
Biclique Cryptanalysis of the Full AES⋆

Andrey Bogdanov⋆⋆, Dmitry Khovratovich, and Christian Rechberger⋆⋆

K.U. Leuven, Belgium; Microsoft Research Redmond, USA; ENS Paris and Chaire
France Telecom, France

Abstract. Since Rijndael was chosen as the Advanced Encryption Stan-
dard (AES), improving upon 7-round attacks on the 128-bit key variant
(out of 10 rounds) or upon 8-round attacks on the 192/256-bit key vari-
ants (out of 12/14 rounds) has been one of the most difficult challenges
in the cryptanalysis of block ciphers for more than a decade. In this pa-
per, we present the novel technique of block cipher cryptanalysis with
bicliques, which leads to the following results:
– The first key recovery method for the full AES-128 with computa-

tional complexity 2126.1 .
– The first key recovery method for the full AES-192 with computa-

tional complexity 2189.7 .
– The first key recovery method for the full AES-256 with computa-

tional complexity 2254.4 .
– Key recovery methods with lower complexity for the reduced-round

versions of AES not considered before, including cryptanalysis of
8-round AES-128 with complexity 2124.9.

– Preimage search for compression functions based on the full AES
versions faster than brute force.

In contrast to most shortcut attacks on AES variants, we do not need to
assume related-keys. Most of our techniques only need a very small part
of the codebook and have low memory requirements, and are practically
verified to a large extent. As our cryptanalysis is of high computational
complexity, it does not threaten the practical use of AES in any way.
Keywords: block ciphers, bicliques, AES, key recovery, preimage

1 Introduction

Since the Advanced Encryption Standard competition finished in 2001, the world
saw little progress in the cryptanalysis of block ciphers. In particular, the current
standard AES is almost as secure as it was 10 years ago in the strongest and
most practical model with a single unknown key. The former standard DES has
not seen a major improvement since Matsui’s seminal paper in 1993 [37].

In contrast, the area of hash function cryptanalysis is growing quickly, en-
couraged by the cryptanalysis of MD5 [48], of SHA-0 [6, 15] and SHA-1 [47],
followed by a practical attack on protocols using MD5 [44,45], preimage attacks

⋆ This is the proceedings version of the paper [12].
⋆⋆ The authors were visiting Microsoft Research Redmond while working on these re-

sults.

on Tiger [28] and MD5 [43], etc. While differential cryptanalysis [7], a technique
originally developed for block ciphers, was initially carried over to hash function
analysis to enrich the cryptanalytic toolbox for hash functions, now cryptana-
lysts are looking for the opposite: a method of hash function analysis that would
give new results on block ciphers. So far the most successful attempt is the anal-
ysis of AES with local collisions [8–11], but it is only applicable in the related-key
model. In the latter model, an attacker works with plaintexts and ciphertexts
that are produced under not only the unknown key, but also under other keys
related to the first one in a way chosen by the adversary. Such a strong require-
ment is rarely practical and, thus, has not been considered to be a threat for the
use of AES. Also, there has been no evidence that the local collision approach
can facilitate an attack in the more practical and relevant single-key model.

State of the art for attacks on AES. AES with its wide-trail strategy was
designed to withstand differential and linear cryptanalyses [18], so pure versions
of these techniques have limited applications in attacks. With respect to AES,
probably the most powerful single-key recovery methods designed so far are im-
possible differential cryptanalysis [5, 36] and Square attacks [17, 22]. Impossible
differential cryptanalysis yielded the first attack on the 7-round AES-128 with
non-marginal data complexity. The Square attack and its variations such as in-
tegral attack and multiset attack resulted in the cryptanalysis of round-reduced
AES variants with lowest computational complexity to date, while the first at-
tack on 8-round AES-192 with non-marginal data complexity has appeared only
recently [22].

The situation is different in weaker attack models, where the related-key
cryptanalysis was applied to the full versions of AES-192 and AES-256 [9],
and the rebound attack demonstrated a non-random property in 8-round AES-
128 [27, 33]. However, there is little evidence so far that carrying over these
techniques to the most practical single-secret-key model is feasible. Note that no
attack against the full AES-128 has been known even in the relate-key model or
a hash mode.

Meet-in-the-middle attacks with bicliques. Meet-in-the-middle attacks on
block ciphers have obtained less attention (see [13, 14, 16, 21, 24, 29, 49] for a list
of the most interesting ones) than the differential, linear, impossible differen-
tial, and integral approaches. However, they are probably the most practical in
terms of data complexity. A basic meet-in-the-middle attack requires only the
information-theoretical minimum of plaintext-ciphertext pairs. The limited use
of these attacks can be attributed to the requirement for large parts of the ci-
pher to be independent of particular key bits. As this requirement is not met
in AES and most AES candidates, the number of rounds broken with this tech-
nique is rather small [14, 21], which seems to prevent it from producing results
on yet unbroken number of rounds in AES. We also mention that the collision
attacks [19, 20] use some elements of the meet-in-the-middle framework.

In this paper we demonstrate that the meet-in-the-middle attacks on block
ciphers have great potential if enhanced by a new concept called bicliques. The bi-

clique concept was first introduced for hash cryptanalysis by Savelieva et al. [31].
It originates from the so-called splice-and-cut framework [1,2,28] in hash function
cryptanalysis, more specifically its element called initial structure. The biclique
approach led to the best preimage attacks on the SHA family of hash functions
so far, including the attack on 50 rounds of SHA-512, and the first attack on a
round-reduced Skein hash function [31]. We show how to carry over the concept
of bicliques to block cipher cryptanalysis and get even more significant results,
including the first key recovery for all versions of the full AES faster than brute
force.

A biclique is characterized by its length (number of rounds covered) and
dimension. The dimension is related to the cardinality of the biclique elements
and is one of the factors that determines the advantage over brute force. The
total cost of the key search with bicliques was two main contributors: firstly the
cost of constructing the bicliques, and secondly the matching computations.

Two paradigms for key recovery with bicliques. Taking the biclique prop-
erties into account, we propose two different approaches, or paradigms, for key
recovery. Suppose that the cipher admits the basic meet-in-the-middle attack on
m (out of r) rounds. The first paradigm, the long-biclique, aims to construct a
biclique for the remaining r −m rounds. Though the dimension of the biclique
decreases as r grows, small-dimension bicliques can be constructed with numer-
ous tools and methods from differential cryptanalysis of block ciphers and hash
functions: rebound attacks, trail backtracking, local collisions, etc. Also from an
information-theoretic point of view, bicliques of dimension 1 are likely to exist
in a cipher, regardless of the number of rounds. The computational bottleneck
for this approach is usually the construction of the bicliques.

The second paradigm, the independent-biclique, aims to construct bicliques
of higher dimensions for smaller b < (r −m) number of rounds efficiently and
cover the remaining rounds in a brute-force way with a new method of matching

with precomputations. The construction of bicliques becomes much simpler with
this approach, the computational bottleneck is hence the matching computation.
Even though partial brute-force computations have been considered before for
cryptanalytically improved preimage search methods for hash functions [1, 41],
we show that its combination with biclique cryptanalysis allows for much larger
savings of computations.

Results on AES. The biclique cryptanalysis successfully applies to all full ver-
sions of AES and compared to brute force provides a computational advantage of
about a factor 3 to 5, depending on the version. Also, it yields advantages of up
to a factor 15 for the key recovery of the AES versions with smaller but yet secure
number of rounds. The largest factors are obtained in the independent-biclique
paradigm and have success rate 1. We also provide complexities for finding com-
pression function preimages for all full versions of AES when considered in hash
modes. Our results on AES are summarized in Table 1 and 2, and an attempt to
give an exhaustive overview with earlier results is given in Tables 4 and 5. The
“full version” reference refers to [12].

