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Abstract. We revisit the topic of joint security for combined public key
schemes, wherein a single keypair is used for both encryption and sig-
nature primitives in a secure manner. While breaking the principle of
key separation, such schemes have attractive properties and are some-
times used in practice. We give a general construction for a combined
public key scheme having joint security that uses IBE as a component
and that works in the standard model. We provide a more efficient direct
construction, also in the standard model.

1 Introduction

Key separation versus key reuse: The folklore principle of key separation dic-
tates using different keys for different cryptographic operations. While this is
well-motivated by real-world, security engineering concerns, there are still situ-
ations where it is desirable to use the same key for multiple operations [15]. In
the context of public key cryptography, using the same keypair for both encryp-
tion and signature primitives can reduce storage requirements (for certificates
as well as keys), reduce the cost of key certification and the time taken to ver-
ify certificates, and reduce the footprint of cryptographic code. These savings
may be critical in embedded systems and low-end smart card applications. As
a prime example, the globally-deployed EMV standard for authenticating credit
and debit card transactions allows the same keypair to be reused for encryption
and signatures for precisely these reasons [11].

However, this approach of reusing keys is not without its problems. For exam-
ple, there is the issue that encryption and signature keypairs may have different
lifetimes, or that the private keys may require different levels of protection [15].
Most importantly of all, there is the question of whether it is secure to use the
same keypair in two (or more) different primitives – perhaps the two uses will
interact with one another badly, in such a way as to undermine the security of
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one or both of the primitives. In the case of textbook RSA, it is obvious that
using the same keypair for decryption and signing is dangerous, since the signing
and decryption functions are so closely related in this case. Security issues may
still arise even if some standardized padding is used prior to encryption and
signing [20]. In Section 3 we will provide another example in the context of en-
cryption and signature primitives, where the individual components are secure
(according to the usual notions of security for encryption and signature) but
become completely insecure as soon as they are used in combination with one
another. At the protocol level, Kelsey, Schneier and Wagner [18] gave examples
of protocols that are individually secure, but that interact badly when a keypair
is shared between them.

The formal study of the security of key reuse was initiated by Haber and
Pinkas [15]. They introduced the concept of a combined public key scheme. Here,
an encryption scheme and signature scheme are combined: the existing algo-
rithms to encrypt, decrypt, sign and verify are preserved, but the two key gen-
eration algorithms are modified to produce a single algorithm. This algorithm
outputs two keypairs, one for the encryption scheme and one for the signature
scheme, with the keypairs no longer necessarily being independent. Indeed, under
certain conditions, the two keypairs may be identical, in which case the savings
described above may be realised. In other cases, the keypairs are not identi-
cal but can have some shared components, leading to more modest savings.
Haber and Pinkas also introduced the natural security model for combined pub-
lic key schemes, where the adversary against the encryption part of the scheme
is equipped with a signature oracle in addition to the usual decryption oracle,
and where the adversary against the signature part of the scheme is given a
decryption oracle in addition to the usual signature oracle. In this setting, we
talk about the joint security of the combined scheme.

Setting a benchmark: As we shall see in Section 3, there is a trivial “Cartesian
product” construction for a combined public key scheme with joint security. The
construction uses arbitrary encryption and signature schemes as components,
and the combined scheme’s keypair is just a pair of vectors whose components are
the public/private keys of the component schemes. Thus the Cartesian product
construction merely formalises the principle of key separation. This construction,
while extremely simple, provides a benchmark by which other constructions can
be judged. For example, if the objective is to minimise the public key size in a
combined scheme, then any construction should aim to have shorter keys than
can be obtained by instantiating the Cartesian product construction with the
best available encryption and signature schemes.

Re-evaluating Haber-Pinkas: In this respect, we note that, while Haber and
Pinkas considered various well-known concrete schemes and conditions under
which their keys could be partially shared, none of their examples having prov-
able security in the standard model lead to identical keypairs for both signature
and encryption. Indeed, while the approach of Haber and Pinkas can be made to
work in the random oracle model by careful oracle programming and domain sep-



aration, their approach does not naturally extend to the standard model. More
specifically, in their approach, to be able to simulate the signing oracle in the
IND-CCA security game, the public key of the combined scheme cannot be ex-
actly the same as the public key of the underlying encryption scheme (otherwise,
successful simulation would lead to a signature forgery). This makes it hard to
achieve full effective overlap between the public keys for signing and encryption.
For the (standard model) schemes considered by Haber and Pinkas this results in
the requirements that part of the public key be specific to the encryption scheme
and that another part of it be specific to the signature scheme. Furthermore, at
the time of publication of [15] only a few secure (IND-CCA2, resp. EUF-CMA)
and efficient standard-model schemes were known. Consequently, no “compati-
ble” signature and encryption schemes were identified in [15] for the standard
model.

Combined schemes from trapdoor permutations: The special case of combined
schemes built from trapdoor permutations was considered in [8, 21]. Here, both
sets of authors considered the use of various message padding schemes in con-
junction with an arbitrary trapdoor permutation to build combined public key
schemes having joint security. Specifically, Coron et al. [8] considered the case of
PSS-R encoding, while Komano and Ohta [21] considered the cases of OAEP+
and REACT encodings. All of the results in these two papers are in the random
oracle model. In further related, but distinct, work, Dodis et al. [10] (see also [9])
considered the use of message padding schemes and trapdoor permutations to
build signcryption schemes. Dodis et al. showed, again in the random oracle
model, how to build efficient, secure signcryption schemes in which each user’s
keypair, specifying a permutation and its trapdoor, is used for both signing and
encryption purposes.

