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Abstract. The hash function JH [20] is one of the five finalists of the
NIST SHA-3 hash competition. It has been recently tweaked for the final
by increasing its number of rounds from 35.5 to 42. The previously best
known results on JH were semi-free-start near-collisions up to 22 rounds
using multi-inbound rebound attacks. In this paper we provide a new dif-
ferential path on 32 rounds. Using this path, we are able to build various
semi-free-start internal-state near-collisions and the maximum number
of rounds that we achieved is up to 37 rounds on 986 bits. Moreover, we
build distinguishers in the full 42-round internal permutation. These are,
to our knowledge, the first results faster than generic attack on the full
internal permutation of JH42, the finalist version. These distinguishers
also apply to the compression function.
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1 Introduction

A cryptographic hash function is a one way mathematical function that takes
a message of arbitrary length as input and produces an output of fixed length,
which is commonly called a fingerprint or message digest. Hash functions are
fundamental components of many cryptographic applications such as digital sig-
natures, authentication, key derivation, random number generation, etc. So, in
terms of security any hash function should be preimage, second-preimage and
collision resistant.
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Most of the recent hash functions use either compression functions or internal
permutations as building blocks in their design. In addition to the main prop-
erties mentioned above, some ideal properties should also be satisfied for the
building blocks. This means that the algorithm should not have any structural
weaknesses and should not be distinguishable from a random oracle. The ab-
sence of these properties on building blocks may not impact the security claims
of the hash function immediately but it helps to point out the potential flaws in
the design.

Since many of the hash standards [16,19] have been broken in recent years,
the National Institute of Standards and Technology (NIST) announced a com-
petition to replace the current standard SHA-2 with a new algorithm SHA-3.
The hash function JH [20], designed by Hongjun Wu, is one of the five finalists
of this competition. It is a very simple design and efficient in both software and
hardware. JH supports four different hash sizes: 224, 256, 384 and 512-bit. It has
been tweaked from the second round to the final round by increasing its number
of rounds from 35.5 to 42. The new version is called JH42.

Related Work: We recall here the previously best known results on JH. A
marginal preimage attack on the 512-bits hash function with a complexity in
time and memory of 2°°7 was presented in [1]. Several multi-inbound rebound
attacks were presented in [15], providing in particular a semi-free-start collision
for 16 rounds with a complexity of 219 in time and 2% in memory and a semi-
free-start near-collision for 22 rounds of compression function with a complexity
of 2'68 in time and 2'*3 in memory. In [12, Sec.4.1], improved complexities for
these rebound attacks were provided: 2°7 in time and memory for the 16 round
semi-free-start collision and 2?6 in time and memory for the 22 rounds semi-free-
start near-collision for compression function.

Our Contributions: In this paper we apply, as in [15], a multi-inbound re-
bound attack, using 6 inbounds that cover rounds from 0 to 32. We first find
partial solutions for the differential part of the path by using the ideas from [13].
Due to increased number of rounds compared with the previous attacks, the
differential path will have several highly active peaks, instead of one as in [15].
This means that, while in the previous attacks finding the whole solution for the
path could be easily done without contradicting any of the already fixed values
from the inbounds, now finding the complete solution is the most expensive part.
We propose here an algorithm that allows us to find whole solutions for rounds
from 4 to 26 with an average complexity of 264. By repeating the algorithm, the
attack can be started from round 0 and extended up to 37 rounds for building
semi-free-start near-collisions on the internal state, since we have enough degrees
of freedom. Based on the same differential characteristic, we also present distin-
guishers for 42 rounds of the internal permutation which is the first distinguisher
on internal permutation faster than generic attack to the best of our knowledge.
We summarize our main results in Table 1.