Table 1. Biclique key recovery for AES

rounds data computations/succ.rate memory biclique length in rounds reference

AES-128 secret key recovery

8 2126.33 2124.97 2102 5 Full version

8 2127 2125.64 232 5 Full version

8 288 2125.34 28 3 Sec. 6

10 288 2126.18 28 3 Sec. 6

AES-192 secret key recovery

9 280 2188.8 28 4 Full version

12 280 2189.74 28 4 Full version

AES-256 secret key recovery

9 2120 2253.1 28 6 Sec. 7

9 2120 2251.92 28 4 Full version

14 240 2254.42 28 4 Full version

Table 2. Biclique preimage search of AES in hash modes (compression function)

rounds computations succ.rate memory biclique length in rounds reference

AES-128 compression function preimage, Miyaguchi-Preneel

10 2125.83 0.632 28 3 Sec. 6

AES-192 compression function preimage, Davies-Meyer

12 2125.71 0.632 28 4 Full version

AES-256 compression function preimage, Davies-Meyer

14 2126.35 0.632 28 4 Full version

2 Biclique Cryptanalysis

Now we introduce the concept of biclique cryptanalysis applied to block ciphers.
To make our approach clear for readers familiar with meet-in-the-middle attacks,
we introduce most of the terminology while explaining how meet-in-the-middle
works, and then proceed with bicliques.

2.1 Basic Meet-in-the-Middle Attack

An adversary chooses a partition of the key space into groups of keys of car-
dinality 22d each for some d. A key in a group is indexed as an element of a
2d × 2d matrix: K[i, j]. The adversary selects an internal variable v in the data
transform of the cipher such that

– as a function of a plaintext and a key, it is identical for all keys in a row :

P
K[i,·]
−−−→

g1
v;

– as a function of a ciphertext and a key, it is identical for all keys in a column:

v
K[·,j]
←−−−

g2
C,

where g1 and g2 form the cipher E = g2 ◦ g1.

Given a plaintext-ciphertext pair (P,C) obtained under the secret keyKsecret,
an adversary computes 2d possible values −→v and 2d possible values ←−v from the
plaintext and from the ciphertext, respectively. A matching pair −→v i =

←−v j yields
a key candidate K[i, j]. The expected number of key candidates depends on the
bit size |v| of v and is given by the formula 22d−|v|. For |v| close to d and larger,
an attack has advantage of about 2d over brute force search as it tests 22d keys
with less than 2d calls of the full cipher.

The basic meet-in-the-middle attack has clear limitations in block cipher
cryptanalysis since an internal variable with the properties listed above can be
found for a very small number of rounds only. We show how to bypass this
obstacle with the concept of a biclique.

2.2 Bicliques

Now we introduce the notion of a biclique following [31]. Let f be a subcipher
that maps an internal state S to the ciphertext C: fK(S) = C. f connects 2d

internal states {Sj} to 2d ciphertexts {Ci} with 22d keys {K[i, j]}:

{K[i, j]} =

K[0, 0] K[0, 1] . . . K[0, 2d − 1]
. . .
K[2d − 1, 0] K[2d − 1, 1] . . . K[2d − 1, 2d − 1]

 .

The 3-tuple [{Ci}, {Sj}, {K[i, j]}] is called a d-dimensional biclique, if

Ci = fK[i,j](Sj) for all i, j ∈ {0, . . . , 2
d − 1}. (1)

In other words, in a biclique, the key K[i, j] maps the internal state Sj to the
ciphertext Ci and vice versa. This is illustrated in Figure 1.

. . .

. . .
S0 S1 S2d−1

C0 C1 C2d−1

K[0, 0] K[2d − 1, 2d − 1]

Fig. 1. d-dimensional biclique

2.3 The Flow of Biclique Cryptanalysis

Preparation. An adversary chooses a partition of the key space into groups
of keys of cardinality 22d each for some d and considers the block cipher as a
composition of two subciphers: e = f ◦ g, where f follows g. A key in a group is
indexed as an element of a 2d × 2d matrix: K[i, j].

Step 1. For each group of keys the adversary builds a structure of 2d ciphertexts
Ci and 2d intermediate states Sj with respect to the group of keys {K[i, j]} so
that the partial decryption of Ci with K[i, j] yields Sj . In other words, the
structure satisfies the following condition:

∀i, j : Sj
K[i,j]
−−−−→

f
Ci. (2)

Step 2. The adversary asks the oracle to decrypt ciphertexts Ci with the secret
key Ksecret and obtains the 2d plaintexts Pi:

Ci
decryption oracle
−−−−−−−−−−−→

e−1
Pi. (3)

Step 3. If one of the tested keys K[i, j] is the secret key Ksecret, then it maps
intermediate state Sj to the plaintext Pi. Therefore, the adversary checks if

∃i, j : Pi
K[i,j]
−−−−→

g
Sj . (4)

A valid pair proposes K[i, j] as a key candidate.

3 New Tools and Techniques for Bicliques

In here we describe two approaches to construct bicliques, and propose a precom-
putation technique that speeds up the application of bicliques for key recovery.
The exposition is largely independent of a cipher.

3.1 Bicliques from Independent Related-Key Differentials

A straightforward approach to find a d-dimensional biclique would be to fix 2d

states and 2d ciphertexts, and derive a key for each pair to satisfy (2). This would
require at least 22d key recovery attempts for f . A much more efficient way for
the adversary is to choose the keys in advance and require them to conform to
specific differentials as follows.

Let the key K[0, 0] map the intermediate state S0 to the ciphertext C0, and
consider two sets of 2d related-key differentials each over f with respect to the

base computation S0
K[0,0]
−−−−→

f
C0:

– ∆i-differentials. A differential in the first set maps the input difference 0
to an output difference ∆i under a key difference ∆K

i :

0
∆K

i7−−→
f

∆i with ∆K
0 = 0 and ∆0 = 0. (5)

– ∇j-differentials. A differential in the second set maps an input difference
∇j to the output difference 0 under key difference ∇K

j :

∇j

∇K
j
7−−→
f

0 with ∇K
0 = 0 and ∇0 = 0. (6)

The tuple (S0, C0,K[0, 0]) conforms to both sets of differentials by definition.
If the trails of ∆i-differentials do not share active nonlinear components (such
as active S-boxes in AES) with the trails of ∇j-differentials, then the tuple also
conforms to 22d combined (∆i,∇j)-differentials:

∇j

∆K
i ⊕∇

K
j

7−−−−−−→
f

∆i for i, j ∈ {0, . . . , 2
d − 1}, (7)

which are obtained by formal xor of differentials (5) and (6) (and trails, if neces-
sary). The proof follows from the fact that an active non-linear element in a trail
of a combined differential is active in either∆- or∇-trail, hence its input still con-
forms to the corresponding trail by the assumption. A more formal and generic
proof can be derived from the theory of boomerang attacks [46] and particularly
from the concept of the S-box switch [9] and a sandwich attack [23]. Since ∆i-
and ∇j-trails share no active non-linear elements, a boomerang based on them
returns from the ciphertext with probability 1 as the quartet of states forms the
boomerang rectangle at every step. In the special case where no nontrivial trail
of one differential intersects with a nontrivial trail of the other differential, the
differentials are completely independent and can be directly combined.

Substituting S0, C0, andK[0, 0] to the combined differentials (7), one obtains:

S0 ⊕∇j

K[0,0]⊕∆K
i ⊕∇

K
j

−−−−−−−−−−−→
f

C0 ⊕∆i. (8)

Finally, we put
Sj = S0 ⊕∇j ,
Ci = C0 ⊕∆i, and
K[i, j] = K[0, 0]⊕∆K

i ⊕∇
K
j

and get exactly the definition of a d-dimensional biclique (1). If ∆i 6= ∇j for
i+j > 0, then all keys K[i, j] are different. The construction of a biclique is thus
reduced to the computation of ∆i and ∇j , which requires no more than 2 · 2d

computations of f .
The independency of the related-key differentials allows one to efficiently con-

struct higher-dimensional bicliques and simplifies the partition of the key space.
Though this approach turns out to be effective in the case of AES, the length
of independent differentials (and hence a biclique) is limited by the diffusion
properties of the cipher.

3.2 Bicliques from Interleaving Related-Key Differential Trails

The differential independency requirement appears to be a very strong require-
ment as it clearly limits the biclique length. An alternative way to construct a
biclique is to consider interleaving differential trails. However, a primitive secure
against differential cryptanalysis does not admit a long biclique of high dimen-
sion over itself, as such a biclique would consume too many degrees of freedom.
For small dimensions, however, the biclique equations admit a rather simple dif-
ferential representation, which allows a cryptanalyst to involve valuable tools
from differential cryptanalysis of hash functions.