1.1 Our Contribution

We focus on the problem of how to construct combined public key schemes
which are jointly secure in the standard model, a problem for which, as we have
explained above, there currently exist no fully satisfactory solutions. Naturally,
for reasons of practical efficiency, we are interested in minimising the size of
keys (both public and private), ciphertexts, and signatures in such schemes. The
complexity of the various algorithms needed to implement the schemes will also
be an important consideration.

As a warm-up, in Section 3, we give the simple Cartesian product construc-
tion, as well as a construction showing that the general problem is not vacuous
(i.e. that there exist insecure combined schemes whose component schemes are
secure when used in isolation).

We then present in Section 4 a construction for a combined public key scheme
using an IBE scheme as a component. The trick here is to use the IBE scheme
in the Naor transform and the CHK transform simultaneously to create a com-
bined public key scheme that is jointly secure, under rather weak requirements on
the starting IBE scheme (specifically, the IBE scheme needs to be OW-ID-CPA



and IND-sID-CPA secure). This construction extends easily to the (hierarchi-
cal) identity-based setting. Instantiating this construction using standard model
secure IBE schemes from the literature already yields rather efficient combined
schemes. For example, using an asymmetric pairing version of Gentry’s IBE
scheme [14], we can achieve a combined scheme in which, at the 128-bit secu-
rity level, the public key size is 1536 bits, the signature size is 768 bits and the
ciphertext size is 2304 bits (plus the size of a signature and a verification key
for a one-time signature scheme), with joint security being based on a q-type as-
sumption. This is already competitive with schemes arising from the Cartesian
product construction.

We then provide a more efficient direct construction for a combined scheme
with joint security in Section 5. This construction is based on the signature
scheme of Boneh and Boyen [4] and a KEM obtained by applying the techniques
by Boyen, Mei and Waters [7] to the second IBE scheme of Boneh and Boyen
in [3]. At the 128-bit security level, it enjoys public keys that consist of 1280
bits, signatures that are 768 bits and a ciphertext overhead of just 512 bits. The
signatures can be shrunk at the cost of increasing the public key size.

The ideas of this paper also have applications for signcryption. We show in
the full version [24] that a (tag-based) combined public key scheme can be used
to construct a signcryption scheme, using the “sign-then-encrypt” construction
of [23], that is secure in the strongest security model for signcryption (achiev-
ing insider confidentiality and insider unforgeability in the multi-user setting).
Instantiating this construction with our concrete combined public key scheme
effectively solves the challenge implicitly laid down by Dodis et al. in [9], to con-
struct an efficient standard model signcryption scheme in which a single short
keypair can securely be used for both sender and receiver functions. Further-
more, we are able to show that the signcryption scheme we obtain is jointly
secure when used in combination with both its signature and encryption com-
ponents. Thus we are able to obtain a triple of functionalities (signcryption,
signature, encryption) which are jointly secure using only a single keypair.

1.2 Further Related Work

Further work on combined public key schemes in the random oracle model, for
both the normal public key setting and the identity-based setting can be found
in [27]. In particular, it is proved that the identity-based signature scheme of
Hess [16] and Boneh and Franklin’s identity-based encryption scheme [6] can be
used safely together.

The topic of joint security of combined public key schemes is somewhat linked
to the topic of cryptographic agility [1], which considers security when the same
key (or key pair) is used simultaneously in multiple instantiations of the same
cryptographic primitive. This contrasts with joint security, where we are con-
cerned with security when the same key pair is used simultaneously in instan-
tiations of different cryptographic primitives. The connections between these
different but evidently related topics remain to be explored.



2 Preliminaries

In our constructions, we will make use of a number of standard primitives, in-
cluding digital signatures, (tag-based) public key encryption, identity-based en-
cryption (IBE), a data encapsulation mechanism (DEM), and an always second-
preimage resistant hash function. We refer the reader to the full version [24]
for the standard definitions and security notions for these primitives. In the fol-
lowing, we briefly recall the properties of bilinear pairings as well as define the
computational assumptions which we will make use of to prove the security of
our concrete constructions.

Bilinear pairings: Let G1 = 〈g1〉, G2 = 〈g2〉, GT be groups of prime order p. A
pairing is a map e : G1 ×G2 → GT that satisfies the following properties:

1. Bilinear: For all a, b ∈ Z, e(ga1 , g
b
2) = e(g1, g2)

ab
.

2. Non-degenerate: e(g1, g2) 6= 1.
3. Computable: There is an efficient algorithm to compute the map e.

Note that we work exclusively in the setting of asymmetric pairings, whereas
schemes are often presented in the naive setting of symmetric pairings e : G ×
G→ GT . At higher security levels (128 bits and above), asymmetric pairings are
far more efficient both in terms of computation and in terms of the size of group
elements [13]. As a concrete example, using BN curves [2] and sextic twists,
we can attain the 128-bit security level with elements of G1 being represented
by 256 bits and elements of G2 needing 512 bits. By exploiting compression
techniques [26], elements of GT in this case can be represented using 1024 bits.
For further details on parameter selection for pairings, see [12].