This paper is organized as follows: In Section 2, we give a brief description of
the JH hash function, its properties and an overview of the rebound attack. In



Table 1. Comparison of best attack results on JH (sfs: semi-free-start)

target rounds time memory  attack type generic sect.
comp. comp. comp.

hash function | 16 2190 2104 sfs collision 2256 [15]
hash function | 16 2961 2961 sfs collision 2256 [12]
comp. function | 19 — 22 268 Q1437 sfs near-collision ~ 223¢ [15]
comp. function | 19 —22 2956 2956 sfs near-collision 2236 [12]
comp. function | 26 2112 2576 sfs near-collision 234145 83
comp. function | 32 2304 2576 sfs near-collision 2*37-13 83
comp. function | 36 2352 2576 sfs near-collision 243713 83
comp. function | 37 2352 2576 sfs near-collision 23967 83
internal perm. | 42 2304 2576 distinguisher 2705 84
internal perm. | 42 2352 2576 distinguisher 2762 84

Section 3, we first describe the main idea of our attack and then give the semi-
free internal near-collision results on the tweaked version JH42. Based on this
results, we describe a distinguisher in Section 4 for the full internal permutation,
that also applies to the full compression function. Finally, we conclude the paper
and summarize our results in Section 5.

2 Preliminaries

2.1 The JH42 Hash Function

The hash function JH is an iterative hash function that accepts message blocks
of 512 bits and produces a hash value of 224, 256, 384 and 512 bits. The message
is padded to be a multiple of 512 bits. The bit ‘1’ is appended to the end of the
message, followed by 384 — 1+ (—I mod 512) zero bits. Finally, a 128-bit block is
appended which is the length of the message, [, represented in big endian form.
Note that this scheme guarantees that at least 512 additional bits are padded.

In each iteration, the compression function Fy, given in Figure 1, is used to
update the 2912 bits of the state H;_; as follows:

H; = Fy(H;—1, M;)

where H;_1 is the previous chaining value and M; is the current message block.
The compression function Fj is defined as follows:

Fy(Hi—1, M;) = Eq(Hi—y @ (M]|0°")) @ (02| M)

Here, F, is a permutation and is composed of an initial grouping of bits followed
by 6(d — 1) rounds, plus a final degrouping of bits. The grouping operation
arranges bits in a way that the input to each S-Box has two bits from the
message part and two bits from the chaining value. In each round, the input is
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Fig. 1. The compression function Fjy that transforms 2%*2 bits treated as 2¢
words of four bits.

divided into 2¢ words and then each word passes through an S-Box. JH uses
two 4-bit-to-4-bit S-Boxes (S0 and S1) and every round constant bit selects
which S-Boxes are used. Then two consecutive words pass through the linear
transformation L, which is based on a [4,2,3] Maximum Distance Separable
(MDS) code over GF(2%). Finally all words are permuted by the permutation
Py. After the degrouping operation each bit returns to its original position.

The initial hash value Hy is set depending on the message digest size. The
first two bytes of H_; are set as the message digest size, and the rest of the bytes
of H_; are set as zero. Then, Hy = F;(H_1,0). Finally, the message digest is
generated by truncating Hy where N is the number of blocks in the padded
message, i.e, the last X bits of Hy are given as the message digest of JH-X
where X = 224, 256, 384 and 512.

The official submitted version of JH42 has d = 8 and so the number of rounds
is 42 and the size of the internal state is 1024 bits. Then, from now on, we will

only consider Eg. For a more detailed information we refer to the specification
of JH [20].

2.2 Properties of the Linear Transformation L

Since the linear transformation L implements a [4, 2, 3] MDS code, any difference
in one of the words of the input (output) will result in a difference in two words
of the output (input). For a fixed L transformation, if one tries all possible 216
pairs, the number of pairs satisfying the condition 2 — 1 or 1 — 2 is 3840,
which gives a probability of 3840/65536 ~ 2~%%9. Note that, if the words are
arranged in a way that they will be both active this probability increases to
3840/57600 ~ 27391, For the latter case, if both words remain active (2 — 2),
the probability is 49920/57600 ~ 270-2L,



2.3 Observations on the Compression Function

The grouping of bits at the beginning of the compression function assures that
the input of every first layer S-Box is xor-ed with two message bits. Similarly,
the output of each S-Box is xor-ed with two message bits. Therefore, for a ran-
dom non-zero 4-bit difference, the probability that this difference is related to a
message is 3/15 ~ 27232,

The bit-slice implementation of Fj; uses d — 1 different round functions. The
main difference between these round functions is the permutation function. In
each round permutation, the odd bits are swapped by 2" mod (d — 1) where r
is the round number. Therefore, for the same input passing through multiple
rounds, the output is identical to the output of the original round function for
the « - (d — 1)-th round where « is any integer.