We outline here how bicliques of dimension 1 can be constructed in terms
of differentials and differential trails with a procedure resembling the rebound
attack [39]. We are also able to amortize the construction cost of a biclique
by producing many more out of a single one. The construction algorithm is
outlined as follows for a fixed key group {K[0, 0],K[0, 1],K[1, 0],K[1, 1]}, see
also Figure 2:

– Intermediate state T . Choose an intermediate state T in subcipher f (over
which the biclique is constructed). The position of T splits f into two parts
: f = f2 ◦ f1. f1 maps Sj to T . f2 maps T to Ci.

– ∆- and ∇-trails. Choose some truncated related-key differential trails: ∆-
trails over f1 and ∇-trails over f2.

– Inbound phase. Guess the differences in the differential trails up to T . Get
the values of T that satisfy the input and output differences over f .

– Outbound phase. Use the remaining degrees of freedom in the state to
sustain difference propagation in trails.

– Output the states for the biclique.

We stress that the related-key trails are used in the single-key model.
Numerous optimizations of the outlined biclique construction algorithm are

possible. For instance, it is not necessary to guess all differences in the trail,
but only a part of them, and subsequently filter out the solutions. Instead of
fixing the key group, it is also possible to fix only the difference between keys
and derive actual values during the attack (the disadvantage of this approach
is that key groups are generated online, and we have to take care of possible
repetitions). It is also important to reduce an amortized cost of a biclique by
producing new ones for other key group by some simple modification.

3.3 Matching with Precomputations

Here we describe the idea of matching with precomputations, which provides a
significant computational advantage due to amortized computations. This is an
efficient way to check Equation (4) in the procedure of biclique cryptanalysis.

First, the adversary computes and stores in memory 2 · 2d full computations

for all i Pi
K[i,0]
−−−−→ −→v and for all j ←−v

K[0,j]
←−−−− Sj

??

? ?

K[0, 0] K[1, 1]

K[1, 0]

K[0, 1]

Guess
difference

in computations

Resolve
in the middle

S0 S1

C1C0

Construct
solutions

I II III

Fig. 2. Construction of a 1-dimensional biclique from dependent related-key differential
trails: Guess difference between computations and derive states Sj and ciphertext Ci

as conforming elements.

up to some matching variable v, which can be a small part of the internal cipher
state. Then for particular i, j he recomputes only those parts of the cipher that
differ from the stored ones:

Pi Sj

v

The amount of recalculation depends on the diffusion properties of both
internal rounds and the key schedule of the cipher. The relatively slow diffusion
in the AES key schedule allows the adversary to skip most recomputations of
the key schedule operations.

4 Two Paradigms of Key Recovery

We have introduced different approaches to construct bicliques and to perform
matching with precomputations. One may ask which approach is optimal and
relevant. We have studied several block ciphers and hash functions, including
different variants of AES, and it turns out that the optimal choice depends
on a primitive, its diffusion properties, and features of the key schedule. This
prepares the case to introduce two paradigms for key recovery, which differ both
methodologically and in their use of tools.

To put our statement in context, let us consider the basic meet-in-the-middle
attack (Section 2.1) and assume that it can be applied tom rounds of a primitive,
while we are going to attack r > m rounds.

4.1 Long-Biclique

Our first paradigm aims to construct a biclique over the remaining (r − m)
rounds so that the basic meet-in-the-middle attack can be applied with negligible
modification. The first advantage of this approach is that theoretically we can get
the same advantage as the basic attack if we manage to construct a biclique of

appropriate dimension. If the dimension is inevitably small due to the diffusion,
then we use the second advantage: the biclique construction methods based on
differential cryptanalysis of block ciphers and hash functions.

The disadvantage of this paradigm is that the construction of bicliques over
many rounds is very difficult. Therefore, we are limited in the total number of
rounds that we can attack. Furthermore, the data complexity can be very large
since we use all the degrees of freedom to construct a biclique and may have
nothing left to impose restrictions on the plaintexts or ciphertexts.

Nevertheless, we expect this paradigm to benefit from the further develop-
ment of differential cryptanalysis and the inside-out strategy and predict its
applicability to many other ciphers.

Hence, to check (4) the adversary selects an internal variable v ∈ V that can
be computed as follows for each key group {K[i, j]}:

P
K[i,·]
−−−→
E1

v
K[·,j]
←−−−
E2

S. (9)

Therefore, the computational complexity of matching is upper bounded by 2d

computations of the cipher.

S0

S2

C0

C1

key

plaintext ciphertext

C2

S1

K[3, 3]

K[0, 0]

K[i, ∗] K[∗, j]

S3 C3

K[i, j]

K[∗, 3]

K[∗, 0]

Decryption
oracle

K[3, ∗]

K[0, ∗]

Fig. 3. Long-biclique attack with four states and four ciphertexts.

Complexity of Key Recovery. Let us evaluate the full complexity of the
long-biclique approach. Since the full key recovery is merely the application of
Steps 1-3 2n−2d times, we get the following equation:

Cfull = 2n−2d [Cbiclique + Cmatch + Cfalsepos] ,

where

– Cbiclique is the complexity of constructing a single biclique. Since the differential-
based method is time-consuming, one has to amortize the construction cost
by selecting a proper set of neutral bytes that do not affect the biclique
equations.

– Cmatch is the complexity of the computation of the internal variable v 2d

times in each direction. It is upper bounded by 2d calls of E.
– Cfalsepos is the complexity generated by false positives, which have to be

matched on other variables. If we match on a single byte, the number of false
positives is about 22d−8. Each requires only a few operations to re-check.

Generally, the complexity is dominated by Cmatch and hence has an advantage
of at least 2d over brute force. The memory complexity depends on the biclique
construction procedure.

4.2 Independent-Biclique

Our second paradigm lets the attacker exploit the diffusion properties rather
than differential properties, and does not aim to construct the longest biclique.
In contrast, it proposes to construct shorter bicliques with high dimension by
tools like independent related-key differentials (Section 3.1).

This approach has clear advantages. First, the data complexity can be made
quite low. Since the biclique area is small, the attacker has more freedom to
impose constraints on the ciphertext and hence restrict it to a particular set.
Secondly, the attack gets a compact and small description, since the independent
trails are generally short and self-explaining.

For further explanation, we recall the decomposition of the cipher:

E : P −→
E1

V −→
E2

S −→
E3

C,

In (4), the adversary detects the right key by computing an intermediate variable
v in both directions:

Pi

K[i,j]
−−−−→
E1

−→v
?
=←−v

K[i,j]
←−−−−
E2

Sj . (10)

Since the meet-in-the-middle attack is no longer applicable to the E2 ◦ E1, we
apply the matching with precomputations (Section 3.3).

As with the long-biclique paradigm, 22d keys are tested using only 2d inter-
mediate cipher states. The precomputation of about 2d+1 matches allows for a
significant complexity gain and is the major source of the computational advan-
tage of our attacks on AES (Section 3.3). The advantage comes from the fact
that in case of high dimension the basic computation has negligible cost, and
the full complexity is determined by the amount of precomputation. By a care-
ful choice of key groups, one is able to reduce the precomputation proportion
to a very small factor, e.g. factor 1/15 in attacks on reduced-round versions of
AES-256.

Complexity of Key Recovery. The full complexity of the independent bi-
clique approach is evaluated as follows:

Cfull = 2n−2d [Cbiclique + Cprecomp + Crecomp + Cfalsepos] ,

where

– Cprecomp is the complexity of the precomputation in Step 3. It is equivalent
to less than 2d runs of the subcipher g.

– Crecomp is the complexity of the recomputation of the internal variable v 22d

times. It strongly depends on the diffusion properties of the cipher. For AES
this value varies from 22d−1.5 to 22d−4.

The biclique construction is quite cheap in this paradigm. The method in Sec-
tion 3.1 enables construction of a biclique in only 2d+1 calls of subcipher f .
Therefore, usually the full key recovery complexity will be dominated by 2n−2d ·
Crecomp. However, it is dependent on the width of the matching variable and
biclique dimension d too. We give more details for the case of AES in further
sections. The memory complexity of the key recovery is upper-bounded by stor-
ing 2d full computations of the cipher.

