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Abstract. We propose a lattice-based functional encryption scheme for inner
product predicates whose security follows from the difficulty of the learning with
errors (LWE) problem. This construction allows us to achieve applications such
as range and subset queries, polynomial evaluation, and CNF/DNF formulas on
encrypted data. Our scheme supports inner products over small fields, in contrast
to earlier works based on bilinear maps.

Our construction is the first functional encryption scheme based on lattice
techniques that goes beyond basic identity-based encryption. The main technique
in our scheme is a novel twist to the identity-based encryption scheme of Agrawal,
Boneh and Boyen (Eurocrypt 2010). Our scheme is weakly attribute hiding in the
standard model.
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1 Introduction

Traditional public-key encryption is “coarse,” in the sense that any user in the system
can decrypt only messages encrypted with that user’s public key. In a line of research
beginning with the work of Sahai and Waters [39], a number of researchers have asked
how to make encryption more fine-grained. The result is the notion of functional
encryption [16], in which secret keys allow users to learn functions of encrypted
data. Two important examples of functional encryption are attribute-based encryption
(ABE) [39, 27] and predicate encryption (PE) [17, 29]. In (key-policy) ABE and PE
systems, each ciphertext c is associated with an attribute a and each secret key s is
associated with a predicate f . A user holding the key s can decrypt c if and only
if f(a) = 1. The difference between the two types of systems is in the amount of
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information revealed: an ABE system reveals the attribute associated with each ciphertext,
while a PE system keeps the attribute hidden. (Formal definitions of these properties
appear in Section 2.)

This hiding requirement has made predicate encryption systems much more difficult
to construct than attribute-based encryption systems: while there exist ABE schemes
that allow any access formula over attributes [35, 46], the most expressive PE scheme
is that of Katz, Sahai, and Waters [29], who construct a PE scheme for inner product
predicates. In such a scheme, attributes a and predicates f are expressed as vectors ~va
and ~wf respectively, and we say f(a) = 1 if and only if 〈~va, ~wf 〉 = 0. Despite this
apparently restrictive structure, inner product predicates can support conjunction, subset
and range queries on encrypted data [17] as well as disjunctions, polynomial evaluation,
and CNF and DNF formulas [29].

All known constructions of attribute-based encryption [39, 27, 10, 21, 35, 26, 46, 8, 30,
34, 9] and predicate encryption [14, 1, 41, 17, 29, 42, 40, 33, 11, 30] make use of groups
with bilinear maps, and the security of these schemes is based on many different, and
often complex, assumptions. In particular, there is at present no known construction of
predicate encryption for inner products based on a “standard” assumption in bilinear
groups.1 As an example of a “nonstandard” assumption used in previous constructions,
Katz, Sahai, and Waters present an assumption [29, Assumption 1] where the challenge
consists of ten elements chosen in a specified way from a group whose order is the
product of three large primes p, q, r, and the problem is to determine whether one of
these elements has an order-q component. While assumptions such as this one can often
be shown to hold in a suitable “generic group model” (e.g., [29, Appendix A]), to obtain
more confidence in security we would like to build ABE and PE schemes based on
computational problems whose complexity is better understood.

Our contribution. In this work we construct a lattice-based predicate encryption
scheme for inner product predicates whose security follows from the difficulty of the
learning with errors (LWE) problem. The LWE problem, in turn, is at least as hard as
approximating the standard lattice problems GapSVP and SIVP in the worst case [38, 36]
and is also conjectured to be difficult even for quantum adversaries. Our construction is
the first functional encryption scheme based on lattice techniques that goes beyond basic
identity-based encryption (which can be viewed as predicate encryption that tests equality
on strings). Our construction is capable of instantiating all of the applications of predicate
encryption proposed by Boneh and Waters [17] and Katz, Sahai, and Waters [29].2 While
our construction does not satisfy the strong notion of privacy defined by Katz, Sahai,
and Waters [29], it does satisfy the slightly weaker notion considered by Okamoto and
Takashima [33, 34] and Lewko et al. [30].

1.1 Overview of the Construction

Our approach. Just as functional encryption in bilinear groups builds on the ideas and
techniques introduced in constructions of identity-based encryption (IBE) in bilinear

1 Okamoto and Takashima [34] claim a PE construction from the decision linear assumption, but
their paper only indicates how this is achieved for ABE.

2 A detailed discussion of these applications can be found in the full version of this paper [2, §5].
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groups [15, 25, 12, 13, 44, 22], our construction builds on the ideas and techniques used
to achieve identity-based encryption from the LWE assumption [24, 5, 20, 3, 4]. However,
there is a key difference between lattice IBE constructions (without random oracles)
and bilinear-group constructions that makes this kind of generalization more difficult in
the lattice setting. Namely, in the bilinear-group IBE constructions the groups remain
fixed, while the ciphertexts and keys are manipulated so that group elements “cancel
out” when a ciphertext matches a key. In the lattice IBE constructions, each key and
ciphertext is constructed using a different lattice, and decryption only works when the
key lattice and ciphertext lattice match. This structure does not easily generalize to the
functional encryption setting, where each key may match many ciphertexts and each
ciphertext may match many keys.

We solve this “lattice matching” problem using a new algebraic technique that builds
on the IBE scheme of Agrawal, Boneh, and Boyen [3]. In our construction, we generate
keys using a lattice Λf that depends only on the predicate f , and we generate ciphertexts
c using a lattice Λa that depends only on the attribute a. Given a ciphertext c generated in
this way and predicate f , we apply a suitable linear transformation that moves c into the
lattice Λf if and only if f(a) = 1. Once this transformation is applied, we can decrypt
using a key associated with Λf .