2.4 The Rebound Attack

The rebound attack was introduced by Mendel et al. [10]. The two main steps
of the attack are called inbound phase and outbound phase. In the inbound
phase, the available degrees of freedom are used to connect the middle rounds by
using the match-in-the-middle technique and in the outbound phase connected
truncated differentials are computed in both forward and backward direction.

This attack has been first used for the cryptanalysis of reduced versions of
Whirlpool and Grgstl, and then extended to obtain distinguishers for the full
Whirlpool compression function [6]. Later, linearized match-in-the-middle and
start-from-the-middle techniques are introduced by Mendel et al. [9] to improve
the rebound attack. Moreover, a sparse truncated differential path and state
is used in the attack on LANE by Matusiewicz et al. [8] rather than using
a full active state in the matching part of the attack. Then, these techniques
were used to improve the results on AES-based algorithms in the following pa-
pers: [2,3,5,11,14,17,18].

3 Semi-free-start internal near-collisions

In this section, we first present an outline for the rebound attack on reduced
round versions of JH for all hash sizes. We use a differential characteristic that
covers 32 rounds, and apply the start-from-the-middle technique by using six
inbound phases with partially active states. We first describe how to solve the
multi-inbound phase for the active bytes. Contrary to previous attacks on JH,
we now have more fixed values from the inbound phases. So, in order to find a
complete solution, we need to merge these fixed values without contradicting any
of them. Therefore, we describe next how to match the passive bytes. Finally,
we analyze the outbound part.

3.1 Matching the Active Bytes
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Fig. 2. Differential characteristic for 32 rounds of JH Compression Function (bit-
slice representation)

Multi-inbound Phase: The multi-inbound phase of the attack covers 32
rounds and is composed of two parts. In the first part, we apply the start-from-
the-middle-technique six times for rounds 0 —4, 4 — 10, 10 — 16, 16 — 20, 20 — 26
and 26 — 32. In the second part, we connect the resulting active bytes (hence
the corresponding state values) by a match-in-the-middle step. The number of
active S-Boxes in each of the sets is:
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Here, the arrows represent the direction of the computations for the inbound
phases and for a detailed sketch we refer to Figure 2. We start from the middle
and then propagate outwards by computing the cross-product® of the sets and
using the filtering conditions. For each inbound we try all possible 2'¢ pairs in
Step 0. The number of sets, the bit length of the middle values (size) of each list,
and the number of filtering conditions on words followed by the number of pairs
in each set are given in Table 2. The complexities given in the Table 2 are not
optimized yet, we will describe the improved complexities later in Section 3.1.

Merging Inbound Phases: The remaining pairs at inbound ¢ are stored on
list L;. Connecting the six lists is performed in three steps as follows:

1. Whenever a pair is obtained from set 2, we check whether it exists in L3 or
not. If it does, another check is done for L;. Since we have 22344 and 28396
elements in lists 1 and 3 respectively, 28396 pairs passing the second inbound
phase, and 32-bit and 128-bit conditions for the matches, the expected num-
ber of remaining pairs is 223-44 . 2732 . (283.96 . 9—128 . 983.96) — 931.36 e
store these these pairs in list A.

2. Similarly, whenever a pair is obtained from set 5, we check whether it exists
in Lg or not. If it does, another check is done for L. Since we have 232-72
and 2839 elements in lists 4 and 6 respectively, 280 pairs passing the fifth in-
bound phase, and 32-bit and 128-bit conditions for the matches, the expected
number of remaining pairs is 232:72.2732. (28396 9128 . 983.96) — 940.64 e
store these pairs in list B.

3. Last step is merging these sets A and B. We have 2336 elements in A and

240-64 elements in B and 32 bits of condition. Therefore the total expected

number of remaining pairs is 23136 . 2732 . 240.64 — 940,

Improving the complexity of finding a solution for the differential part:
We have described how to obtain the existing 240 solutions for the differential
part. We are going to describe here a better way of doing the inbounds, as
proposed in [12, Sec.4.1]. This new technique allows us to reduce the previous
complexity from 2°7-7° in time and 28396 in memory to 2% in time and 267
in memory. As in our further analysis we will just use one solution (and not 24°)
for the differential part, we will adapt the values being able to finally reduce the
complexity of this part of the attack to 2596 in time and 2°7-% in memory. This
memory is the memory bottleneck of all the analysis presented in this paper.