Strong Diffie-Hellman (SDH) assumption [4]: Let G1 and G2 be two cyclic
groups of prime order p, respectively generated by g1 and g2. In the bilinear
group pair (G1,G2), the q-SDH problem is stated as follows:

Given as input a (q + 3)-tuple of elements
(

g1, g
x
1 , g2, g

x
2 , g

(x2)
2 , . . . , g

(xq)
2

)

∈ G
2
1 ×G

q+1
2

output a pair
(

c, g
1/(x+c)
2

)

∈ Zp×G2 for a freely chosen value c ∈ Zp\{−x}.

An algorithm A solves the q-SDH problem in the bilinear group pair (G1,G2)
with advantage ǫ if

Pr
[

A
(

g1, g
x
1 , g2, g

x
2 , g

(x2)
2 , . . . , g

(xq)
2

)

=
(

c, g
1/(x+c)
2

)]

≥ ǫ,

where the probability is over the random choice of generators g1 ∈ G1 and
g2 ∈ G2, the random choice of x ∈ Z

∗
p, and the random bits consumed by A. We

say that the (t, q, ǫ)-SDH assumption holds in (G1,G2) if no t-time algorithm
has advantage at least ǫ in solving the q-SDH problem in (G1,G2).



Decisional Bilinear Diffie-Hellman Inversion (DBDHI) assumption [3]: Let G1

and G2 be two cyclic groups of prime order p, respectively generated by g1 and
g2. In the bilinear group pair (G1,G2), the q-DBDHI problem is stated as follows:

Given as input a (q + 4)-tuple of elements
(

g1, g
x
1 , g2, g

x
2 , g

(x2)
2 , . . . , g

(xq)
2 , T

)

∈ G
2
1 ×G

q+1
2 ×GT

output 0 if T = e(g1, g2)
1/x or 1 if T is a random element in GT .

An algorithm A solves the q-DBDHI problem in the bilinear group pair (G1,G2)
with advantage ǫ if

∣

∣

∣

∣

Pr
[

A
(

g1, g
x
1 , g2, g

x
2 , g

(x2)
2 , . . . , g

(xq)
2 , e(g1, g2)

1/x
)

= 0
]

− Pr
[

A
(

g1, g
x
1 , g2, g

x
2 , g

(x2)
2 , . . . , g

(xq)
2 , T

)

= 0
]

∣

∣

∣

∣

≥ ǫ,

where the probability is over the random choice of generators g1 ∈ G1 and
g2 ∈ G2, the random choice of x ∈ Z

∗
p, the random choice of T ∈ GT , and

the random bits consumed by A. We say that the (t, q, ǫ)-DBDHI assumption
holds in (G1,G2) if no t-time algorithm has advantage at least ǫ in solving the
q-DBDHI problem in (G1,G2).

3 Combined Signature and Encryption Schemes

A combined signature and encryption scheme is a combination of a signature
scheme and a public key encryption scheme that share a key generation algorithm
and hence a keypair (pk, sk). It comprises a tuple of algorithms (KeyGen, Sign,
Verify, Encrypt, Decrypt) such that (KeyGen, Sign, Verify) form a signature scheme
and (KeyGen, Encrypt, Decrypt) form a PKE scheme. Since the signature and
PKE schemes share a keypair the standard notions of EUF-CMA and IND-
CCA security need to be extended to reflect an adversary’s ability to request
both signatures and decryptions under the challenge public key. When defining
a security game against a component of the scheme the nature of any additional
oracles depends on the required security of the other components. For example,
if EUF-CMA security of the signature component of a combined signature and
encryption scheme is required, then it is necessary to provide the adversary with
unrestricted access to a signature oracle when proving IND-CCA security of the
encryption component of the scheme. The security definitions given implicitly
in [8], considering IND-CCA security of the encryption component and EUF-
CMA security of the signature component, are stated formally here.

EUF-CMA security in the presence of a decryption oracle: Let (KeyGen, Sign,
Verify,Encrypt,Decrypt) be a combined signature and encryption scheme. Ex-
istential unforgeability of the signature component under an adaptive chosen
message attack in the presence of an additional decryption oracle is defined
through the following game between a challenger and an adversary A.



Setup: The challenger generates a keypair (pk, sk)← KeyGen(1k) and gives A
the challenge public key pk.

Query phase: A requests signatures on messages mi of its choice. The chal-
lenger responds to each signature query with a signature σi ← Sign(sk,mi).
A also requests decryptions of ciphertexts ci of its choice. The challenger
responds to each decryption query with a message m← Decrypt(sk, ci) or a
failure symbol ⊥.

Forgery: A outputs a message signature pair (σ,m) such that m was not sub-
mitted to the signing oracle, and wins the game if Verify(pk, σ,m) = 1.

The advantage of an adversary A is the probability it wins the above game.
A forger A (t, qd, qs, ǫ)-breaks the signature component of a combined sig-

nature and encryption scheme if A runs in time at most t, makes at most qd
decryption queries and qs signature queries and has advantage at least ǫ. The
signature component of a combined signature and encryption scheme is said to
be (t, qd, qs, ǫ)-EUF-CMA secure in the presence of a decryption oracle if no
forger (t, qd, qs, ǫ)-breaks it.

IND-CCA security in the presence of a signing oracle: Let (KeyGen, Sign,Verify,
Encrypt,Decrypt) be a combined signature and encryption scheme. Indistinguisha-
bility of the encryption component under an adaptive chosen ciphertext attack
in the presence of an additional signing oracle is defined through the following
game between a challenger and an adversary A.