The details of our scheme and security proof are in Section 4. To prove security,
we use a simulation technique that draws on ideas introduced in [3]. In particular, we
construct our simulation using a “punctured” trapdoor that allows the simulator to
generate secret keys for any predicate f such that f(a) = 0, where a is the “challenge”
attribute. In the simulation we can use an LWE challenge to construct a ciphertext that
either decrypts correctly or decrypts to a random message. While this technique suffices
to prove that the system hides the message contents (“payload hiding”), it only allows us
to prove a weak form of anonymity (“attribute hiding”). Specifically, given a ciphertext
c and a number of keys that do not decrypt c, the user cannot determine the attribute
associated with c. In the strong form of attribute hiding, the user cannot determine the
attribute associated with c even when given keys that do decrypt c. (Formal definitions
of these concepts appear in Section 2.) The weakened form of attribute hiding we do
achieve is nonetheless more than is required for ABE and should be sufficient for many
applications of PE.

Key technical ideas. Our encryption scheme is at its core based on the LWE scheme
of Gentry, Peikert, and Vaikuntanathan [24, §7], which is itself a “dual” of the original
Regev LWE scheme [38, §5]. From a geometric perspective, the public key in the GPV
scheme describes a lattice Λ used to construct ciphertexts, and the secret key is derived
from the dual lattice Λ⊥. Existing constructions of lattice-based IBE in the standard
model [5, 20, 3, 4] use the GPV encryption scheme but replace the fixed lattice Λ with
a lattice Λid that depends on the user’s identity id. Decryption only works when the
ciphertext lattice Λid and secret key lattice Λid′ are duals of each other, and there are
several methods of ensuring that this is the case if and only if id = id′.

In trying to adapt these constructions to the predicate encryption setting, we run
into the problem that each ciphertext can be decrypted by many secret keys and each
secret key can decrypt many ciphertexts. Thus we cannot require that key lattices match
ciphertext lattices in the same way as above.
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Before explaining our solution to this problem, let us recall the IBE scheme of
Agrawal, Boneh, and Boyen [3]. In the ABB IBE scheme, the encryption lattice is
constructed as

Λid = Λq(A0 ‖A1 +H(id)B),

where A0,A1,B are n × m matrices over Zq and H(id) is a “full-rank difference”
hash function. One can generate secret keys for Λ⊥id using a short basis of Λ⊥q (A0)
and the basis extension technique of [5, 20]. In the (selective-)security proof, the LWE
challenge is embedded as the matrix A0, and the matrix A1 +H(id)B is equipped with
a “punctured” trapdoor that allows the simulator to respond to secret key queries for all
identities id not equal to the challenge identity id∗.

The algebraic structure of the ABB IBE scheme gives us the tools we need to solve
the “lattice matching” problem described above. Specifically, in our predicate encryption
scheme we encode an attribute vector ~w = (w1, . . . , w`) ∈ Z`q as the n× `m matrix

B~w := (w1B‖ · · · ‖w`B).

where B ∈ Zn×mq is a uniformly random matrix chosen by the encryptor. We generate
the ciphertext as a GPV encryption relative to the matrix

Λ~w := Λq(A0‖A1 + w1B‖ · · · ‖A` + w`B)

where the Ai are all n×m matrices. We view the ciphertext component that is close to
Λ~w as a tuple (c0, . . . , c`) ∈ (Zmq )`+1.

Since the recipient of a ciphertext does not know a priori which lattice was used
to encrypt (indeed, this is exactly the anonymity property of predicate encryption), we
cannot expect the recipient to possess a secret key derived from the dual of the ciphertext
lattice as in the IBE case. Instead, we derive the key for a predicate vector ~v from the
dual of a certain lattice Λ~v and apply a linear transformation T~v that moves the ciphertext
into Λ~v exactly when 〈~v, ~w〉 = 0. If this linear transformation is “short” (in the sense of
not increasing the length of vectors too much), then a GPV secret key derived from Λ~v

⊥

can decrypt the ciphertext T~v(c).
Concretely, this transformation works as follows. For a predicate vector ~v =

(v1, . . . , v`) ∈ Z`q , we define the linear transformation T~v : (Zmq )`+1 → Z2m
q by

T~v(c0, . . . , c`) = (c0,
∑`
i=1 vici).

Some algebraic manipulation (detailed in Section 4) shows that applying this transfor-
mation to a ciphertext encrypted using Λ~w is equivalent to computing a GPV ciphertext
using the lattice

Λ~v,~w := Λq

(
A0

∥∥ ∑̀
i=1

viAi + 〈~v, ~w〉B
)
,

Letting the secret key for ~v be the GPV secret key associated to Λ⊥q (A0 ‖
∑`
i=1 viAi)

allows the holder of a key for predicate ~v to decrypt a ciphertext associated with attribute
~w exactly when 〈~v, ~w〉 = 0. In this aspect our construction is inspired by that of Katz,
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Sahai, and Waters [29]: the matrix B corresponds to the “masking terms” in a KSW
ciphertext that “cancel out” exactly when 〈~v, ~w〉 = 0.

The reader may have observed that in the above formulation, the requirement that the
transformation T~v be “short” implies that we cannot use all vectors ~v ∈ Z`q as predicates,
but only ones whose entries have small absolute value (when viewed as integers in
(−q/2, q/2]). In Section 4 we will show that decomposing the vector ~v into its binary
representation enables our construction to use arbitrary vectors in Z`q , at the expense of
expanding the ciphertext by a factor of lg q.

2 Predicate Encryption

We use the definition of predicate encryption proposed by Katz, Sahai, and Waters [29],
which is based on the definition of searchable encryption proposed by Boneh and
Waters [17]. We will let n denote the security parameter throughout this paper.

Definition 2.1 ([29, Definition 2.1]). A (key-policy) predicate encryption scheme for
the class of predicates F over the set of attributes Σ consists of four probabilistic
polynomial-time algorithms Setup, KeyGen, Enc, Dec such that:

– Setup takes as input a security parameter n and outputs a set of public parameters
PP and a master secret key MK.

– KeyGen takes as input the master secret key MK and a (description of a) predicate
f ∈ F . It outputs a key skf .