1. We consider the six inbounds as described in the previous section, with the
difference that, for inbounds 2, 3,5 and 6 we will not perform the last step,

3cross-product is an operation on two arrays that results in another array whose

elements are obtained by combining each element in the first array with every element
in the second array.



Table 2. Overview of inbound phases of the attack on 32 rounds of JH

Step | Size Sets Filtering Pairs Complexity
Conditions Remaining| Backwards Forwards
0 |8 8 1 Q1191 - 216
i
g 1 |16 4 2 210 22391 -
5 9 39 9 9 924.18 932.09 _
z 3 64 1 4 932.72 48.46
T4 |64 1 4 2%
0 |8 32 1 Q1191 - 216
™ 16 23.91
1 16 16 2 2 2 —
"'é 9 |39 3 9 924.18 _ 932.09
8 3 64 4 4 232.72 248.46
E| 4 128 9 4 949.80 965.54 _
5 256 4 983.96 999.70 _
0 |8 32 1 2191 - 216
o 1 16 16 9 916 923.91 _
E 39 3 9 924.18 932.09 _
é 3 64 4 4 932.72 B 948.46
E 4 128 2 4 249,80 _ 265.54
5 256 1 4 83.96 _ 999.70
z 0 ] ] 1 911.91 _ 916
S| 1 |16 4 2 216 223.91 —
2 9 39 9 9 924.18 932.09
= 3 64 1 4 932.72 948.46 _
0 |8 32 1 21191 - 2'6
0 16 23.91
1 16 16 2 2 2
E 9 |39 N 9 924.18 _ 932.09
E 3 64 4 4 932.72 48.26 _
E| 4 128 9 4 949.80 965.54
5 256 4 83.96 999.70 _
0 |8 32 1 Q1191 - 216
©1 1 |16 16 2 216 923.91 —
Tl o9 |39 8 9 924.18 932.0 _
é 3 64 4 4 932.72 B 48.46
E| 4 128 9 4 949.80 _ 965.54
5 256 1 4 983.96 _ 999.70

“Check whether the pairs satisfy the desired input difference

but instead we obtain for each inbound ¢ € {2,3,5,6} two lists L4 ; and Lg;
as a result, each of size 249-80 associated to half of the corresponding differ-
ential path. As mentioned before, we are only looking to find one solution
for the whole differential path. Then, instead of the 24989 existing solutions
for each list, we can consider 248 elements on each list.

. First, we merge lists L4 and L4 3. We have 16-bit conditions on values
and 16-bit conditions on differences. We obtain a new list L4 23 of size



244.8+44.8-32 _ 957.6 Ve do the same with Lp and Lp 3 to obtain Lp 23.
Note that this list does not need to be stored, as we can perform the following
step whenever an element is found.

3. In order to find a whole solution for the differential part of inbounds 2 and
3, one pair of elements from L 4 23 and from Lp 23 still needs to satisfy the
following conditions: 32 bits from the parts L4 and Lp 3, 32 bits from
Lpo and La3, 3.91 x 4 from the step 5 of inbound 2 that we have not
yet verified and 3.91 x 4 from step 5 of inbound 3 that is not yet verified
either. Therefore, we have 95.28-bit conditions in total to merge L 4 23 and
Lp 23. For each element in Lp 23 we can check with constant cost if the
corresponding element appears in L4 o3 (it can be done by a lookup in a
table, representing the differential transitions of L and next by a lookup in
the list L 4 23 to see if the wanted elements appear. See [13,12] and Figure 3
for more details). When we find a good pair, we store it in the list Las that
has a size of about 2'9-9? elements satisfying the differential part of rounds
from 4 to 16. The cost of this step is then 2°7-6*1 in time and 2°%-¢ in memory.

4. Do the same with inbounds 5 and 6, to obtain list Lsg of size 21992, with a
cost of 2°7-6+1 in time and 2°7-% in memory.