5 Description of AES

AES is a block cipher with 128-bit internal state and 128/192/256-bit key K
(AES-128, AES-192, AES-256, respectively). The internal state is represented
by a 4× 4 byte matrix, and the key is represented by a 4× 4/4× 6/4× 8 matrix.

The encryption works as follows. The plaintext is xored with the key, and then
undergoes a sequence of 10/12/14 rounds. Each round consists of four transfor-
mations: nonlinear bytewise SubBytes, the byte permutation ShiftRows, linear
transformation MixColumns, and the addition with a subkey AddRoundKey.
MixColumns is omitted in the last round.

SubBytes is a nonlinear transformation operating on 8-bit S-boxes with max-
imum differential probability as low as 2−6 (for most cases 0 or 2−7). The
ShiftRows rotates bytes in row r by r positions to the left. The MixColumns
is a linear transformation with branch number 5, i.e. in the column equation
(y0, y1, y2, y3) = MC(x0, x1, x2, x3) only 5 and more variables can be non-zero.

We address two internal states in each round as follows in AES-128: #1 is the
state before SubBytes in round 1, #2 is the state after MixColumns in round 1,
#3 is the state before SubBytes in round 2, . . ., #19 is the state before SubBytes
in round 10, #20 is the state after ShiftRows in round 10 (MixColumns is omitted
in the last round). The states in the last round of AES-192 are addressed as #23
and #24, and of AES-256 as #27 and #28.

The subkeys come out of the key schedule procedure, which slightly dif-
fers for each version of AES. The key K is expanded to a sequence of keys
K0,K1,K2, . . . ,K10, which form a 4× 60 byte array. Then the 128-bit subkeys
$0, $1, $2, . . . , $14 come out of the sliding window with a 4-column step. The
keys in the expanded key are formed as follows. First, K0 = K. Then, column
0 of Kr is the column 0 of Kr−1 xored with the nonlinear function (SK) of
the last column of Kr−1. Subsequently, column i of Kr is the xor of column
i− 1 of Kr and of column i of Kr−1. In AES-256 column 3 undergoes SubBytes
transformation while forming column 4.

Bytes within a state and a subkey are enumerated as follows

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Byte i in state Q is addressed as Qi.

6 Independent-Biclique: Key Recovery for the Full

AES-128

In this section we describe a key recovery method on the full 10-round AES-128
using the independent-bilcique approach. The computational bottleneck will be
the matching computation. See also Appendix A for an additional illustration.

Table 3. Parameters of the key recovery for the full AES-128

f Biclique

Rounds Dimension ∆K bytes ∇K bytes Time Memory

8-10 8 $88, $812 $81, $89 27 28

Matching

g Precomputation Recomputation

Rounds v Workload Memory SubBytes: forward SubBytes: backward

1-7 #512 28−ε 28 0.875 2.625

Total complexity

Memory Cbiclique Cprecomp Crecomp Cfalsepos Cfull

28 27 27 214.14 28 2126.18

6.1 Key Partitioning

For more clarity we define the key groups with respect to the subkey $8 of round
8 and enumerate the groups of keys by 2112 base keys. Since the AES-128 key
schedule bijectively maps each key to $8, the enumeration is well-defined. The
base keys K[0, 0] are all possible 2112 16-byte values with two bytes fixed to 0
whereas the remaining 14 bytes run over all values:

0

0

The keys {K[i, j]} in a group are enumerated by all possible byte differences i
and j with respect to the base key K[0, 0]:

ii

jj

This yields the partition of the round-8 subkey space, and hence the AES
key space, into the 2112 groups of 216 keys each.

6.2 3-Round Biclique of Dimension 8

We construct a 3-round biclique from combined related-key differentials as de-
scribed in Section 3.1. The parameters of the key recovery are summarized in
Table 3. The adversary fixes C0 = 0 and derives S0 = f−1

K[0,0](C0) (Figure 4, left).

The ∆i-differentials are based on the difference ∆K
i in $8, and ∇j-differentials

are based on the difference ∇K
j in $8:

∆K
i ($8) =

ii

and ∇K
j ($8) =

jj

.

Both sets of differentials are depicted in Figure 4 in the truncated form. As they
share no active S-boxes, the resulting combined differentials yield a biclique of
dimension 8.

Since the ∆i-differential affects only 12 bytes of the ciphertext, all the cipher-
texts share the same values in bytes C0,1,4,13. Furthermore, since ∆K

i ($1010) =
∆K

i ($1014), the ciphertext bytes C10 and C14 are also always equal. As a result,
the data complexity does not exceed 288.

∆i-differentials ∇j-differentials
base

computation

SR

SR

SRSR

SR

SRSR

SR

SR

SB

SB

SBSB

SB

SBSB

SB

SB

k
e
y

s
c
h
e
d
u
le

k
e
y

s
c
h
e
d
u
le

k
e
y

s
c
h
e
d
u
le

k
e
y

s
c
h
e
d
u
le

k
e
y

s
c
h
e
d
u
le

k
e
y

s
c
h
e
d
u
le

MC

MCMC

MCMC

MC

Step 1. Start with C0 = 0

Step 2. Add ∆i to the key

Step 3. Add ∇j to the key

∆K
i ∇

K
j

$8

$9

$10

#16

#17

#18

#19

#20

C0C0

S0S0

Ci

Sj , #15

Fig. 4. AES-128 biclique from combined differentials: base computation as well as ∆i-
and ∇j-differentials.

A
K

A
K

A
K

A
K

A
K

M
C

M
C

M
C

M
C

M
C

S
R

S
R

S
R

S
R

S
R

S
B

S
B

S
B

S
B

S
B

$6$7

#5#6#7#8#9#10#11#12#13#14#15

Sj

b
ic

li
q
u
e

←−v

recomputed

∆K
j

Fig. 5. Recomputation in the backward direction: AES-128

Forward computation. Now we figure out how the computation Pi
K[i,j]
−−−−→ −→v

differs from the stored one Pi
K[i,0]
−−−−→ −→v i. Similarly, it is determined by the

influence of the difference between keys K[i, j] and K[i, 0], now applied to the
plaintext. Thanks to the low diffusion of the AES key schedule and sparsity of
the key difference in round 8, the whitening subkeys of K[i, j] and K[i, 0] differ
in 9 bytes only. The difference is no longer a linear function of j as it is in the
computation of ←−v , but still requires only three s-boxes in the key schedule to
recompute. The areas of internal states to be recomputed (with 13 S-boxes) are
depicted in Figure 6.

A
K

A
K

A
K

M
C

M
C

S
R

S
R

S
B

S
B

#5#4#3#2#1

$0

∇
K
i

Pi −→v

recomputed

b
ic

li
q
u
e

d
e
c
r
y
p
t
io

n

o
r
a
c
le

&

Fig. 6. Recomputation in the forward direction: AES-128

6.3 Matching over 7 Rounds

Now we check whether the secret key Ksecret belongs to the key group {K[i, j]}
according to Section 3.3. We make 2d+1 precomputations of v and store values
as well as the intermediate states and subkeys in memory. Then we check (10)
for every i, j by recomputing only those variables that differ from the ones stored
in memory. Now we evaluate the amount of recomputation in both directions.

Backward direction. Let us figure out how the computation ←−v
K[i,j]
←−−−− Sj differs

from the stored one ←−v j

K[0,j]
←−−−− Sj . It is determined by the influence of the

difference between keys K[i, j] and K[0, j] (see the definition of the key group in
Section 6.1). The difference in the subkey $7 is non-zero in only one byte, so we
have to recompute as few as four S-boxes in round 7 (state #13). The full area
to be recomputed, which includes 41 S-boxes, is depicted in Figure 5. Note that
the difference in the relevant subkeys is a linear function of i, and hence can be
precomputed and stored.

Forward computation. Now we look at how the computation Pi
K[i,j]
−−−−→ −→v differs

from the stored one Pi
K[i,0]
−−−−→ −→v i. Similarly, it is determined by the influence

of the difference between keys K[i, j] and K[i, 0], now applied to the plaintext.
Thanks to the low diffusion of the AES key schedule and sparsity of the key
difference in round 8, the whitening subkeys of K[i, j] and K[i, 0] differ in 9
bytes only. The difference is no longer a linear function of j as it is involved into
the computation of ←−v , but still requires only three S-boxes in the key schedule
to recompute. This effect and the areas of internal states to be recomputed (with
13 S-boxes) are depicted in Figure 6.