Setup: The challenger generates a keypair (pk, sk) ← Keyen(1k) and gives A
the challenge public key pk.

Phase 1: A requests decryptions of ciphertexts ci of its choice. The challenger
responds to each decryption query with a message m ← Decrypt(sk, ci) or
a failure symbol ⊥. A also requests signatures on messages mi of its choice.
The challenger responds to each signature query with a signature σi ←
Sign(sk,mi).

Challenge: A chooses two equal length messagesm0,m1. The challenger chooses
a random bit b, computes c∗ ← Encrypt(pk,mb), and passes c∗ to the adver-
sary.

Phase 2: As Phase 1 but with the restriction that A must not request the
decryption of the challenge ciphertext c∗.

Guess: A outputs a guess b′ for b.

The advantage of A is
∣

∣Pr[b′ = b]− 1
2

∣

∣.
An adversary A (t, qd, qs, ǫ)-breaks the encryption component of a combined

signature and encryption scheme if A runs in time at most t, makes at most qd
decryption queries and qs signature queries and has advantage at least ǫ. The
encryption component of a combined signature and encryption scheme is said to
be (t, qd, qs, ǫ)-IND-CCA secure in the presence of a signing oracle if no adver-
sary (t, qd, qs, ǫ)-breaks it.



Informally, we say that a combined scheme is jointly secure if it is both EUF-
CMA secure in the presence of a decryption oracle and IND-CCA secure in the
presence of a signing oracle.

3.1 A Cartesian Product Construction

A trivial way of obtaining a system satisfying the above security properties is to
concatenate the keys of an encryption scheme and signature scheme, then use
the appropriate component of the compound key for each operation. This gives a
combined signature and encryption scheme where the signature and encryption
operations are essentially independent. Consequently their respective security
properties are retained in the presence of the additional oracle. This simple con-
struction sets a benchmark in terms of key size and other performance measures
that any bespoke construction should best in one or more metrics.

Formally, let S = (S.KeyGen,S.Sign,S.Verify) be a signature scheme, and
let E = (E .KeyGen, E .Encrypt, E .Decrypt) be an encryption scheme. Then the
Cartesian product combined signature and encryption scheme CartCSE(E ,S) is
constructed as follows:

CartCSE(E ,S).KeyGen(1k): Run S.KeyGen(1k) to get (pks, sks). Run E .KeyGen(1
k)

to get (pke, ske). Output the public key pk = (pks, pke) and the private key
sk = (sks, ske).

CartCSE(E ,S).Sign(sk,m): Output S.Sign(sks,m).
CartCSE(E ,S).Verify(pk, σ,m): Output S.Verify(pks, σ,m).
CartCSE(E ,S).Encrypt(pk,m): Output E .Encrypt(pke,m).
CartCSE(E ,S).Decrypt(sk, c): Output E .Decrypt(ske, c).

We omit the straightforward proof that this scheme is jointly secure if S is
EUF-CMA secure and E is IND-CCA secure.

3.2 An Insecure CSE Scheme whose Components are Secure

To show that the definitions are not trivially satisfied, we give a pathologi-
cal example to show that a PKE scheme and a signature scheme that are
individually secure may not be secure when used in combination. Let S =
(S.KeyGen,S.Sign,S.Verify) be an EUF-CMA secure signature scheme, and let
E = (E .KeyGen, E .Encrypt, E .Decrypt) be an IND-CCA secure encryption scheme.
A combined signature and encryption scheme BadCSE(E ,S) can be constructed
as follows.

BadCSE(E ,S).KeyGen(1k): Run S.KeyGen(1k) to get (pks, sks). Run E .KeyGen(1
k)

to get (pke, ske). Output the public key pk = (pks, pke) and the private key
sk = (sks, ske).

BadCSE(E ,S).Sign(sk,m): Compute σ′ = S.Sign(sks,m). Output σ = σ′||ske.
BadCSE(E ,S).Verify(pk, σ,m): Parse σ as σ′||ske. Run S.Verify(pks, σ

′,m) and
output the result.



BadCSE(E ,S).Encrypt(pk,m): Output c = E .Encrypt(pke,m).
BadCSE(E ,S).Decrypt(sk, c): Run E .Decrypt(ske, c). If this decryption is suc-

cessful, output the decrypted message. Otherwise (if ⊥ was returned), output
sks.

From the security of the base schemes it is easy to see that the signa-
ture scheme given by the algorithms BadCSE(E ,S).KeyGen, BadCSE(E ,S).Sign,
BadCSE(E ,S).Verify is EUF-CMA secure, and the PKE scheme with algorithms
BadCSE(E ,S).KeyGen, BadCSE(E ,S).Encrypt, BadCSE(E ,S).Decrypt is IND-CCA
secure. However when key generation is shared a single signature reveals the PKE
scheme’s private key, and the decryption of a badly formed ciphertext reveals
the private key of the signature scheme. Thus BadCSE(E ,S) is totally insecure,
even though its component schemes are secure.