5. Merge the solutions obtained in the first inbound with the ones in Log,
obtaining a new set Lja3 of size 219-92+23.44=32 _ 911.36,

6. Merge the solutions obtained from step 4 with list Lsg obtaining a new one,
Lusg of size 219-92+32.72-32 _ 920.64

7. Finally, merging Lio3 and Lyse gives 211:36+20:64=32 — 1 partial solution for

the differential part of the path from round 0 to round 32.

The complexity of obtaining one partial solution for rounds from 0 to 32
is dominated by Steps 2 — 4 of the algorithm. As a result, the complexity of
matching the active bytes becomes 2596 in time and 2°7-% in memory.

3.2 Matching The Passive Bytes

In Figure 4, colored boxes denote the S-boxes whose values have already been
fixed from the inbound phases. Note that, we have not treated the passive bits
vet (i.e., found the remaining values that would complete the path). We will
propose a way of finding 232 solutions that verify the path from rounds 4 to 26
with time complexity 276 and memory complexity 2°!-*8. This can be done in
three steps as follows:

1. (Rounds 10 to 14): The sets of groups of 8 bits denoted by a,b, ¢, d, e, f in
round 14 are independent of each other in this part of the path. In round
10, 32 bits are already fixed for each of these sets (groups of 4 bits denoted
by A, B,C, D, E, F). By using all possible values of the remaining 96 passive
bits (32 bits not fixed from A, B, C, D, E, F plus 64 from the remaining state
at round 10), we can easily compute a list of 296 elements with cost 29 that
satisfy the 32 bit conditions for each of the groups.
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2. (Rounds 14 to 20): In round 20, we have 256 bits (green S-boxes H) whose
values are fixed from the solutions of the second inbound phase. We can
divide the state in round 19 (until the state in round 14) in 4 independent
parts (m,n,o,p). In Figure 4, the fixed bits coming from round 20 are de-
noted by green lines and the ones of the first inbound phase are denoted in
blue “/”. Note that the three parts m,n, o are identical, while p is different
since there are some differences and some additional fixed values in it.

We fix the parts m and n to some values that satisfy all the conditions of the
fixed bits in rounds 19 and 14. This can be done as follows: Similar to what
we have done in step 1, we can divide the state of rounds 16 — 19 (for each
part separately) into four groups (z,y, z,u) such that they are independent
of each other when computing forwards.

In round 16, each group has 16 bits whose values have already been fixed
and 48 bits of freedom. We see that each group affects only one fourth of the
green lines (16 bits in total) in round 19. Therefore, there exist 248716 = 232
possibilities for each group z,y, z, u but we just need one. This one can then
be found with a cost of about 26

3. (Merging) Each of the sets L,,...,L; has 2% possible values from step 1,
and fixing m and n fixes 64 bits for each of them in round 14. This gives us
in average 296764 = 232 possible values for each set in the half of the state
associated to o and p in round 14.

For the part p we use the same idea explained in step 2. Group x is completely
fixed due to the differential characteristic, and only the groups y, z, u have
freedom, so there exists (232)3 = 29 possibilities. For each possibility, we
compute the part of state in round 14 associated to p. We have 32 bits of
condition for each of lists, and in average 232 values are associated to each
list. Thus, for each of the computed values, we will have only one remaining
element that will determine the values at positions a — f in the part o.

Now, we have 2% possible o values. The probability that a fixed value verifies

the conditions of o in round 19 is (274)1¢ = 2764, Therefore, we obtain
296=64 — 932 golutions that verify the whole path from round 4 to round 26
with a complexity in time of 2%,

Note that we do not need to store the lists L,, . .., L of elements from round
14 each of size 2°° but we can instead store for each of them two lists of size
248 corresponding to the upper and down halves of the corresponding groups
in state 13. Then, when fixing a value of m and n we can check with a cost of
232 which will be the list of 232 values for o and p that we obtained in step 3.
Finally, we have obtained 232 complete solutions for the path from 4 to 26 with
a cost of 2% in time, and 6 - 2 - 248 ~ 25158 in memory.