6.4 Complexities

Since only a portion of the round function is recomputed, one has to be highly
accurate in evaluating the complexity Crecomp. A rough division of AES-128
into 10 rounds is not precise enough. For a more exact evaluation, we count the
number of S-boxes in each SubBytes operation that we have to recompute, the
number of active variables in MixColumns, the number of output variables that
we need from MixColumns, and, finally, the number of S-boxes to recompute in
the key schedule.

Altogether, we need an equivalent of 3.4375 SubBytes operations (i.e., 55
S-boxes), 2.3125 MixColumns operations, and a negligible amount of XORs in
the key schedule. The number of SubBytes computations clearly is a larger sum-
mand. S-boxes are also the major contributor to the practical complexity of AES
both in hardware and software. Therefore, if we aim for a single number that
refers to the complexity, it makes sense to count the number of SubBytes opera-
tions that we need and compare it to that in the full cipher. The latter number
is 10+ 2.5 = 12.5 as we have to take the key schedule nonlinearity into account.
As a result, Crecomp is equivalent to 216 · 3.4375/12.5 = 214.14 runs of the full
AES-128. The values Cbiclique and Cprecomp together do not exceed 28 calls of
the full AES-128.

The full computational complexity amounts to about

2112
(

27 + 27 + 214.14 + 28
)

= 2126.18.

The memory requirement is upper-bounded by the storage of 28 full computa-
tions of g. Since the coverage of the key space by groups around base keys is
complete, the success probability is 1.

This approach for 8-round AES-128 yields a key recovery with computational
complexity about 2125.34, data complexity 288, memory complexity 28, and suc-
cess probability 1. Similarly, preimage finding for the compression function of the
full AES-128 in Miyaguchi-Preneel mode requires about 2125.83 computations,
28 memory, and has a success probability of about 0.6321.

7 Long-Biclique: 9-Round AES-256

Our attack is differential-based biclique attack (Section 3.2).

Step 1. A biclique of dimension 1 involves two states, two ciphertexts, and
a group of four keys. The keys in the group are defined via the difference in
subkeys:

K[0, 1] : $5(K[0, 1])⊕ $5(K[0, 0]) = ∆K;

K[1, 0] : $6(K[1, 0])⊕ $6(K[0, 0]) = ∇K;

K[1, 1] : $6(K[1, 1])⊕ $6(K[0, 1]) = ∇K.

The differences ∆K and ∇K are defined columnwise:

∆K = (A, 0, 0, 0); ∇K = (B,B, 0, 0),

where

A = MixColumns

0
0
2
0

; B =

0
2

0xb9
2

= MixColumns

0xd0
0x69
0
0

.

Let us note that the key relation in the next expanded key is still linear:

$4(K[1, 0])⊕ $4(K[0, 0]) = $4(K[1, 1])⊕ $4(K[0, 1]) = (B, 0, 0, 0).

Evidently, the groups do not intersect and cover the full key space. We split the
9-round AES-256 as follows:

– E1 is round 1.
– E2 is rounds 2-4.
– E3 is rounds 5-9.

Step 2. An illustration of steps 2(a) - 2(e) is given in Fig. 7.

Step 2 (a). The intermediate state T in E3 is the S-box layer in round 7. We
construct truncated differential trails in rounds 5-6 based on the injection of ∆K
after round 5 (Figure 7, left), and in rounds 7-9 based on the injection of ∇K
before round 9 (Figure 7, right).

Step 2 (b). We guess the differences in the truncated trails up to T . We have
four active S-boxes in round 6 and two active S-boxes in round 8. We also require
∆-trails to be equal. In total we make 27·(4+2·2) = 256 guesses.

Step 2 (c). For each S-box in round 7 that is active in both trails (eight in total)
we take a quartet of values that conform to the input and output differences,
being essentially the boomerang quartet for the S-box (one solution per S-box
on average). For the remaining 8 S-boxes we take all possible values. Therefore,
we have 264 solutions for each guess in the inbound phase, or 2120 solutions in
total.

SB
SR
MC

SB
SR
MC

KS

SB
SR
MC

SB
SR
MC

KS

SB
SR
MC

KS

#8

#10

#11

#12

#13

#14

#15

#16

#17

#18

KS

KS

KS

SB
SR
MC

SB
SR
MC

KS

SB
SR
MC

SB
SR
MC

KS

SB
SR
MC

KS

#9

#10

#11

#12

#13

#14

#15

#16

#17

#18

KS

KS

KS

#9

#8

Resolve

Guess

difference

Guess

difference

2

Fig. 7. Biclique construction in AES-256. ∆-trail (left) and ∇-trail (right).

Step 2 (d). Outbound phase: we filter out the solutions that do not conform
to the differential trails in rounds 6 and 8. We have four active S-boxes in each
∆-trail, and two active S-boxes in each ∇-trail, hence 12 in total. Therefore, we
get a 84-bit filter, and leave with 236 bicliques.

Step 2 (e). Now we keep only the bicliques with byte C0,0 equal to zero in both
ciphertexts. This is a 16-bit filter, which reduces the number of bicliques to 220.
We need only one.

Step 3-5. We ask for the decryption of two ciphertexts and get two plaintexts.
The matching position (v) is the byte #30,0. As demonstrated in Fig. 8, it is
equal as a function of the plaintext for keys with difference ∆K (not affected by
lightblue cells), and is also equal as a function of S for keys with difference ∇K
(not affected by red cells). We compute v in both directions and check for the
match.

Step 6. We can produce sufficiently many bicliques out of one to amortize the
construction cost. Let us look at the subkey $6 in the outbound phase. We can
change its value to any of the 296 specific values so that the active S-boxes in
round 6 during the outbound phase are not affected. On the other hand, any
change in bytes in rows 1,2,3 affects only those rows in the subkeys $8 and $9
and hence does not affect C0,0. Therefore, we have 128 − 32 − 32 = 64 neutral
bits in $6.

Similarly, we identify 9 bytes in $7 that can be changed so that $6, the active
S-boxes in round 8, and the byte C0,0 are unaffected. Those are bytes in the first
three columns not on the main diagonal. Therefore, we have 72 neutral bits in
$7, and 136 neutral bits in total.

Complexity. A single biclique with C0,0 = 0 is constructed with complexity
2120−20 = 2100 and 28 memory needed for Step 2 (c). However, 136 neutral bits in
the key reduce the amortized construction cost significantly. Let us compute the
cost of constructing a new biclique according to Step 6. A change in a single byte
in K7 needs 5 S-boxes, 1 MC and several XORs recomputing for each ciphertext,
which gives us the complexity of 10/16 AES rounds. This change also affects two
bytes of K5, so we have to recompute one half of round 5, with the resulting
complexity of 1 AES round per biclique. The total amortized complexity is 1.625
AES rounds.

In the matching part we compute a single byte in two directions, thus spend-
ing 9/16 of a round in rounds 1-3, and full round 4, i.e. 3.125 full rounds per
biclique. In total we need 4.75 AES rounds per biclique, i.e. 2−0.92 9-round AES-
256 calls. The complexity generated by false positives is at most 2−6 rounds per
biclique. We need 2254 bicliques, so the total complexity is 2253.1.

The data complexity is 2120 since one ciphertext byte is always fixed. The
success rate of the attack is 1, since we can generate many bicliques for each key
group.

8 On Practical Verification

Especially for the type of cryptanalysis described in this paper where carrying
out an attack in full is computationally infeasible, practical verification of attack
details and steps is important in order to get confidence in it. To address this,
we explicitly state the following:

– We verified all truncated differentials through AES-128/192/256 for all the
attacks, including the independent bicliques.

– We constructed a real 6-round biclique for the 9-round AES-256 (Table 6).
To make the algorithm in Section 7 practical, we fixed more key bytes than
required. As a result, the construction cost for a single biclique dropped, but
the amortized cost has increased.

– We verified that some difference guesses must be equal (like in the AES-256
attack) due to the branch number of MixColumns that results in a correlation
of differences in the outbound phase.