– Enc takes as input the public parameters PP, an attribute I ∈ Σ, and a message M
in some associated message spaceM. It returns a ciphertext C.

– Dec takes as input a secret key skf and a ciphertext C. It outputs either a message
M or the distinguished symbol ⊥.

For correctness, we require that for all n, all (PP,MK) generated by Setup(1n), all f ∈
F , any key skf ← KeyGen(MK, f), all I ∈ Σ, and any ciphertext C ← Enc(PP, I,M):

– If f(I) = 1, then Dec(skf , C) =M .
– If f(I) = 0, then Dec(skf , C) = ⊥ with all but negligible probability.

In a ciphertext-policy scheme keys are associated with attributes and ciphertexts are
associated with predicates; the syntax is otherwise the same.

Our construction in Section 4 satisfies a different correctness condition: If f(I) = 1
and C = Enc(PP, I,M), then Dec(skf , C) =M , but if f(I) = 0 then Dec(skf , C) is
computationally indistinguishable from a uniformly random element in the message
space M. However, if M is exponentially large then we can easily transform our
system into one satisfying Definition 2.1 by restricting the message space to some subset
M′ ⊂M with |M′|/|M| = negl(n).

2.1 Security

There are several notions of security for predicate encryption schemes. The most basic is
payload hiding, which guarantees that no efficient adversary can obtain any information
about the encrypted message, but allows information about attributes to be revealed.
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A stronger notion is attribute hiding, which guarantees in addition that no efficient
adversary can obtain any information about the attribute associated with a ciphertext.
Following Lewko et al. [30, Definition 17], we also define an intermediate notion, weak
attribute hiding, which makes the same guarantee only in the case that the adversary
cannot decrypt the ciphertext. Our definition of security is “selective,” in the sense that
the adversary must commit to its challenge attributes before seeing any secret keys.

Definition 2.2 ([29, Definition 2.2]). A predicate encryption scheme with respect to
F and Σ is attribute hiding if for all probabilistic polynomial-time adversaries A, the
advantage of A in the following experiment is negligible in the security parameter n:

1. A(1n) outputs I0, I1 ∈ Σ.
2. Setup(1n) is run to generate PP and MK, and the adversary is given PP.
3. A may adaptively request keys for any predicates f1, . . . , f` ∈ F subject to the

restriction that fi(I0) = fi(I1) for all i. In response, A is given the corresponding
keys skfi ← KeyGen(MK, fi).

4. A outputs two equal-length messages M0,M1. If there is an i for which fi(I0) =
fi(I1) = 1, then it is required that M0 = M1. A random bit b is chosen, and A is
given the ciphertext C ← Enc(PP, Ib,Mb).

5. The adversary may continue to request keys for additional predicates, subject to the
same restrictions as before.

6. A outputs a bit b′, and succeeds if b′ = b. The advantage of A is the absolute value
of the difference between its success probability and 1/2.

We say the scheme is weakly attribute hiding if the same condition holds for
adversaries A that are only allowed to request keys for predicates fi with fi(I0) =
fi(I1) = 0. We say the scheme is payload hiding if we require I0 = I1.

We observe that any scheme that is attribute hiding is weakly attribute hiding, and
any scheme that is weakly attribute hiding is payload hiding. (In the payload hiding game
no adversary can achieve nonzero advantage when requesting a key for a predicate f
with f(I0) = f(I1) = 1, so we may assume without loss of generality that the adversary
does not request such a key.)

Remark 2.3. In our construction the spaces F of predicates and Σ of attributes depend
on the public parameters PP output by Setup. We thus modify the security game so as
to give the adversary descriptions of F and Σ before Step 1 and run the remainder of
the game (including any remaining steps in the Setup algorithm) as described.

3 Lattice Preliminaries

In this section we collect the results from the literature that we will need for our
construction and the proof of security.

Notation. For any integer q ≥ 2, we let Zq denote the ring of integers modulo q and we
represent Zq as integers in (−q/2, q/2]. We let Zn×mq denote the set of n×m matrices
with entries in Zq . We use bold capital letters (e.g. A) to denote matrices, bold lowercase
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letters (e.g. x) to denote vectors that are components of our encryption scheme, and
arrows (e.g. ~v) to denote vectors that represent attributes or predicates. The notation AT

denotes the transpose of the matrix A. When we say a matrix defined over Zq has full
rank, we mean that it has full rank modulo each prime factor of q. The notation bxe
denotes the nearest integer to x, rounding towards 0 for half-integers.

3.1 Lattices
An m-dimensional lattice Λ is a full-rank discrete subgroup of Rm. A basis of Λ is a
linearly independent set of vectors whose span is Λ. We will usually be concerned with
integer lattices, i.e., those whose points have coordinates in Zm. Among these lattices
are the “q-ary” lattices defined as follows: for any integer q ≥ 2 and any A ∈ Zn×mq ,
we define

Λ⊥q (A) :=
{
e ∈ Zm : A · e = 0 mod q

}
Λu
q (A) :=

{
e ∈ Zm : A · e = u mod q

}
.

The lattice Λu
q (A) is a coset of Λ⊥q (A); namely, Λu

q (A) = Λ⊥q (A) + t for any t such
that A · t = u mod q.

The Gram-Schmidt norm of a basis. Let S = {s1, . . . , sk} be a set of vectors in Rm.
We use the following standard notation:

– ‖S‖ denotes the length of the longest vector in S, i.e., max1≤i≤k ‖si‖.
– S̃ := {s̃1, . . . , s̃k} ⊂ Rm denotes the Gram-Schmidt orthogonalization of the

vectors s1, . . . , sk.

We refer to ‖S̃‖ as the Gram-Schmidt norm of S.
Ajtai [6] and later Alwen and Peikert [7] showed how to sample an almost uniform

matrix A ∈ Zn×mq along with a basis S of Λ⊥q (A) with low Gram-Schmidt norm.