11
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Semi-free-start near-collisions up to 32 rounds: Up to now, we have found
solutions for the passive bytes from rounds 4 — 26. If we want a solution for the
path from round 0 to round 26, we will have to repeat the previous procedure of
matching the passive bytes 216 times (as the probability of passing from round
0 to 4 is 27*® and we have 232 pairs). Then, we can find a solution for rounds
0 — 26 with complexity 2!12 in time. In order to extend this result to 32 rounds,
we have to repeat the previous procedure 2'92 times (since we have 64 and 128
bits of condition from rounds 26 and 27 respectively). Therefore, the complexity
for finding a complete solutions for rounds from 0 to 32 is 2!12 . 2192 = 2304 jp
time.

Note that, we still have enough degrees of freedom. In step 1, we started
with 768 bits (128 x 6 from the groups a — f) in round 14 and matched 192 bits
(32 x 6 for A — F) in round 10. In Step 2, we have 48 bits in round 16 coming
from the fourth inbound phase and we matched another 240 bits from the fifth
inbound phase in round 19. So in total we have 768 — 192 — 48 — 240 = 288 bits
of degrees of freedom remaining.

3.3 Outbound Phase:

The outbound phase of the attack is composed of 5 rounds in the forward direc-
tion. A detailed schema of this trail is shown in Figure 5 in appendix, and for the
pairs that satisfy the inbound phase, we expect to see the following differential
trail in the outbound phase:

Inbound Phase -4 —-8 - 16 -8 -4 — 8

Semi-free-start near-collisions up to 37 rounds: For 32 rounds of the JH
compression function, we obtain a semi-free-start near-collision for 1002 bits.
We can simply increase the number of rounds by proceeding forwards in the
outbound phase. Note that, we have an additional probability of 2732 x 2716
coming from the eight filtering conditions in round 34 and the four filtering
conditions in round 35. Thus, the complexity of the active part of the attack
remains the same: 2°96 in time and 2°7-% in memory. This is the case as one
solution for the differential part is enough for the attack, as it will have different
values at the bits with conditions in the outbound part when the passive part is
modified. The complexity of the passive part becomes 2394 . 248 = 2352 ip time
and 25158 in memory.

The details can be seen in Table 3. We also take into account the colliding
bits that we obtain at the output of the compression function after the final
degrouping with the differences from the message.

13



Table 3. Comparison of complexity of the generic attack for near-collisions and
our results

#Rounds # Colliding Generic Attack Our Results
bits Complexity

23 899 9230.51 959.6
24 — 26 762 29918 2596 @
2 960 9341.45 9112
27 896 2236.06 2112
32 1002 437.12 9304
33 086 9396.77 9304
34 954 232997 2304
35 986 2396.77 2336
36 1002 437.12 9352
37 986 239677 2352
38 098 9284.45 9352

“Obtained directly from the solutions of the active part, without need of matching
the passive bits

4 Distinguishers on JH

Indifferentiability is considered to be a desirable property of any secure hash
function design. Moreover, for many of the designs, the indifferentiability proofs
for the mode of operation are based on the assumption that the underlying per-
mutation (function) is ideal (i.e., random permutation). This is the case of the
indifferentiability proof of JH [1], that supposes that Fy is a random permuta-
tion.

In this section, we present a distinguisher for Eg showing that it is distinguish-
able form a random permutation. Using the differential path that we presented
in the previous section, we can build the distinguishers on the full 42 rounds of
the internal permutation Eg with no additional complexity. As a result of our
distinguisher, the proof from [1] does not apply to JH as the assumption of Eg
behaving like random does not hold. Next, we explain how these distinguish-
ers on the internal permutation can be easily extended to distinguishers on the
compression function.

There exists also a known trivial distinguisher on the construction of the
compression function of JH: If the chaining value has a difference that can be
cancelled by the message block, then the output will have a difference directly
related to the one coming from the message block. This implies that both the
message and the chaining values have differences. Contrary to the trivial one,
our compression function distinguisher exploits the properties of the internal
permutation and only needs differences in the message or in the chaining value.

14



4.1 Distinguishers on the reduced round internal permutation

Let us remark here briefly that if we find solutions for rounds 4 to 20, and then
let them spread freely backward (difference in 64 bits) and forward (difference
in 256 bits), we can obtain a distinguisher for 26 rounds with a much lower
complexity: 2°%-¢ in time and 2°7-% in memory (the cost of the differential part).
As in this paper the aim is reaching a higher number of rounds, we do not go
further into the details.