SB
SR
MC

KS

SB
SR
MC

KS

SB
SR
MC

KS

#3

#4

#5

#6

#7

#8

KS

KS

KS

SB
SR
MC

KS

SB
SR
MC

KS

#1

#2

#3

KS

KS

Biclique

2

Fig. 8. Matching in AES-256. Byte #30 can be computed in each direction.

9 Discussion and Conclusions

We propose the concept of bicliques for block cipher cryptanalysis and give
various applications to AES, including a key recovery method for the full ver-
sions of AES-128, AES-192, and AES-256. Both the “long-biclique” and the
“independent-biclique” approach we introduced feature conceptual novelties that
we expect will find applications in other areas. For the “long-biclique” approach,
it is the use of techniques from differential collision attacks on hash functions
that forces two trails to be independent and hence allows to add more rounds at
low amortized cost. For the “independent-biclique” approach, it is the matching

with precomputation trick that allows to significantly reduce the cost of matching
computations over more rounds in a MITM attack.

Using the latter approach on AES, we allow a small portion of the cipher
to ie recomputed in every key test. The use of bicliques in combination with
the technique of matching with precomputation, results in a surprisingly low
recomputation in the innermost loop, varying from about 1/3 to approximately
1/5 of the cipher depending on the key size, while having data complexities

of 288, 280 and 240 plaintext-ciphertext pairs, respectively. Arguably no known
generic approach to key recovery allows for that gain. We notice that the data
complexity of key recovery can be significantly reduced by sacrificing only a
small factor of computational advantage.

To conclude, we discuss the properties of AES that allowed us to cover more
rounds than in previous cryptanalysis, discuss the attained computational ad-
vantage, and list a number of problems to consider for future work.

9.1 What Properties of the AES Allowed to Obtain These New
Results

Our approach heavily relies on the existence of high-probability related-key dif-
ferentials over a part of the cipher. More specifically:

– The round transformation of AES is not designed to have strong resistance
against several classes of attacks for a smaller number of rounds. The fact
that our approach allows to split up the cipher into three parts exposes these
properties even when considering the full cipher. Also, as already observed
in [21, 42], the fact that the MixColumns transformation is omitted in the
last round of AES helps to design attacks for more rounds.

– In the key schedule, we especially take advantage of the relatively slow back-
ward diffusion. Whereas using key-schedule properties in related-key attacks
is natural, there seem only a few examples in the literature where this is used
in the arguably more relevant single-key setting. This includes the attack on
the self-synchronized stream cipher Moustique [30], the lightweight block ci-
pher KTANTAN [13], and recent improvements upon attacks on 8-rounds of
AES-192 and AES-256 [22].

9.2 On the Computational Advantage of the Biclique Techniques

Most computational complexities in this paper are relatively close to those of
generic attacks. In here we discuss why we think the complexity advantage is
meaningful.

– Biclique cryptanalysis with the independent-biclique approach allows us to
be very precise about the required computations. In all cases we arrive at
computational complexities considerably lower than those of generic attacks.

– For long-biclique cryptanalysis, whenever it is difficult to be precise about
certain parts of our estimates, we choose to be conservative, potentially
resulting in an underestimate of the claimed improvement. Again, in all
cases we arrive at a computational complexity that is considerably lower
than that of generic attacks.

– Improved AES implementations (that may e.g. be used to speed-up brute
force key search) will very likely also improve the biclique techniques we
propose.

– To the best of our knowledge, there are no generic methods known that
would speed-up key recovery given a part of the codebook.

9.3 Open Problems

There are a number of other settings this approach may be applied to. It will
be interesting to study other block ciphers like the AES finalists or more recent
proposals with respect to this class of attacks. A combination of the “long-
biclique” and “independent-biclique” approaches may be a source for further
improvements. Also, we may decide to drop the requirement of the biclique to
be complete, i.e. instead of a complete bipartite graph consider a more general
graph. There may be cases where different tradeoffs between success probability,
complexity requirements, and even number of rounds are obtainable. Alterna-
tively, this paper may inspire work on more generic attacks on block ciphers
that try to take advantage of the fact that a small part of the codebook, or some
memory, is available.

Acknowledgements

We thank Joan Daemen and Vincent Rijmen for their helpful feedback on the
earlier versions of the paper. We also thank Pierre-Alain Fouque, Alexander
Gotmanov, Gregor Leander, Søren Thomsen, and reviewers of ASIACRYPT
2011 for their comments. Part of this work was done while Andrey Bogdanov was
visiting MSR Redmond and while Christian Rechberger was with K.U.Leuven
and visiting MSR Redmond. This work was supported in part by the European
Commission under contract ICT-2007-216646 ECRYPT NoE phase II and by
the IAP Programme P6/26 BCRYPT of the Belgian State.

References

1. Kazumaro Aoki and Yu Sasaki. Preimage attacks on one-block MD4, 63-step MD5
and more. In Selected Areas in Cryptography’08, volume 5381 of Lecture Notes in
Computer Science, pages 103–119. Springer, 2008.

2. Kazumaro Aoki and Yu Sasaki. Meet-in-the-middle preimage attacks against re-
duced SHA-0 and SHA-1. In CRYPTO’09, volume 5677 of Lecture Notes in Com-
puter Science, pages 70–89. Springer, 2009.

3. Behran Bahrak and Mohammad Reza Aref. A novel impossible differential crypt-
analysis of AES. In Proceedings of the Western European Workshop on Research
in Cryptology 2007 (WEWoRC’07), pages 152–156, 2007.

4. Behran Bahrak and Mohammad Reza Aref. Impossible differential attack on seven-
round aes-128. IET Inf. Secur., 2(2):28–32, June 2008.

5. Eli Biham, Alex Biryukov, and Adi Shamir. Miss in the middle attacks on IDEA
and Khufu. In FSE’99, volume 1636 of Lecture Notes in Computer Science, pages
124–138. Springer, 1999.

6. Eli Biham, Rafi Chen, Antoine Joux, Patrick Carribault, Christophe Lemuet, and
William Jalby. Collisions of SHA-0 and reduced SHA-1. In EUROCRYPT’05,
volume 3494 of Lecture Notes in Computer Science, pages 36–57. Springer, 2005.

7. Eli Biham and Adi Shamir. Differential Cryptanalysis of DES-like Cryptosystems.
J. Cryptology, 4(1):3–72, 1991.

8. Alex Biryukov, Orr Dunkelman, Nathan Keller, Dmitry Khovratovich, and Adi
Shamir. Key recovery attacks of practical complexity on AES-256 variants with
up to 10 rounds. In EUROCRYPT’10, volume 6110 of Lecture Notes in Computer
Science, pages 299–319. Springer, 2010.

9. Alex Biryukov and Dmitry Khovratovich. Related-Key Cryptanalysis of the Full
AES-192 and AES-256. In ASIACRYPT’09, volume 5912 of Lecture Notes in
Computer Science, pages 1–18. Springer, 2009.

10. Alex Biryukov, Dmitry Khovratovich, and Ivica Nikolić. Distinguisher and related-
key attack on the full AES-256. In CRYPTO’09, volume 5677 of Lecture Notes in
Computer Science, pages 231–249. Springer, 2009.

11. Alex Biryukov and Ivica Nikolić. Automatic Search for Related-Key Differential
Characteristics in Byte-Oriented Block Ciphers: Application to AES, Camellia,
Khazad and Others. In EUROCRYPT’10, volume 6110 of Lecture Notes in Com-
puter Science, pages 322–344. Springer, 2010.

12. Andrey Bogdanov, Dmitry Khovratovich, and Christian Rechberger. Biclique
cryptanalysis of the full aes. Cryptology ePrint Archive, Report 2011/449, 2011.
http://eprint.iacr.org/2011/449.

13. Andrey Bogdanov and Christian Rechberger. A 3-Subset Meet-in-the-Middle At-
tack: Cryptanalysis of the Lightweight Block Cipher KTANTAN. In SAC’10, vol-
ume 6544 of Lecture Notes in Computer Science, pages 229–240. Springer, 2010.

14. Charles Bouillaguet, Patrick Derbez, and Pierre-Alain Fouque. Automatic search
of attacks on round-reduced aes and applications. In CRYPTO’11, volume 2442
of Lecture Notes in Computer Science, pages 169–187. Springer, 2011.