Theorem 3.1 ([7, Theorem 3.2] with δ = 1/3). Let q, n,m be positive integers
with q ≥ 2 and m ≥ 6n lg q. There is a probabilistic polynomial-time algorithm
TrapGen(q, n,m) that with overwhelming probability (in n) outputs a pair (A ∈
Zn×mq , S ∈ Zm×m) such that A is statistically close to uniform in Zn×mq and S

is a basis for Λ⊥q (A) satisfying

‖S̃‖ ≤ O(
√
n log q ) and ‖S‖ ≤ O(n log q).

Gaussian distributions. Let L be a discrete subset of Zn. For any vector c ∈ Rn
and any positive parameter σ ∈ R>0, let ρσ,c(x) := exp

(
−π‖x− c‖2/σ2

)
be the

Gaussian function on Rn with center c and parameter σ. Let ρσ,c(L) :=
∑

x∈L ρσ,c(x)
be the discrete integral of ρσ,c over L (which always converges), and let DL,σ,c be the
discrete Gaussian distribution over L with center c and parameter σ. Specifically, for all
y ∈ L, we have DL,σ,c(y) = ρσ,c(y)

ρσ,c(L)
. For notational convenience, ρσ,0 and DL,σ,0 are

abbreviated as ρσ and DL,σ , respectively.
The following lemma gives a bound on the length of vectors sampled from a discrete

Gaussian. The result follows from [32, Lemma 4.4], using [24, Lemma 5.3] to bound the
smoothing parameter.
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Lemma 3.2. Let Λ be an n-dimensional lattice, let T be a basis for Λ, and suppose
σ ≥ ‖T̃‖ · ω(

√
log n). Then for any c ∈ Rn we have

Pr
[
‖x− c‖ > σ

√
n : x

R← DΛ,σ,c
]
≤ negl(n)

3.2 Sampling algorithms

We will use the following algorithms to sample short vectors from specific lattices.
Looking ahead, the algorithm SampleLeft [3, 20] will be used to sample keys in the
real system, while the algorithm SampleRight [3] will be used to sample keys in the
simulation.

Algorithm SampleLeft(A,B,TA,u, σ):

Inputs: a full rank matrix A in Zn×mq , a “short” basis TA of Λ⊥q (A), a
matrix B in Zn×m1

q , a vector u ∈ Znq , and a Gaussian parameter σ. (3.1)

Output: Let F := (A ‖ B). The algorithm outputs a vector e ∈ Zm+m1 in
the coset Λu

q (F).

Theorem 3.3 ([3, Theorem 17], [20, Lemma 3.2]). Let q > 2, m > n and σ > ‖T̃A‖·
ω(
√
log(m+m1)). Then SampleLeft(A,B,TA,u, σ) taking inputs as in (3.1) outputs

a vector e ∈ Zm+m1 distributed statistically close to DΛu
q (F),σ , where F := (A ‖ B).

Algorithm SampleRight(A,B,R,TB,u, σ):

Inputs: matrices A in Zn×kq and R in Zk×m, a full rank matrix B in Zn×mq ,
a “short” basis TB of Λ⊥q (B), a vector u ∈ Znq , and a Gaussian parameter σ.

(3.2)

Output: Let F := (A ‖AR+B). The algorithm outputs a vector e ∈ Zm+k

in the coset Λu
q (F).

Often the matrix R given to the algorithm as input will be a random matrix in
{1,−1}m×m. Let Sm be the m-sphere {x ∈ Rm+1 : ‖x‖ = 1}. We define sR := ‖R‖
:= supx∈Sm−1‖R · x‖.

Theorem 3.4 ([3, Theorem 19]). Let q > 2,m > n and σ > ‖T̃B‖ · sR · ω(
√
logm).

Then SampleRight(A,B,R,TB,u, σ) taking inputs as in (3.2) outputs a vector e ∈
Zm+k distributed statistically close to DΛu

q (F),σ , where F := (A ‖AR+B).

3.3 The LWE Problem

The learning with errors problem, or LWE, is the problem of determining a secret vector
over Zq given an arbitrary number of “noisy” inner products. The decision variant is
to distinguish such samples from random. More formally, we define the (average-case)
problem as follows:
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Definition 3.5 ([38]). Let n ≥ 1 and q ≥ 2 be integers, and let χ be a probability
distribution on Zq. For s ∈ Znq , let As,χ be the probability distribution on Znq × Zq
obtained by choosing a vector a ∈ Znq uniformly at random, choosing e ∈ Zq according
to χ, and outputting (a, 〈a, s〉+ e).

(a) The search-LWEq,n,χ problem is: for uniformly random s ∈ Znq , given a poly(n)
number of samples from As,χ, output s.

(b) The decision-LWEq,n,χ problem is: for uniformly random s ∈ Znq , given a poly(n)
number of samples that are either (all) from As,χ or (all) uniformly random in
Znq × Zq , output 0 if the former holds and 1 if the latter holds.

We say the decision-LWEq,n,χ problem is infeasible if for all polynomial-time algorithms
A, the probability that A solves the decision-LWE problem (over s and A’s random
coins) is negligibly close to 1/2 as a function of n.

The power of the LWE problem comes from the fact that for certain noise distributions
χ, solving the search-LWE problem is as hard as finding approximate solutions to the
shortest independent vectors problem (SIVP) and the decision version of the shortest
vector problem (GapSVP) in the worst case. For polynomial size q there is a quantum
reduction due to Regev, while for exponential size q there is a classical reduction due
to Peikert. Furthermore, the search and decision versions of the problem are equivalent
whenever q is a product of small primes. These results are summarized in the following:

Definition 3.6. For α ∈ (0, 1) and an integer q > 2, let Ψα denote the probability
distribution over Zq obtained by choosing x ∈ R according to the normal distribution
with mean 0 and standard deviation α/

√
2π and outputting bqxe.