4 A Generic Construction from IBE

We show how to build a combined signature and encryption scheme from an IBE
scheme I with algorithms I.Setup, I.Extract, I.Encrypt, I.Decrypt. We make use
of a one time strongly secure signature scheme OT with algorithms OT .KeyGen,
OT .Sign(sk,m), OT .Verify(pk, σ,m). The construction is particularly simple:
the signature scheme component is constructed through the Naor transform
[6] and the PKE scheme component through the CHK transform [5]. Since in
the Naor construction signatures are just private keys from the IBE scheme,
and these private keys can be used to decrypt ciphertexts in the PKE scheme
resulting from the CHK transform, we use a bit prefix in the identity space to
provide domain separation between the signatures and private keys.

We assume I has message space M, ciphertext space C and identity space
{0, 1}n+1, and that OT has public key space {0, 1}n. Then the signature scheme
component of CSE(I) has message space {0, 1}n but can be extended to messages
of arbitrary length through the use of a collision resistant hash function H :
{0, 1}∗ → {0, 1}n. The PKE component of CSE(I) has message space M. The
algorithms of CSE(I) are shown in Figure 1. In the full version [24] we show how
the construction can be extended to support a tag-based encryption component.

Theorem 1 Let I be a (t′, q, ǫ)-OW-ID-CPA secure IBE scheme. Then the sig-
nature component of CSE(I) is (t, qd, qs, ǫ)-EUF-CMA secure in the presence of
a decryption oracle provided that

qs + qd ≤ q and t ≤ t′ − qd(Tv + Td)− Td,

where Tv is the maximum time for a verification in OT and Td is the maximum
time for a decryption in I.

Proof of Theorem 1. Suppose there exists a forger F that (t, qd, qs, ǫ) breaks the
EUF-CMA security of the signature component of CSE(I) in the presence of a
decryption oracle. We construct an algorithm A that interacts with the forger
F to (t′, q, ǫ)-OW-ID-CPA break the IBE scheme I.



CSE(I).KeyGen(1k):

(mpk,msk)← I.Setup(1k)
(pk, sk) = (mpk,msk)
return (pk, sk)

CSE(I).Sign(sk,m):
ID = 0||m
σ ← I.Extract(sk, ID)
return σ

CSE(I).Verify(pk, σ,m):
ID = 0||m
x←R M
c← I.Encrypt(pk, ID, x)
if I.Decrypt(pk, σ, c) = x

then return 1
else return 0

CSE(I).Encrypt(pk,m):
(vk, sk′)← OT .KeyGen
ID = 1||vk
c′ ← I.Encrypt(pk, ID,m)
σ ← OT .Sign(sk′, c′)
return (vk, σ, c′)

CSE(I).Decrypt(sk, c):
Parse c as (vk, σ, c′)
if OT .Verify(vk, σ, c′) = 1
then ID = 1||vk

skID ← I.Extract(sk, ID)
return I.Decrypt(pk, skID, c′)

else return ⊥

Fig. 1. Generic construction from IBE

Setup: A is given a master public key mpk which it gives to F as the public
key.

Signing queries: In response to a request for a signature on message m, A
queries its extraction oracle for the identity ID = 0||m to obtain skID which
it returns to F as the signature.

Decryption queries: In response to a decryption query for a ciphertext c =
(vk, σ, c′), A verifies that σ is a valid signature on c′ with verification key vk.
If it is not a valid signature, A returns ⊥. If the signature is valid, A queries
its extraction oracle for the identity ID = 1||vk to obtain skID which it uses
to decrypt c′, returning the output of the decryption operation as the result
of the decryption query.

Forgery: Eventually F will return a forgery (σ∗,m∗) on a messagem∗ for which
a signing query was not made. At this point A outputs ID∗ = 0||m∗ as the
target identity. This is a valid choice; since a signing query was not made for
message m∗ an extraction query was not made for ID = 0||m∗.

Challenge: A receives a ciphertext c∗, which is the encryption of a random
message m for identity ID∗. If σ∗ is a valid signature for message m∗ then
σ∗ is a valid decryption key for identity ID∗. This allows A to decrypt c∗

using skID∗ = σ∗ to retrieve the message m which it subsequently outputs.

A succeeds precisely when F succeeds, so if F outputs a valid forgery with prob-
ability ǫ in time t then algorithm A succeeds in time at most t+qd(Tv+T d)+Td



with the same probability ǫ.

Theorem 2 Let I be an (ti, qi, ǫi)-IND-sID-CPA secure IBE scheme and let OT
be a (ts, ǫs)-strongly unforgeable one time signature scheme. Then the encryption
component of CSE(I) is (t, qd, qs, ǫ)-IND-CCA secure in the presence of a signing
oracle provided that

ǫ >
1

2
ǫs + ǫi, qs + qd < qi, and t < ti − Tkg − Tsig − qd(Tv + Td),

where Tkg, Tsig and Tv are the maximum times for key generation, signing and
verifying respectively in OT , and Td is the maximum decryption time in I.

Proof of Theorem 2. The proof follows closely that of Theorem 1 in [5]. Let D
be an adversary against the IND-CCA security of the encryption component of
CSE(I) in the presence of a signing oracle running in time at most t and making
at most qs signature queries and qd decryption queries. We use D to build an
IND-sID-CPA adversary B against I as follows.

Setup: B runs OT .KeyGen to obtain a keypair (vk∗, sk∗) then submits ID∗ =
1||vk∗ as the target identity. B is then given master public key mpk which
it gives to D as the challenge public key.