15. Florent Chabaud and Antoine Joux. Differential collisions in SHA-0. In
CRYPTO’98, volume 1462 of Lecture Notes in Computer Science, pages 56–71.
Springer, 1998.

16. David Chaum and Jan-Hendrik Evertse. Crytanalysis of DES with a Reduced
Number of Rounds: Sequences of Linear Factors in Block Ciphers. In CRYPTO’85,
volume 218 of Lecture Notes in Computer Science, pages 192–211, 1986.

17. Joan Daemen, Lars R. Knudsen, and Vincent Rijmen. The Block Cipher Square.
In Eli Biham, editor, FSE’97, volume 1267 of Lecture Notes in Computer Science,
pages 149–165. Springer, 1997.

18. Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES - The Advanced
Encryption Standard. Springer, 2002.

19. Hüseyin Demirci and Ali Aydin Selçuk. A meet-in-the-middle attack on 8-round
AES. In FSE’08, volume 5086 of Lecture Notes in Computer Science, pages 116–
126. Springer, 2008.

20. Hüseyin Demirci, Ihsan Taskin, Mustafa Çoban, and Adnan Baysal. Improved
Meet-in-the-Middle Attacks on AES. In INDOCRYPT’09, volume 5922 of Lecture
Notes in Computer Science, pages 144–156. Springer, 2009.

21. Orr Dunkelman and Nathan Keller. The effects of the omission of last round’s
MixColumns on AES. Inf. Process. Lett., 110(8-9):304–308, 2010.

22. Orr Dunkelman, Nathan Keller, and Adi Shamir. Improved Single-Key Attacks
on 8-Round AES-192 and AES-256. In ASIACRYPT’10, volume 6477 of Lecture
Notes in Computer Science, pages 158–176. Springer, 2010.

23. Orr Dunkelman, Nathan Keller, and Adi Shamir. A practical-time related-
key attack on the KASUMI cryptosystem used in GSM and 3G telephony. In
CRYPTO’10, volume 6223 of Lecture Notes in Computer Science, pages 393–410.
Springer, 2010.

24. Orr Dunkelman, Gautham Sekar, and Bart Preneel. Improved meet-in-the-middle
attacks on reduced-round DES. In INDOCRYPT’07, volume 4859 of Lecture Notes
in Computer Science, pages 86–100. Springer, 2007.

25. Niels Ferguson, John Kelsey, Stefan Lucks, Bruce Schneier, Michael Stay, David
Wagner, and Doug Whiting. Improved cryptanalysis of Rijndael. In FSE’00,
volume 1978 of Lecture Notes in Computer Science, pages 213–230. Springer, 2000.

26. Henri Gilbert and Marine Minier. A Collision Attack on 7 Rounds of Rijndael. In
AES Candidate Conference, pages 230–241, 2000.

27. Henri Gilbert and Thomas Peyrin. Super-Sbox cryptanalysis: Improved attacks
for AES-like permutations. In FSE’10, volume 6147 of Lecture Notes in Computer
Science, pages 365–383. Springer, 2010.

28. Jian Guo, San Ling, Christian Rechberger, and Huaxiong Wang. Advanced Meet-
in-the-Middle Preimage Attacks: First Results on Full Tiger, and Improved Results
on MD4 and SHA-2. In ASIACRYPT’10, volume 6477 of Lecture Notes in Com-
puter Science, pages 56–75. Springer, 2010.

29. Takanori Isobe. A single-key attack on the full gost block cipher. In FSE’11, volume
6733 of Lecture Notes in Computer Science, pages 290–305. Springer, 2011.

30. Emilia Käsper, Vincent Rijmen, Tor E. Bjørstad, Christian Rechberger, Matthew
J. B. Robshaw, and Gautham Sekar. Correlated Keystreams in Moustique. In
AFRICACRYPT’08, volume 5023 of Lecture Notes in Computer Science, pages
246–257. Springer, 2008.

31. Dmitry Khovratovich, Christian Rechberger, and Alexandra Savelieva. Bi-
cliques for preimages: attacks on Skein-512 and the SHA-2 family. Available at
http://eprint.iacr.org/2011/286.pdf, 2011.

32. Lars R. Knudsen and Vincent Rijmen. Known-key distinguishers for some block
ciphers. In ASIACRYPT’07, volume 4833 of Lecture Notes in Computer Science,
pages 315–324. Springer, 2007.

33. Mario Lamberger, Florian Mendel, Christian Rechberger, Vincent Rijmen, and
Martin Schläffer. Rebound Distinguishers: Results on the Full Whirlpool Com-
pression Function. In ASIACRYPT’09, volume 5912 of Lecture Notes in Computer
Science, pages 126–143. Springer, 2009.

34. Jiqiang Lu, Orr Dunkelman, Nathan Keller, and Jongsung Kim. New impossible
differential attacks on AES. In INDOCRYPT’08, volume 5365 of Lecture Notes in
Computer Science, pages 279–293. Springer, 2008.

35. Stefan Lucks. Attacking seven rounds of Rijndael under 192-bit and 256-bit keys.
In AES Candidate Conference, pages 215–229, 2000.

36. Hamid Mala, Mohammad Dakhilalian, Vincent Rijmen, and Mahmoud Modarres-
Hashemi. Improved Impossible Differential Cryptanalysis of 7-Round AES-128.
In INDOCRYPT’10, volume 6498 of Lecture Notes in Computer Science, pages
282–291. Springer, 2010.

37. Mitsuru Matsui. Linear cryptanalysis method for DES cipher. In EURO-
CRYPT’93, volume 765 of Lecture Notes in Computer Science, pages 386–397.
Springer, 1993.

38. Florian Mendel, Thomas Peyrin, Christian Rechberger, and Martin Schläffer. Im-
proved Cryptanalysis of the Reduced Grøstl Compression Function, ECHO Per-
mutation and AES Block Cipher. In Selected Areas in Cryptography’09, volume
5867 of Lecture Notes in Computer Science, pages 16–35. Springer, 2009.

39. Florian Mendel, Christian Rechberger, Martin Schläffer, and Søren S. Thomsen.
The rebound attack: Cryptanalysis of reduced Whirlpool and Grøstl. In FSE’09,
volume 5665 of Lecture Notes in Computer Science, pages 260–276. Springer, 2009.

40. Raphael Chung-Wei Phan. Impossible differential cryptanalysis of 7-round ad-
vanced encryption standard (AES). Inf. Process. Lett., 91(1):33–38, 2004.

41. Christian Rechberger. Preimage Search for a Class of Block Cipher based Hash
Functions with Less Computation. Unpublished manuscript, 2008.

42. Yu Sasaki. Meet-in-the-Middle Preimage Attacks on AES Hashing Modes and an
Application to Whirlpool. In FSE’11 Preproceedings, 2011.

43. Yu Sasaki and Kazumaro Aoki. Finding Preimages in Full MD5 Faster Than Ex-
haustive Search. In EUROCRYPT’09, volume 5479 of Lecture Notes in Computer
Science, pages 134–152. Springer, 2009.

44. Marc Stevens, Arjen K. Lenstra, and Benne de Weger. Chosen-prefix collisions for
MD5 and colliding X.509 certificates for different identities. In EUROCRYPT’07,
volume 4515 of Lecture Notes in Computer Science, pages 1–22. Springer, 2007.

45. Marc Stevens, Alexander Sotirov, Jacob Appelbaum, Arjen K. Lenstra, David Mol-
nar, Dag Arne Osvik, and Benne de Weger. Short chosen-prefix collisions for MD5
and the creation of a rogue ca certificate. In CRYPTO’09, volume 5677 of Lecture
Notes in Computer Science, pages 55–69. Springer, 2009.

46. David Wagner. The boomerang attack. In FSE’99, volume 1636 of Lecture Notes
in Computer Science, pages 156–170. Springer, 1999.

47. Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Finding collisions in the full
SHA-1. In CRYPTO’05, volume 3621 of Lecture Notes in Computer Science, pages
17–36. Springer, 2005.

48. Xiaoyun Wang and Hongbo Yu. How to break MD5 and other hash functions.
In EUROCRYPT’05, volume 3494 of Lecture Notes in Computer Science, pages
19–35. Springer, 2005.