4.2 Distinguishers on the full internal permutation

In the previous sections we showed that a solution for 37 rounds can be obtained
with a time complexity of 2252 in time and 2°7% in memory. In Figure 5 from the
appendix, we see how these active words diffuse to the state after 42 rounds with
probability one. Therefore, before the degrouping operation we have 64 active
and 192 passive words in the state. The number of active and passive bits still
remain the same after the degrouping operation. It is important to remark that
the positions of the active bits are fixed, also after the degrouping operation.

We can then build a distinguisher that will distinguish the 42-round permu-
tation Fg from a random permutation using this path. This distinguisher aims at
finding a pair of input states (A, A’) such that Eg(A) @ Fg(A’) collide in the 768
bits mentioned above. Let A@ A’ = A; correspond to the input difference of the
differential path, then |A;| = 8 bits. Similarly, let B = Es(A) and B’ = Eg(A’),
then the output difference is B @ B’ = Ay where |Ag| = 256.

In the case of a random function, we calculate the complexity of such a
distinguisher as follows: We fix the values of the passive bits in the input; but
not the ones of the active bits. Then, we have 241l possibilities for the values
from the active bits. We compute the output of Eg for each one of these values
and store them in a list. From this list we can obtain (2‘2“) pairs with the
given input difference pattern. The probability of satisfying the desired output
difference pattern is 2/421=1024 for each pair, so we repeat the procedure with a
new value for the input passive bits until we find a solution. The time complexity
of finding such an input pair will be:

91A1]
2(1A1]-1) . (214l — 1) . 9lAz[—1024

_ 9761

Instead, in our case the complexity of finding such an input pair is the complexity
of finding a solution for the path, that is 23°2 in time and 2°7% in memory.
Another distinguisher of Fg can be built if we consider the scenario where
the differential path for rounds 0 — 4 does not need to be verified, i.e., |A;| = 64.
In this case, we consider that from round 4 to 0 we obtain the differences that
propagate with probability one. Therefore, the matching of the passive part does
not need to be repeated 22%% times but only 2159 (as we do not need 2*® extra
repetitions for verifying rounds 0 to 4). The complexity of this distinguisher will
then be 2394, and provides a pair of inputs A and A’ that produce an output
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with 768 colliding bits as the ones represented in Figure 5 from appendix. The

complexity of such a generic distinguisher would be Mm = 2795 while

2304 257.6

in our case is in time and in memory.

4.3 Distinguishers on the full compression function

We should emphasize that our distinguishers on Fg can be easily converted to a
distinguisher on the full compression function of JH42. We only need to xor this
message difference to the output of Eg as specified.

For our first distinguisher, the input difference is already arranged such that
we only have difference in the message. These active bits coming from the mes-
sage coincide with the active bits in the output at the xor operation. As a result,
we have the same 768 passive bits. The same applies for our second distinguisher
when we have differences only in the chaining value.

5 Conclusion

In this paper, we have presented semi-free-start internal near-collisions up to 37
rounds by using rebound attack techniques. We first obtained a 960-bit semi-
free-start near-collision for 26 rounds of the JH compression function with a time
complexity of 2112 and a memory complexity of 2°7-6. We then extended this to
986-bit semi-free-start near-collision for 37 rounds by repeating the algorithm.
Time complexity of the attack is increased to 2352 and the memory complexity
remains the same. We also presented semi-free-start near-collision results for
intermediate rounds 26 — 37 in Table 3. Our findings are summarized in Table 1.

Even more, we have presented distinguishers on the full 42 rounds of the in-
ternal permutation Fg of the tweaked SHA-3 finalist JH. The best distinguisher
has a time complexity of 23°4 in time and 2°7-% in memory and provides solutions
for the differential path on the 42 rounds. Obtaining such a pair of inputs pro-
ducing a same truncated differential in the output for a random function would
cost 279 in time. Our internal permutation distinguishers can easily be extended
to compression function distinguishers with the same complexity.

Although our results do not present a threat to the security of the JH hash
function, they invalidate the JH indifferentiability proof presented in [1].
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A Outbound Phase Figure
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Fig. 5. Differential characteristic for the outbound phase of JH Compression Function (bit-slice representation)