Decryption queries: We partition the decryption queries into three possible
cases and show how B responds to each case. Suppose the query is for ci-
phertext (vk, σ, c′), and let OT .Verify(vk, σ, c′) = validity.

Case 1: vk = vk∗

If validity = 0 then B responds to the decryption query with ⊥. If
validity = 1 then a forgery has been made against OT , call this event
Forge. If Forge occurs, B aborts and outputs a random bit b′.

Case 2: vk 6= vk∗ and validity = 0
B responds to the decryption query with ⊥.

Case 3: vk 6= vk∗ and validity = 1
B queries the extraction oracle for identity ID = 1||vk to obtain skID,
then uses skID to decrypt c′, responding to the decryption query with
the output of the decryption operation.

Signature queries: In response to a signature query for message m, B queries
its extraction oracle for identity ID = 0||m to obtain skID which it returns
as the signature.

Challenge: Eventually D will output a pair of messages m0,m1. B forwards
these messages and receives a challenge ciphertext c∗. B callsOT .Sign(sk∗, c∗)
to obtain σ∗ and sends C = (vk∗, σ∗, c∗) to D. D may make more signature
and decryption queries under the restriction that it must not submit to the
decryption oracle its challenge ciphertext C. D then submits a guess b′ which
B outputs as its guess.

B represents a legal strategy for attacking I, in particular B never requests
the private key corresponding to the target identity ID∗. Provided Forge does



not occur, B provides a perfect simulation for D so B succeeds with the same
probability as D. If Forge does occur then B outputs a random bit and succeeds
with probability 1

2 . Letting PrBIBE[Succ] denote the probability of B outputting

the correct bit in the IBE security game and PrDPKE[Succ] denote the probability
of D outputting the correct bit in the PKE security game, it can be seen that
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Since I is an (ti, qi, ǫi)-IND-sID-CPA secure IBE scheme,
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ǫi. The event Forge represents a signature forgery against OT , so PrDPKE[Forge] <
ǫs. It follows that
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The running time of B is at most t + Tkg + qd(Tv + Td) + Tsig, and it asks at
most qs + qd private key extraction queries, so the theorem holds.

IBE schemes meeting the standard model security requirements include those
of Gentry [14] andWaters [28]. The latter results in a large public key (n+3 group
elements), though this could be reduced in practice by generating most of the
elements from a seed in a pseudo-random manner. We focus on the instantiation
of our construction using Gentry’s scheme. This scheme was originally presented
in the setting of symmetric pairings. When we translate it to the asymmetric
setting (see the full version for details) and apply our construction at the 128-bit
security level using BN curves with sextic twists, we obtain a combined public key
scheme in which the public key consists of two elements of G1 and two elements
of G2, giving a public key size of 1536 bits. Ciphertexts encrypt elements of GT

and consist of an element of G1, two elements of GT , and a verification key and
signature from OT , so are 2304 bits plus the bit length of a verification key
and signature in OT . Signatures consist of an element of Zp and an element
of G2, so are 768 bits in size. Here we assume that descriptions of groups and
pairings are domain parameters that are omitted from our key size calculations.
The security of this scheme depends on an assumption closely related to the
decisional q-augmented bilinear Diffie-Hellman exponent assumption.



This construction could be improved further using the Boneh-Katz [5] alter-
native to the CHK transform. We omit the details in favour of our next scheme.

5 A More Efficient Construction

The following scheme is based on the signature scheme by Boneh and Boyen [4]
and a KEM obtained by applying the techniques by Boyen, Mei and Waters [7]
to the second IBE scheme by Boneh and Boyen in [3]. The schemes make use of a
bilinear pairing e : G1×G2 → GT , where the groups are of order p, and the KEM
furthermore makes use of an always second-preimage resistant (aSec-secure) hash
function H : G1 → {0, 1}

n−1 where 2n < p. To obtain a full encryption scheme,
the KEM is combined with a DEM, and we assume for simplicity that the key
space of the DEM is K = GT . Where a binary string is treated as a member of Zp

it is implicitly converted in the natural manner. The signature scheme supports
messages in {0, 1}n−1, but can be extended to support message in {0, 1}∗ by
using a collision resistant hash function, while the encryption scheme supports
messages of arbitrary length due to the use of a DEM. Note that to minimize the
public key size and ciphertext overhead in the scheme, the elements of the public
key are placed in the group G1. However, this implies that signatures contain an
element of the group G2, having larger bit representations of elements.

KeyGen(1k): Choose random generators g1 ∈ G1, g2 ∈ G2 and random integers
x, y ∈ Z

∗
p, and compute X = gx1 and Y = gy1 . The public key is (g1, g2, X, Y )

and the private key is (x, y).
Sign(sk,m): To sign a message m ∈ {0, 1}n−1 first prepend a zero to m to give

m′ = 0||m ∈ {0, 1}n. Choose random r ∈ Zp. If x + ry + m′ ≡ 0 mod p

then select another r ∈ Zp. Compute σ = g
1

x+m′+yr

2 ∈ G2. The signature is
(σ, r) ∈ G2 × Zp.

Verify(pk, σ,m): If e(X · gm
′

1 · Y
r, σ) = e(g1, g2), where m′ = 0||m, then return

1, otherwise return 0.
Encrypt(pk,m): To encrypt a message m ∈ {0, 1}∗, choose random s ∈ Z

∗
p and

compute c1 = Y s and h = H(c1). Prepend a 1 to h to give h′ = 1||h ∈ {0, 1}n,
and compute c2 = Xs · gs·h

′

1 . Lastly, compute the key K = e(g1, g2)
s ∈ GT

and encrypt the message m using the DEM i.e. c3 = DEnc(K,m). The
ciphertext is c = (c1, c2, c3).