49. Lei Wei, Christian Rechberger, Jian Guo, Hongjun Wu, Huaxiong Wang, and
San Ling. Improved meet-in-the-middle cryptanalysis of KTANTAN. Cryptol-
ogy ePrint Archive, Report 2011/201, 2011. http://eprint.iacr.org/.

50. Wentao Zhang, Wenling Wu, and Dengguo Feng. New results on impossible differ-
ential cryptanalysis of reduced AES. In ICISC’07, volume 4817 of Lecture Notes
in Computer Science, pages 239–250. Springer, 2007.

A Additional Illustration for the Case of Full AES-128

In Figure 9 we give an additional illustration of key recovery for the full AES-
128 described in Section 6. It demonstrates biclique differentials, influence of key
differences in matching, and the recomputations.

The influence of key differences in the matching part can be described as
a truncated differential that starts with a zero difference in the plaintext (for-
ward matching) or in the state (backward matching). Since both biclique and
matching result from the same key differences, it is natural to depict the re-
lated differentials in the same computational flow (left and center schemes in
Figure 9). We stress that the full 10-round picture does not represent a single
differential trail, but it is rather a concatenation of trails in rounds 1–7 and 8–10,
respectively.

The biclique differentials are depicted in pink (left, ∆-trail) and lightblue
(center, ∇-trail) colors. The same for the matching: pink is the influence of
∆K on the backward computation, and lightblue is the influence of ∇K on the
forward computation. The recomputation parts are derived as follows: formally

overlap pink and blue schemes, then interleaving parts must be recomputed
(darkgray cells). The lightgray cells are those excluded from recomputation since
we do not match on the full state.

SB
SR
MC

KS

SB
SR
MC

KS

SB
SR
MC

KS

SB
SR
MC

KS

SB
SR
MC

KS

SB
SR

KS

SB
SR
MC

KS

SB
SR
MC

KS

SB
SR
MC

KS

SB
SR
MC

KS

#1

#2

#3

#4

#5

#6

#7

#8

#9

#10

#11

#12

#13

#14

#15

#16

#17

#18

#19

#20

SB
SR
MC

KS

SB
SR
MC

KS

SB
SR
MC

KS

SB
SR
MC

KS

SB
SR
MC

KS

SB
SR

KS

SB
SR
MC

KS

SB
SR
MC

KS

SB
SR
MC

KS

SB
SR
MC

KS

#1

#2

#3

#4

#5

#6

#7

#8

#9

#10

#11

#12

#13

#14

#15

#16

#17

#18

#19

#20

SB
SR
MC

KS

SB
SR
MC

KS

SB
SR
MC

KS

SB
SR
MC

KS

SB
SR
MC

KS

SB
SR

KS

SB
SR
MC

KS

SB
SR
MC

KS

SB
SR
MC

KS

SB
SR
MC

KS

#1

#2

#3

#4

#5

#6

#7

#8

#9

#10

#11

#12

#13

#14

#15

#16

#17

#18

#19

#20

$10

$9

$1

$0

$2

$8

$3

$4

Recomputation
in subkeys

Recomputation
in states

Influence
on backward matching

Influence
on forward matching

Biclique

∆-differential

Biclique

∇-differential

- full recomputation

- not needed for matching

$6

$5

$7

Fig. 9. Biclique differentials and matching in AES-128.

Table 4. Summary of previous results on AES in the single-secret-key model for 7 or
more rounds

rounds data workload memory method reference

AES-128

7 2127.997 2120 264 Square [25], 2000

7 232 2128−ǫ 2100 Square-functional [26], 2000

7 2117.5 2123 2109 Impossible [3], 2007

7 2115.5 2119 245 Impossible [50], 2007

7 2115.5 2119 2109 Impossible [4], 2008

7 2112.2 2112 + 2117.2MA 2109? Impossible [34] 2008

7 280 2113+2123 precomp. 2122 MitM [20], 2009

7 2106.2 2107.1 + 2117.2MA 294.2 Impossible [36], 2010

7 2103 2116 2116 Square-multiset [22], 2010

AES-192

7 2127.997 2120 264 Square [25], 2000

7 236 2155 232 Square [25], 2000

7 232 2182 232 Square [35], 2000

7 232 2140 284 Square-functional [26], 2000

7 292 2186 2153 Impossible [40], 2004

7 2115.5 2119 245 Impossible [50], 2007

7 292 2162 2153 Impossible [50], 2007

7 291.2 2139.2 261 Impossible [34] 2008

7 2113.8 2118.8MA 289.2 Impossible [34] 2008

7 234+n 274+n+2208−n precomp. 2206−n MitM [19], 2008

7 280 2113+2123 precomp. 2122 MitM [20], 2009

7 2103 2116 2116 Square-multiset [22], 2010

8 2127.997 2188 264 Square [25], 2000

8 2113 2172 2129 Square-multiset [22], 2010

AES-256

7 236 2172 232 Square [25], 2000

7 2127.997 2120 264 Square [25], 2000

7 232 2200 232 Square [35], 2000

7 232 2184 2140 Square-functional [26], 2000

7 292.5 2250.5 2153 Impossible [40], 2004

7 2115.5 2119 245 Impossible [50], 2007

7 2113.8 2118.8MA 289.2 Impossible [34] 2008

7 292 2163MA 261 Impossible [34] 2008

7 234+n 274+n+2208−n precomp. 2206−n MitM [19], 2008

7 280 2113+2123 precomp. 2122 MitM [20], 2009

8 2127.997 2204 21044 Square [25], 2000

8 2116.5 2247.5 245 Impossible [50], 2007

8 289.1 2229.7MA 297 Impossible [34] 2008

8 2111.1 2227.8MA 2112.1 Impossible [34] 2008

8 234+n 2202+n+2208−n precomp. 2206−n MitM [19], 2008

8 280 2241 2123 MitM [20], 2009

8 2113 2196 2129 Square-multiset [22], 2010

Table 5. Summary of previous results on AES in hash-mode use, i.e. distinguishers in
chosen and known-key models, or preimage or collision attacks

rounds versions type/mode attack/gen. memory method reference

7 all known-key dist. 256/258? − Square [32], 2007

7 all chosen-key dist. 224/264 216 Rebound [38], 2009

8 all chosen-key dist. 248/264 232 Rebound [27,33],2009

14 256 chosen-key dist. 269/277 − Boom-g [10], 2009

6 all collision/MMO+MP 256/264 232 Rebound [33], 2009

7 all near-coll./MMO 232/248 232 Rebound [33], 2009

7 all preimage/DM 2120/2128 28 Splice&Cut [42], 2011

7 all 2nd-pre./MMO+MP 2120/2128 28 Splice&Cut [42], 2011

Table 6. Example of a biclique for 9-round AES-256. Si are states after MixColumns
in round 5, Ci are ciphertexts.

S0

40 8a ba 52
30 4a 10 52
34 b6 84 52
b8 fe aa 52

S1

44 d2 66 7b
32 34 6e f7
36 f4 b0 7a
b8 ba 71 3a

C0

79 18 c0 8e
67 ac 89 9e
2e 39 52 84
3c fd 40 26

C1

5d 08 b5 ac
e5 bd d3 54
a0 ac d9 8a
09 6a 55 1e

K[0, 0] : $6, $7

7d 8a d8 a4 30 e8 0 0
12 a8 f9 31 5a 42 0 0
12 55 cd 0b 32 d6 0 0
58 66 d8 cf 54 f8 0 0

K[0, 1] : $6, $7

7d 8a d8 a4 34 ec 4 4

12 a8 f9 31 58 40 2 2

12 55 cd 0b 30 d4 2 2

58 66 d8 cf 52 fe 6 6

K[1, 0] : $6, $7

7d 8a d8 a4 30 e8 0 0
10 aa f9 31 5a 42 0 0
ab ec cd 0b 32 d6 0 0
5a 64 d8 cf 54 f8 0 0

K[1, 1] : $6, $7

7d 8a d8 a4 34 ec 4 4

10 aa f9 31 58 40 2 2

ab ec cd 0b 30 d4 2 2

5a 64 d8 cf 52 fe 6 6