Theorem 3.7 ([38]). Let n, q be integers and α ∈ (0, 1) such that q = poly(n) and
αq > 2

√
n. If there exists an efficient (possibly quantum) algorithm that solves decision-

LWEq,n,Ψα , then there exists an efficient quantum algorithm that approximates SIVP
and GapSVP to within Õ(n/α) in the worst case.

Theorem 3.8 ([36]). Let n, q be integers and α ∈ (0, 1), and q =
∏
i qi ≥ 2n/2, where

the qi are distinct primes satisfying ω(
√
log n)/α ≤ qi ≤ poly(n). If there exists

an efficient (classical) algorithm that solves decision-LWEq,n,Ψα , then there exists an
efficient (classical) algorithm that approximates GapSVP to within Õ(n/α) in the worst
case.

The following lemma will be used to show correctness of decryption.

Lemma 3.9 ([3, Lemma 12]). Let e be some vector in Zm and let y← Ψ
m

α . Then the
quantity |〈e,y〉| when treated as an integer in (−q/2, q/2] satisfies

|〈e,y〉| ≤ ‖e‖qα · ω(
√

logm) + ‖e‖
√
m/2

with overwhelming probability (in m).
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4 A Functional Encryption Scheme for Inner Product Predicates

In our system, each secret key will be associated with a predicate vector ~v ∈ Z`q (for
some fixed ` ≥ 2) and each ciphertext will be associated with an attribute vector ~w ∈ Z`q .
Decryption should succeed if and only if 〈~v, ~w〉 = 0 (mod q). Hence the predicate
associated with the secret key is defined as f~v(~w) = 1 if 〈~v, ~w〉 = 0 (mod q), and
f~v(~w) = 0 otherwise.

4.1 The Construction

Let n ∈ Z+ be a security parameter and ` be the dimension of predicate and attribute
vectors. Let q = q(n, `) and m = m(n, `) be positive integers. Let σ = σ(n, `) and
α = α(n, `) be positive real Gaussian parameters. Define k = k(n, `) := blg qc. The
encryption scheme described below encrypts a single bit; we show how to encrypt
multiple bits in the full version of this paper [2, §4.5].

LinFE.Setup(1n, 1`): On input a security parameter n and a parameter ` denoting the
dimension of predicate and attribute vectors, do:
1. Use the algorithm TrapGen(q, n,m) (from Theorem 3.1) to select a matrix

A ∈ Zn×mq together with a full-rank set of vectors TA ⊆ Λ⊥q (A) such that
‖T̃A‖ ≤ m · ω(

√
logm).

2. Choose ` · (1 + k) uniformly random matrices Ai,γ ∈ Zn×mq for i = 1, . . . , `
and γ = 0, . . . , k.

3. Select a uniformly random vector u ∈ Znq .
Output PP = (A, {Ai,γ}i∈{1,...,`},γ∈{0,...,k},u) and MK = TA.

LinFE.KeyGen(PP,MK, ~v): On input public parameters PP, a master secret key MK,
and a predicate vector ~v = (v1, . . . , v`) ∈ Z`q , do:
1. For i = 1, . . . , `, let v̂i be the integer in [0, q − 1] congruent to vi mod q. Write

the binary decomposition of v̂i as

v̂i =

k∑
γ=0

vi,γ · 2γ , (4.1)

where vi,γ are in {0, 1}.
2. Define the matrices

C~v :=
∑̀
i=1

k∑
γ=0

vi,γAi,γ ∈ Zn×mq ,

A~v := [A ‖ C~v] ∈ Zn×2mq .

3. Using the master secret key MK = (TA, σ), compute e← SampleLeft(A,C~v,TA,u, σ).
Then e is a vector in Z2m satisfying A~v · e = u mod q.

Output the secret key sk~v = e.

10



LinFE.Enc(PP, ~w,M): On input public parameters PP, an attribute vector ~w, and a
message M ∈ {0, 1}, do:
1. Choose a uniformly random matrix B

R← Zn×mq .

2. Choose a uniformly random s
R← Znq .

3. Choose a noise vector x← Ψ
m

α and a noise term x← Ψα.
4. Compute c0 ← ATs+ x ∈ Zmq .
5. For i = 1, . . . , ` and γ = 0, . . . , k, do the following:

(a) Pick a random matrix Ri,γ ∈ {−1, 1}m×m.
(b) Compute ci,γ ← (Ai,γ + 2γwiB)Ts+RT

i,γx ∈ Zmq .
6. Compute c′ ← uT s+ x+M · bq/2e ∈ Zq .

Output the ciphertext CT := (c0, {ci,γ}i∈{1,...,`},γ∈{0,...,k}, c′).
LinFE.Dec(PP, sk~v,CT): On input public parameters PP, a secret key sk~v for

predicate vector ~v, and a ciphertext CT = (c0, {ci,γ}i∈{1,...,`},γ∈{0,...,k}, c′), do:
1. Define the binary expansion of the vector ~v as in (4.1) and compute

c~v :=
∑̀
i=1

k∑
γ=0

vi,γci,γ .

2. Let c := [c0|c~v].
3. Compute z ← c′ − eTc (mod q).

Output 0 if |z| < q/4 (when interpreted as in integer in (−q/2, q/2]) and 1
otherwise.

For consistency with prior work, we choose the noise in Step 3 of Enc from the rounded
continuous Gaussian Ψα. It was pointed out to us by a referee that one can instead use
the discrete Gaussian DZ,αq and obtain a system with the same security guarantee (up to
a factor of

√
2); this result follows from [28, Lemma 2], using the work of Peikert [37].

4.2 Correctness

We now show that for certain parameter choices, if a bit M is encrypted to the attribute
vector ~w, the secret key s~v corresponds to a predicate vector ~v, and 〈~v, ~w〉 = 0 (mod q),
then the LinFE.Dec algorithm recovers M .

Lemma 4.1. Suppose the parameters q and α are such that

q/lg q = Ω
(
σ · ` ·m3/2

)
and α ≤

(
log q · σ · ` ·m · ω

√
logm

)−1
.