Decrypt(sk, c): To decrypt a ciphertext c = (c1, c2, c3), first compute h = H(c1)

and prepend a 1 to h to get h′ = 1||h. If c
(x+h′)/y
1 6= c2, output ⊥. Oth-

erwise, compute the key K = e(c1, g
1/y
2 ) ∈ GT , and output the message

m = DDec(K, c3).

We note that the computational cost of encryption and signature verification
can be reduced by adding the redundant element v = e(g1, g2) to the public key,
but that this will significantly increase the public key size.



Theorem 3 Suppose the (t′, q, ǫ′)-SDH assumption holds in (G1,G2). Then the
above combined public key scheme is (t, qd, qs, ǫ)-EUF-CMA secure in the pres-
ence of a decryption oracle given that

qs ≤ q, ǫ ≥ 2ǫ′ + qs/p ≈ 2ǫ′ and t ≤ t′ −Θ(qdTp + (qd + q2)Te),

where Tp is the maximum time for evaluating a pairing and Te is the maximum
time for computing an exponentiation in G1, G2 and Zp.

Theorem 4 Suppose that the hash function H is (th, ǫh)-aSec secure, that the
(tdhi, qdhi, ǫdhi)-DBDHI assumption holds in the groups G1,G2, and that the
DEM is (tdem, qdem, ǫdem)-IND-CCA secure. Then the combined public key scheme
above is (t, qd, qs, ǫ, )-IND-CCA secure in the presence of a signing oracle given
that

qs ≤ qdhi, qd ≤ qdem, ǫ ≥ ǫh + ǫdhi + ǫdem + qs/p, and

t ≤ tmin −Θ(qdTp + (qdhi + qd)Te),

where tmin = min(th, tdhi, tdem), Tp is the maximum time for evaluating a pair-
ing, and Te is the maximum time for computing an exponentiation in G1,G2.

The proofs of Theorems 3 and 4 can be found in the full version [24].
The above scheme provides public keys consisting of three group elements

of G1 and one group element of G2. If the scheme is instantiated using BN
curves with sextic twists mentioned above, this translates into a public key size
of 1280 bits for a 128 bit security level. Furthermore, assuming that the DEM is
redundancy-free (which can be achieved if the DEM is a strong pseudorandom
permutation [25]), the total ciphertext overhead is just two group elements of G1

which translates into 512 bits. Signatures consist of a single group element of G2

and an element of Zp, and will be 768 bits. Again, we assume that descriptions
of groups and pairings are ignored in these calculations.

In the full version, we show how the construction can be extended to support
tag-based encryption. This property is required to allow us to use the scheme
to instantiate our combined signcryption, signature and encryption scheme (see
the full version for details).

6 Comparison of Schemes

In this section, we provide a comparison of the schemes arising from our IBE-
based construction, our more efficient construction in Section 5 and the Cartesian
product construction. In our comparison we will limit ourselves to other discrete-
log/pairing-based schemes since provably secure (standard model) lattice-based
schemes with short public keys are still unavailable and factoring-based schemes
do not scale very well (for 128-bit security, the modulus would need to be > 3000
bits which is not competitive). We will include group generators in public key
size calculations as the required number depends on the scheme, but we allow



sharing of generators between signature and encryption component in Cartesian
product instantiations to improve these constructions. Note that it is possible to
reduce the private key of any scheme to a single short random seed by making the
following simple modification to the scheme: to generate a public/private keypair,
pick a random seed, generate the randomness required by the key generation
algorithm by applying a pseudorandom generator to the seed, and generate the
public/private keypair using this randomness, but store only the seed as the
private key. Whenever the original private key is needed, re-compute this by
applying the pseudorandom generator to the seed and re-run the key generation
algorithm with the resulting randomness. This observation essentially makes the
difference in private key sizes irrelevant, and we will not include this aspect
in our comparison. We consider several instantiations of the Cartesian product
construction with standard model secure encryption and signature schemes and
give the results in Figure 2.

We will focus on Cartesian product instantiations using the scheme by Boneh
and Boyen [4] as a signature component. This scheme is among the most effi-
cient signature schemes and additionally has a short public key. To reduce the
public key size even further, we can remove the redundant element v = e(g1, g2)
and place as many elements as possible in the group G1 of the pairing. The
latter implies that signatures will be elements of G2 × Zp which results in an
increase in signature size. However, since the Cartesian product constructions
should compete with the combined public key schemes in terms of public key
size, this tradeoff is desirable. While other signature schemes could be consid-
ered, we were not able to find a scheme providing shorter public keys without a
significant disadvantage elsewhere. For instance, hash-based signature schemes
give extremely short public keys (the hash function description plus the root
digest), but result in signatures with length logarithmic in the number of mes-
sages to be signed. The signature scheme by Hofheinz and Kiltz [17] has shorter
signatures than the Boneh-Boyen scheme and a public key consisting of a few
group elements plus a hash key, but here the hash key will be long to achieve
provable programmability.

