Kse,Enc,Dec) be an encryption scheme, and let A be an adversary.
We define the collision-resistant decryption advantage of A as Advcrd

SE (A) =
Pr
[

CRDA
SE⇒ true

]
where the game CRDSE is defined in Figure 5. In the usual

way, we write Advcrd
SE (t, qe, µe, qd, µd) to mean the maximum of Advcrd

SE (A) over
all adversaries A that run for t computational steps, asking at most qe queries
to its encryption oracle that total at most µe bits in length and asking at most
qd queries to its test oracle that total at most µd bits in length.

Figure 5 also specifies the games CTXTSE and PTXTSE. We similarly define
Advctxt

SE (A) = Pr
[

CTXTASE⇒ true
]

and Advptxt
SE (A) = Pr

[
PTXTASE⇒ true

]
.

We also define Advctxt
SE (t, qe, µe, qd, µd) and Advptxt

SE (t, qe, µe, qd, µd) analogously.
The following theorem shows that the combination of PTXT and CRD se-

curity yields CTXT security. We omit the straightforward proof.
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main CTXTSE:

K←$Kse; S ← ∅; i← 0

win← false

(H∗, C∗)←$AEnc,Test

Ret win

procedure Enc(`,H,M):

i← i+ 1

Hi ← H ; Mi ←M

Ci←$ EncK(`,Hi,Mi)

S ← S ∪ {(Hi, Ci)}
Ret Ci

procedure Test(H∗, C∗):

M∗ ← DecK(H∗, C∗)

If M∗ 6= ⊥∧ (H∗, C∗) /∈ S
then win← true

Ret (M∗ 6= ⊥)

main PTXTSE:

K←$Kse; S ← ∅; i← 0

win← false

(H∗, C∗)←$AEnc,Test

Ret win

procedure Enc(`,H,M):

i← i+ 1

Hi ← H ; Mi ←M

Ci←$ EncK(`,Hi,Mi)

S ← S ∪ {(Hi,Mi)}
Ret Ci

procedure Test(H∗, C∗):

M∗ ← DecK(H∗, C∗)

IfM∗ 6= ⊥∧(H∗,M∗) /∈ S
then win← true

Ret (M∗ 6= ⊥)

main CRDSE:

K←$Kse; S ← ∅; i← 0

win← false

(H∗, C∗)←$AEnc,Test

Ret win

procedure Enc(`,H,M):

i← i+ 1

Hi ← H ; Mi ←M

Ci←$ EncK(`,Hi,Mi)

S ← S ∪ {(Hi, Ci)}
Ret Ci

procedure Test(H∗, C∗):

M∗ ← DecK(H∗, C∗)

If M∗ 6= ⊥ ∧ (H∗, C∗) /∈ S
∧∃i : (H∗,M∗)=(Hi,Mi)

then win← true; Ret 1

Ret 0

Fig. 5. The CTXT, PTXT, and CRD experiments. The set S and the counter i
are global variables in each game.

Theorem 1. (PTXT + CRD ⇒ CTXT) Let SE = (Kse,Enc,Dec) be an encryp-
tion scheme. Then Advint-ctxt

SE (t, qe, µe, qd, µd) ≤ Advint-ptxt
SE (t, qe, µe, qd, µd) +

Advcrd
SE (t, qe, µe, qd, µd). ut

Given Theorem 1 and our earlier remarks about LHAE being implied by
LH-IND-CPA and CTXT, analyzing the LHAE security of any scheme can be
separated into showing that LH-IND-CPA, PTXT and CRD are achieved. This
modularity is particularly beneficial for the MEE construction, where showing
LH-IND-CPA and PTXT is straightforward. We defer discussion of these results
to the full version. Instead, we focus next on the most involved task: showing
CRD security of MEE using CBC and TLS padding.

7 The CRD Security of MEE-GEN-CBC

In this section we give a formal security bound for MEE-GEN-CBC. In the fol-
lowing theorem we consider the case that τ ≤ n, where n is the blocksize of
the blockcipher underlying CBC. In fact the bounds hold when τ > n, too. Say
that τ = n + n′ for some n′ > 0. Then we can reduce to the case considered
by Theorem 2 by assuming that the adversary actually controls the first n′ bits
of T ; essentially, they are treated as adversarially controlled message bits. Thus
we can restrict our attention to the case that τ ≤ n, which simplifies our proof.
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Note that this does not significantly weaken our bound, since the dominating
term is a function of n when τ > n. We emphasize that, unlike prior proofs, we
make no assumption about the position of the tag.

In what follows, let the total plaintext length of an encryption query (`,H,M)
in the CRD experiment be the total number of blocks that are consequently
encrypted, i.e. the total number of blocks in M ‖T ‖P where T is the tag and P
is the padding.

Theorem 2. Fix n > 0 and let E : {0, 1}n × {0, 1}n → {0, 1}n be a blockci-
pher. Let CODE = (encode, decode) be MEE sufficient with blocklength n and
taglength τ ≤ n. Let F : K × {0, 1}∗ → {0, 1}τ be a function family. Let SE =
MEE-GEN-CBC, where CBC is over blockcipher E. Let A be a CRD-adversary
that runs in time t; asks qe encryption queries, the sum of whose total plaintext
lengths is σe; and asks qd Test queries, the sum of whose lengths is σd blocks. Let
σ = σe+σd. Let bmin be the length (in bits) of the shortest message that A queries
to its encryption oracle. Then, if τ + bmin ≥ n, there exist adversaries B1, B2

such that

Advcrd
SE (A) ≤Advprf

F (B1) + Advsprp
E (B2)

+
.5σ2 + σ2

e + 2σdα(α+ 1)qe + qeqd
2n

+
qeqd
2τ

where where α is the number of distinct padding patterns. Here B1 runs in time
t+ σTimeE and asks at most q + 1 queries, and B2 runs in time t+ O(σ) and
asks at most σ queries. ut

The proof can be found in the full version. We note that for TLS with full
variable-length padding the parameter α is equal to 256.

Similarly, we can consider the case that minimal length padding is enforced
by the encoding scheme. Equivalently, we can restrict to CRD adversaries that
query ciphertext lengths ` that result in padding only to the closest blocklength.
Let us call such adversaries minimal-length padding respecting. This case results
in exactly the same bound. However for TLS with minimum-length padding the
value of α changes to 16.

Corollary 1. Let all quantities and objects be as in Theorem 2, except that A
is a minimal-length padding respecting CRD-adversary. Then, if τ + bmin ≥ n,
there exist adversaries B1, B2

Advcrd
SE (A) ≤Advprf

F (B1) + Advsprp
E (B2)

+
.5σ2 + σ2

e + 2σdα(α+ 1)qe + qeqd
2n

+
qeqd
2τ

where where α is the number of distinct padding patterns. Here B1 runs in time
t+ σTimeE and asks at most q + 1 queries, and B2 runs in time t+ O(σ) and
asks at most σ queries. ut
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