Let e ← KeyGen(PP,MK, ~v), CT ← Enc(PP, ~w,M), and M̃ ← Dec(PP, e,CT). If
〈~v, ~w〉 = 0 (mod q), then with overwhelming probability we have M ′ =M .

Proof. During the first step of LinFE.Dec we compute c~v, which is by definition:

c~v =
∑̀
i=1

k∑
γ=0

vi,γci,γ .

11



This can be expanded as

c~v =
∑̀
i=1

k∑
γ=0

vi,γ
[
(Ai,γ + 2γwiB)Ts+RT

i,γx
]

(4.2)

=

(∑̀
i=1

k∑
γ=0

vi,γAi,γ

)T

s+

(∑̀
i=1

k∑
γ=0

2γvi,γwi

)
︸ ︷︷ ︸
〈~v,~w〉 (mod q)

BTs+
∑̀
i=1

k∑
γ=0

vi,γR
T

i,γx.

If 〈~v, ~w〉 = 0 (mod q), then the middle term of (4.2) disappears, leaving

c~v =

(∑̀
i=1

k∑
γ=0

vi,γAi,γ

)T

s+
∑̀
i=1

k∑
γ=0

vi,γR
T

i,γx (mod q).

In the second step of LinFE.Dec we have:

c = [c0|c~v] =

[
A

∥∥∥∥∑̀
i=1

k∑
γ=0

vi,γAi,γ

]T

s+

[
x

∣∣∣∣ ∑̀
i=1

k∑
γ=0

vi,γR
T

i,γx

]
(mod q)

= AT

~v · s+
[
x

∣∣∣∣ ∑̀
i=1

k∑
γ=0

vi,γR
T

i,γx

]
(mod q)

In the third step of LinFE.Dec we multiply c with the key e. Recall that by Theorem 3.3
we have A~v · e = u (mod q). It follows that

eTc = uT s+ eT

[
x

∣∣∣∣ ∑̀
i=1

k∑
γ=0

vi,γR
T

i,γx

]
(mod q).

Finally, we compute:

z = c′ − eTc (mod q)

= (uT s+ x+M · bq/2e)− uT s− eT

[
x

∣∣∣∣ ∑̀
i=1

k∑
γ=0

vi,γR
T

i,γx

]
(mod q)

=M · bq/2e+
(
x− eT

[
x

∣∣∣∣ ∑̀
i=1

k∑
γ=0

vi,γR
T

i,γx

])
︸ ︷︷ ︸

low-norm noise

(mod q)

To obtain M̃ =M , it suffices to set the parameters so that with overwhelming probability,∣∣∣∣x− eT

[
x

∣∣∣∣ ∑̀
i=1

k∑
γ=0

vi,γR
T

i,γx

]∣∣∣∣ < q/4. (4.3)
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Writing e = [e1|e2] with ei ∈ Zm allows us to rewrite this “noise” term as

x−
(
e1 +

∑̀
i=1

k∑
γ=0

vi,γRi,γe2

)T

x.

By Theorem 3.3 and Lemma 3.2, we have ‖e‖ < σ
√
2m with overwhelming probability.

By [3, Lemma 15], we have ‖Ri,γ ·e2‖ ≤ 12
√
2m ·‖e2‖ with overwhelming probability.

Since vi,γ ∈ {0, 1} it follows that∥∥∥∥e1 + ∑̀
i=1

k∑
γ=0

vi,γRi,γe2

∥∥∥∥ < (1 + 12 · ` · (1 + k) ·
√
2m
)
·σ
√
2m = O(` ·k ·σ ·m).

It now follows from Lemma 3.9 that the error term (4.2) has absolute value at most(
qα · ω(

√
logm) +

√
m/2

)
·O (` · σ ·m · lg q) . (4.4)

(Recall that k = blg qc.) For the quantity (4.4) to have absolute value less than q/4, it
suffices to choose q and α as in the statement of the Lemma. ut

4.3 Security
We use the simulation technique of Agrawal, Boneh, and Boyen [3] to reduce the security
of our system to the hardness of the decision-LWE problem.

Theorem 4.2. Suppose m ≥ 6n log q. If the decision-LWEq,α problem is infeasible,
then the predicate encryption scheme described above is weakly attribute hiding.

To prove the theorem we define a series of three games against an adversary A
that plays the weak attribute hiding game (subject to the modification described in
Remark 2.3). The adversary A outputs two attribute vectors ~w0 and ~w1 at the beginning
of each game, and at some point outputs two messages M0 and M1. Each game comes in
two variants, reflecting the choice of attribute/message pair used to create the challenge
ciphertext. The first game corresponds to the real security game. In the other two
games we use “alternative” setup, key generation, and encryption algorithms Sim.Setup,
Sim.KeyGen, and Sim.Enc. The algorithm Sim.Setup takes as additional input an
attribute vector ~w∗, and Sim.Enc takes as additional input the master key output by
Sim.Setup. Recall that during the course of the game the adversary can only request
keys for predicate vectors ~v such that 〈~v, ~w0〉 6= 0 and 〈~v, ~w1〉 6= 0.

Game0,b: For b ∈ {0, 1}, the challenger runs the LinFE.Setup algorithm, answers the
adversary’s secret key queries using the LinFE.KeyGen algorithm, and generates
the challenge ciphertext using the LinFE.Enc algorithm with attribute ~wb and
message Mb.

Game1,b: For b ∈ {0, 1}, the challenger runs the Sim.Setup algorithm with ~w∗ = ~wb
and answers the adversary’s secret key queries using the Sim.KeyGen algorithm.
The challenger generates the challenge ciphertext using the Sim.Enc algorithm with
attribute ~wb and message Mb.
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Game2,b: This game is the same as Game1,b, except the challenger generates the
challenge ciphertext by choosing a uniformly random element of the ciphertext
space.

We now define the alternative setup, key generation, and encryption algorithms.