For the encryption component, a relevant option is a DEM combined with
the KEM obtained by applying the techniques by Boyen, Mei and Waters [7]
to the second IBE scheme of Boneh and Boyen in [3], which also forms the
basis of our concrete scheme. Combined with the Boneh-Boyen signature scheme,
and assuming the group generators in the two schemes are shared, this yields
a very efficient instantiation of the Cartesian product construction in which
public keys consist of five group elements of G1, one group element of G2 (and
a key defining a target collision resistant hash function). This is larger by two
elements of G1 than the public key in our concrete construction from Section 5,
which translates to a difference of 512 bits. Note that signature size, ciphertext
overhead and computation costs are the same for the Cartesian product scheme
and our construction.

Another encryption scheme to consider is that of Kurosawa and Desmedt
[22]. Instantiating the Cartesian product construction with this scheme and the



Signature PKE Public Key Signature Ciphertext
Scheme Scheme Size Size Overhead

BB [4] BB [3] + BMW [7] 1792 768 512
BB [4] KD [22] 2048 768 640
BB [4] Kiltz [19] 1792 768 512

CSE(Gentry) 1536 768 1280 + |vkOT | + |σOT |
Scheme from Sec. 5 1280 768 512

Fig. 2. Comparison of schemes at the 128-bit security level.

Boneh-Boyen signature scheme yields a scheme with a public key consisting of
six elements of G1, one element of G2 (and a key defining a target collision resis-
tant hash), assuming that the Kurosawa-Desmedt scheme is implemented in G1.
Hence, the public key will be larger by three group elements of G1 compared
to our concrete construction, which equates to a difference of 768 bits at the
128-bit security level. Signature size and signing and verification costs will be
the same as in our construction, whereas the ciphertext overhead will be slightly
larger (an extra 128 bits) due to the requirement that the symmetric encryp-
tion scheme used in the Kurosawa-Desmedt scheme is authenticated. However,
decryption costs will be lower since no pairing computations are required.

Lastly, the encryption scheme of Kiltz [19] might be considered. Again, com-
bining this with the Boneh-Boyen signature scheme, and assuming group genera-
tors are shared, will yield a Cartesian product scheme with public keys consisting
of five elements of G1 and one element of G2. This is two group elements of G1

larger than the public key of our concrete construction, which equates to an
increase of 512 bits at the 128-bit security level. Signature size and ciphertext
overhead will be the same while decryption in the Cartesian product scheme will
be more efficient, since no pairing computations are required.

In summary, our concrete construction of a combined public key scheme
admits shorter public keys than any instantiation of the Cartesian product con-
struction of Section 3.1 with known standard model secure encryption and sig-
nature schemes, and furthermore enjoys compact ciphertexts and signatures.

7 Conclusions and Future Research

We have revisited the topic of joint security for combined public key schemes,
focussing on the construction of schemes in the standard model, an issue not
fully addressed in prior work. We gave a general construction for combined pub-
lic key schemes from weakly secure IBE, as well as a more efficient concrete
construction based on pairings. Using BN curves, these can be efficiently instan-
tiated at high security levels and have performance that is competitive with the
best schemes arising from the Cartesian product construction. Our results fill
the gap left open in the original work of Haber and Pinkas [15], of constructing
standard-model-secure combined public key schemes in which the signature and



encryption components share an identical keypair. An interesting open problem
is to construct efficient combined public key schemes in the standard model not
using pairings. For example, is it possible to obtain joint security in the discrete
log or in the RSA setting, in the standard model?

Our work points the way to an interesting new research area in cryptography,
which closely relates to and generalises the topic of cryptographic agility [1]. The
general question can be posed as follows: under what conditions is it safe to use
the same key (or key pair) across multiple instantiations of the same or different
cryptographic primitives?
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on RSA. In: Jr., B.S.K., Çetin Kaya Koç, Paar, C. (eds.) CHES 2002. LNCS, vol.
2523, pp. 244–259. Springer, Heidelberg (2003)

21. Komano, Y., Ohta, K.: Efficient universal padding techniques for multiplicative
trapdoor one-way permutation. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol.
2729, pp. 366–382. Springer, Heidelberg (2003)

22. Kurosawa, K., Desmedt, Y.: A new paradigm of hybrid encryption scheme. In:
Franklin, M.K. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 426–442. Springer, Hei-
delberg (2004)

23. Matsuda, T., Matsuura, K., Schuldt, J.C.N.: Efficient constructions of signcryp-
tion schemes and signcryption composability. In: Roy, B.K., Sendrier, N. (eds.)
INDOCRYPT 2009. LNCS, vol. 5922, pp. 321–342. Springer, Heidelberg (2009)

24. Paterson, K.G., Schuldt, J.C., Stam, M., Thomson, S.: On the joint security of
encryption and signature, revisited. Cryptology ePrint Archive, Report 2011/???
(2011)

25. Phan, D.H., Pointcheval, D.: About the security of ciphers (semantic security and
pseudo-random permutations). In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004.
LNCS, vol. 3357, pp. 182–197. Springer, Heidelberg (2005)

26. Rubin, K., Silverberg, A.: Compression in finite fields and torus-based cryptogra-
phy. SIAM J. Comput. 37(5), 1401–1428 (2008)

27. Vasco, M.I.G., Hess, F., Steinwandt, R.: Combined (identity-based) public key
schemes. Cryptology ePrint Archive, Report 2008/466 (2008), http://eprint.

iacr.org/

28. Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer,
R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg
(2005)