Sim.Setup(1n, 1`, ~w∗): On input a security parameter n, a parameter ` denoting the
dimension of predicate and attribute vectors, and an attribute vector ~w∗ ∈ Z`q, do the
following:

1. Choose a random matrix A
R← Zn×mq and a random vector u R← Znq .

2. Use TrapGen(q, n,m) to generate a matrix B∗ ∈ Zn×mq along with a basis TB∗

of Λ⊥q (B
∗).

3. For i = 1, . . . , ` and γ = 0, . . . , k, pick random matrices R∗i,γ
R← {−1, 1}m×m and

set
Ai,γ ← AR∗i,γ − 2γw∗i B∗.

Output the public parameters and master key

PP =
(
A, {Ai,γ}i∈{1,...,`},γ∈{0,...,k},u

)
, MK =

(
~w∗, {R∗i,γ}i∈{1,...,`},γ∈{0,...,k},B∗,TB∗

)
Sim.KeyGen(PP,MK, ~v): On input public parameters PP, a master key MK, and a
vector ~v ∈ Z`q , do the following:

1. If 〈~v, ~w∗〉 = 0, output ⊥.
2. Define the binary decomposition of vi as in (4.1).
3. Define the matrices

C~v :=
∑̀
i=1

k∑
γ=0

vi,γAi,γ ∈ Zn×mq , A~v := [A ‖ C~v] ∈ Zn×2mq .

Observe that

A~v =

[
A
∥∥∥A(∑̀

i=1

k∑
γ=0

vi,γR
∗
i,γ

)
−
(∑̀
i=1

k∑
γ=0

2γvi,γw
∗
i

)
︸ ︷︷ ︸
〈~v,~w∗〉 (mod q)

B∗

]
.

4. Let e← SampleRight
(
A, −〈~v, ~w∗〉B∗,

∑`
i=1

∑k
γ=0 vi,γR

∗
i,γ , TB∗ , u, σ

)
∈

Z2m
q .

Output the secret key sk~v = e.

Sim.Enc(PP, ~w,M,MK): This algorithm is the same as the LinFE.Enc algorithm,
except:

1. In Step 1, matrix B∗ ∈ MK is used instead of a random matrix B.
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2. In Step 5a, the matrices R∗i,γ ∈ MK for are used instead of random matrices Ri,γ

for i = 1, . . . , ` and γ = 0, . . . , k.

To prove security of our system, we show that the two games in each of the
pairs (Game0,b,Game1,b), (Game1,b,Game2,b) and (Game2,0,Game2,1) are either
statistically or computationally indistinguishable (under the decision-LWE assumption)
from the point of view of the adversary. Theorem 4.2 then follows from a simple hybrid
argument; details are in the full version of this paper [2].

Lemma 4.3. For a given b ∈ {0, 1}, the view of the adversary A in Game0,b is
statistically close to the view of A in Game1,b.

The proof of Lemma 4.3 can be found in the full version of this paper [2].

Lemma 4.4. For a given b ∈ {0, 1}, if the decision-LWE assumption holds, then the
view of the adversary A in Game1,b is computationally indistinguishable from the view
of A in Game2,b.

Proof. Suppose we are given m + 1 LWE challenges (ai, yi) ∈ Znq × Zq for j =

0, . . . ,m, where either yj = 〈aj , s〉+ xj for some (fixed) random secret s R← Znq and
Gaussian noise xj ← Ψα, or yj is uniformly random in Zq (and this choice is the same
for each challenge). We define the following variables:

A :=

 | |
a1 · · · am
| |

 ∈ Zn×mq u := a0

c0 := (y1, . . . , ym) ∈ Zmq c′ := y0 +Mb · b q2e

(4.5)

We simulate the challenger as follows:

– Setup: Run Sim.Setup with ~w∗ = ~wb, and let A and u be as in (4.5).
– Private key queries: Run the Sim.KeyGen algorithm.
– Challenge ciphertext: For i = 1, . . . , ` and γ = 0, . . . , k, let ci,γ = R∗i,γ

Tc0
(using R∗i,γ ∈ MK). Output (c0, {ci,γ}i∈{1,...,`},γ∈{0,...,k}, c′).

Now observe that for i = 1, . . . , ` and γ = 0, . . . , k, the Sim.Enc algorithm sets

ci,γ =
(
ARi,γ − 2γw∗iB

∗ + 2γw∗iB
∗)Ts+R∗i,γ

Tx = R∗i,γ
T(ATs+ x).

It follows that if yj = 〈aj , s〉 + xj , then ci,γ = R∗i,γ
Tc0 and the simulator described

above is identical to the challenger in Game1,b.
On the other hand, if yj is random in Zq, then the simulated ciphertext is

(c0,R∗
T

c0, c
′), where R∗ is the concatenation of the matrices R∗i,γ . By the standard

leftover hash lemma (e.g. [43, Theorem 8.37]), the quantities AR∗ and R∗
T

c0 are
independent uniformly random samples. Thus in this case the ciphertext is uniformly
random and the simulator described above is identical the challenger in Game2,b.

We conclude that any efficient adversary that can distinguish Game1,b from Game2,b
can solve the decision-LWE problem. ut
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Lemma 4.5. The view of the adversary A in Game2,0 is statistically indistinguishable
from the view of A in Game2,1.

Proof. Note that the only place where ~w∗ appears in Game2,b is in the public parameter
Ai,γ := AR∗i,γ − 2γw∗iB

∗. Let A ∈ Zn×m`(k+1)
q and R∗ ∈ Zm×m`(k+1)

q be the
concatenations of the Ai,γ and the R∗i,γ , respectively. Then we have A = AR∗. By [3,
Lemma 13] the pair (A,AR

∗
) is statistically indistinguishable from (A,C) where C is

uniformly random. Since for any fixed value of X and uniformly random C, the variable
C −X is also uniformly random, it follows that the distributions of Ai,γ in the two
games are statistically indistinguishable.

4.4 Parameter Selection

We can extract from the above description the parameters required for correctness and
security of the system. For correctness of decryption, by Lemma 4.1 we require

q/lg q = Ω
(
σ · ` ·m3/2

)
and α ≤

(
log q · σ · ` ·m · ω

√
logm

)−1
.(4.6)

In our security theorem (Theorem 4.2), we require m > 6n lg q in order for the output of
TrapGen to be statistically random. The additional constraints imposed by our security
reduction are the following:

– From the description of LinFE.Setup and LinFE.KeyGen, we have ‖T̃A‖ =
O(
√
n log q) (by Theorem 3.1) and e ← DΛu

q (A~v),σ
(by Theorem 3.3), subject to

the requirement that

σ ≥ ‖T̃A‖ · ω(
√

logm) = O(
√
n log q) · ω(

√
logm).

– From the description of Sim.Setup and Sim.KeyGen, we have ‖T̃B∗‖ =
O(
√
n log q) (by Theorem 3.1), and e ← DΛu

q (A~v),σ
(by Theorem 3.4), subject

to the requirement that

σ ≥ ‖T̃B∗‖ · sR · ω(
√

logm) (4.7)

Since R is a sum of ` · (lg q + 1) random matrices with {1,−1} entries, it follows
from [3, Lemma 15] that sR = sup{x:‖x‖=1} ‖Rx‖ = O(` · (lg q + 1) ·

√
m) with

overwhelming probability. Plugging this value into (4.7), we see that it suffices to
choose

σ ≥ O(
√
n log q) ·O(` · (lg q + 1) ·

√
m) · ω(

√
logm).

Thus to satisfy the more stringent of the above two conditions (i.e., the latter), we set

σ = ω(m · ` · log q ·
√

logm), (4.8)

using the fact (noted above) that m ≥ 6n log q.
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In order to reduce decision-LWE to approximating worst-case lattice problems to
within poly(n) factors we have two options: for polynomial-size q we can use Regev’s
quantum reduction (Theorem 3.7) with qα > 2

√
n and α ≥ 1/poly(n), while for

exponential-size q we can use Peikert’s classical reduction (Theorem 3.8) with each
prime factor qi of q satisfying ω(

√
log n)/α < qi < poly(n). (Note that a large value

of q may be required for certain applications; see the full version of this paper [2, §5] for
details.)

The following selection of parameters satisfies all of these constraints. For a given `,
pick a small constant δ > 0, and set

m = dn1+δe, to satisfy m > 6n lg q
σ = dn2+2δ · `e, to satisfy (4.8)
qi = the ith prime larger than (` log `)2 · n7/2+5δ

α = Ω
(
(` log `)2 · n3+5δ

)−1
to satisfy (4.6)

Observe that the above setting of parameters satisfies the conditions for applying
Theorems 3.7 and 3.8. To obtain polynomial size q we use q = q1, while to obtain
exponential size q we use q =

∏τ
i=1 qi, where τ is chosen so that q > 2n/2. In either case

we can choose δ large enough so that n1+δ > 6n lg q. In the former case, the security of
the scheme can be based on the hardness of approximating SIVP and GapSVP to within
a factor of Õ(n/α) = Õ((` log `)2 · n4+5δ) in the worst case (by quantum algorithms).
In the latter case, security is based on the hardness of approximating GapSVP to within
a factor of Õ(n/α) = Õ((` log `)2 · n4+5δ) in the worst case (by classical algorithms).

Note that since m > n lg q and qi > n, the matrices A and B have full rank modulo
each prime divisor of q with overwhelming probability, as required for successful
execution of the SampleLeft and SampleRight algorithms.

Finally, we note that these parameter choices are not necessarily optimal, and one
might be able to set the parameters to have somewhat smaller values while maintaining
correctness and security. In particular, one might be able to reduce the ciphertext size by
using the r-ary expansion of the vector ~v for some r > 2 instead of the binary expansion
as described above.

5 Conclusion and Open Questions

We have presented a lattice-based predicate encryption scheme for inner product
predicates whose security follows from the difficulty of the learning with errors
problem. Our construction can instantiate applications such as range and subset queries,
polynomial evaluation, and CNF/DNF formulas on encrypted data. (A more detailed
discussion of these applications appears in the full version of this paper [2].) Our
construction is the first functional encryption scheme based on lattice techniques that
goes beyond basic identity-based encryption.

Many open questions still remain in this field. One direction of research is to improve
the security of our construction. Our scheme is weakly attribute hiding in the selective
security model, but for stronger security guarantees we would like to construct a scheme
that is fully secure and/or fully attribute hiding. Achieving either task will require
new simulation techniques; a natural question is whether the “dual-system” approach
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introduced by Waters [45] and used to prove full security of attribute-based encryption
and predicate encryption constructions using bilinear groups [30, 9, 34] can be adapted
to lattice-based constructions.

Another direction of research is to improve the efficiency of our scheme. If
q = 2O(n) is exponential size, as is needed for several of our applications, then
setting the parameters as recommended in Section 4.4 gives public parameters of size
Θ(`nm lg2(q)) = Ω(`n5) and ciphertexts of size Θ(`m lg2(q)) = Ω(`n4), which may
be too large for practical purposes. A construction that achieved the same functionality
with polynomial-size q would be a significant step forward. The ring-LWE problem
introduced by Lyubashevsky, Peikert, and Regev [31] seems to be a natural candidate for
such a construction.

Finally, it is a open question to construct predicate encryption schemes (via any
technique) that support a greater range of functionality than inner product predicates.
Ideally we would like a system that could support any polynomial-size predicate on
encrypted data. Now that predicate encryption has moved into the world of lattices,
perhaps techniques used to construct fully homomorphic encryption from lattices [23,
19, 18] could be used to help us move towards this goal.

Acknowledgments. The authors thank Dan Boneh, Brent Waters, Hoeteck Wee, and the
anonymous referees for helpful discussions and comments.
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