
BKZ 2.0: Better Lattice Security Estimates

Yuanmi Chen and Phong Q. Nguyen

1 ENS, Dept. Informatique, 45 rue d’Ulm, 75005 Paris, France.
http://www.eleves.ens.fr/home/ychen/

2 INRIA and ENS, Dept. Informatique, 45 rue d’Ulm, 75005 Paris, France.
http://www.di.ens.fr/~pnguyen/

Abstract. The best lattice reduction algorithm known in practice for
high dimension is Schnorr-Euchner’s BKZ: all security estimates of lat-
tice cryptosystems are based on NTL’s old implementation of BKZ. How-
ever, recent progress on lattice enumeration suggests that BKZ and its
NTL implementation are no longer optimal, but the precise impact on se-
curity estimates was unclear. We assess this impact thanks to extensive
experiments with BKZ 2.0, the first state-of-the-art implementation of
BKZ incorporating recent improvements, such as Gama-Nguyen-Regev
pruning. We propose an efficient simulation algorithm to model the be-
haviour of BKZ in high dimension with high blocksize ≥ 50, which can
predict approximately both the output quality and the running time,
thereby revising lattice security estimates. For instance, our simulation
suggests that the smallest NTRUSign parameter set, which was claimed
to provide at least 93-bit security against key-recovery lattice attacks,
actually offers at most 65-bit security.

1 Introduction

Lattices are discrete subgroups of Rm. A lattice L is represented by a basis, i.e.
a set of linearly independent vectors b1, . . . , bn in Rm such that L is equal to
the set L(b1, . . . , bn) = {∑n

i=1 xibi, xi ∈ Z} of all integer linear combinations
of the bi’s. The integer n is the dimension of L. The goal of lattice reduction is to
find bases consisting of reasonably short and nearly orthogonal vectors. Lat-
tice reduction algorithms have many applications (see [35]), notably public-
key cryptanalysis where they have been used to break special cases of RSA
and DSA, among others (see [32] and references therein). There are roughly
two types of lattice reduction algorithms:

– Approximation algorithms like the celebrated LLL algorithm [22,35], and its
blockwise generalizations [41,42,7,8]. Such algorithms find relatively short
vectors, but usually not shortest vectors in high dimension.

– Exact algorithms to output shortest or nearly shortest vectors. There are
space-efficient enumeration algorithms [38,20,6,42,43,10] and exponential-
space algorithms [3,36,30,29], the latter being outperformed in practice by
the former despite their better asymptotic running time 2O(n).

In high dimension, only approximation algorithms can be run, but both types
are complementary: approximation algorithms use exact algorithms as sub-
routines, and exact algorithms use approximation algorithms as preprocess-
ing. In theory, the best approximation algorithm is Gama-Nguyen’s reduc-
tion [8]. But experiments (such as that of [9], or the cryptanalyses [31,21] of
GGH challenges [12]) suggest that the best approximation algorithm known
in practice for high dimension is BKZ, published by Schnorr and Euchner in
1994 [42], and implemented in NTL [44]. Like all blockwise algorithms [41,7,8],
BKZ has an additional input parameter – the blocksize β – which impacts
both the running time and the output quality: BKZ calls many times an enu-
meration subroutine [38,20,6,42], which looks for nearly-shortest vectors in
projected lattices of dimension ≤ β. As β increases, the output basis becomes
more and more reduced, but the cost increases significantly: the cost of the
enumeration subroutine is typically super-exponential in β, namely 2O(β2)

polynomial-time operations (see [10]); and experiments [9] show that the num-
ber of calls increases sharply with both β and the lattice dimension n: for fixed
β ≥ 30, the number of calls looks superpolynomial if not exponential in n.
This leads to two typical uses of BKZ:

1. A small blocksize β around 20 in any dimension n, or a medium blocksize
β around 30-40 in medium dimension n (say, around 100 at most). Here,
BKZ terminates in a reasonable time, and is routinely used to improve the
quality of an LLL-reduced basis.

2. A high blocksize β ≥ 40 in high dimension n, to find shorter and shorter
lattice vectors. Here, BKZ does not terminate in a reasonable time, and the
computation is typically aborted after say, a few hours or days, with the
hope that the current basis is good enough for the application: we note
that Hanrot et al. [14] recently proved worst-case bounds for the output
quality of aborted-BKZ, which are only slightly worse than full-BKZ. And
one usually speeds up the enumeration subroutine by a pruning tech-
nique [42,43,10]: for instance, the implementation of BKZ in NTL proposes
Schnorr-Hörner (SH) pruning [43], which adds another input parameter p,
whose impact was only clarified in [10]. The largest GGH cryptographic
challenges [12] were solved [31,21] using an aborted BKZ of blocksize
β = 60 and SH factor p = 14.

One major issue is to assess the output quality of BKZ, especially since lat-
tice algorithms tend to perform better than theoretically expected. The qual-
ity is measured by the so-called Hermite factor, as popularized by Gama and
Nguyen [9]. In practice, the Hermite factor of all lattice algorithms known is
typically exponential in the dimension, namely cn where c depends on the pa-
rameters of the algorithm. The experiments of [9] show that in practice, the
Hermite factor of BKZ is typically c(β, n)n where c(β, n) quickly converges
as n grows to infinity for fixed β. However, the limit values of c(β, n) are only
known for small values of β (roughly≤ 30), and theoretical upper bounds [9,14]
on c(β, n) are significantly higher than experimental values.

All security estimates and proposed parameters (such as recent ones [28,39,23]
and NTRU’s [18]) of lattice cryptosystems are based on benchmarks of NTL’s
old implementation of BKZ, but the significance of these estimates is rather de-
batable. First, these benchmarks were all computed with only usage 1: NTRU [18]
“never observed a noticeable improvement from the pruning procedure, so the prun-
ing procedure was not called” and used β ≤ 25, while [39,23] use β ≤ 30. This
means that such security estimates either assume that BKZ cannot be run with
β ≥ 30, or they extrapolate c(β, n) for high values of β from low values β ≤ 30.
Second, recent progress [10] in enumeration shows that enumeration can now
be performed in much higher dimension (e.g. β ≈ 110) than previously imag-
ined, but no approximate value of c(β, n) is known for large β ≥ 50. And
NTL’s implementation does not include these recent improvements, and is
therefore suboptimal.

Our results. We report the first extensive experiments with high-blocksize
BKZ (β ≥ 40) in high dimension. This is made possible by implementing
BKZ 2.0, an updated version of BKZ taking into account recent algorithmic
improvements. The main modification is the incorporation of the sound prun-
ing technique developed by Gama, Nguyen and Regev [10] at EUROCRYPT
’10. The modifications significantly decrease the running time of the enumer-
ation subroutine, without degrading its output quality for appropriate pa-
rameters, which allow much bigger blocksizes. BKZ 2.0 outperforms NTL’s
implementation of BKZ, even with SH pruning [43], which we checked by
breaking lattice records such as Darmstadt’s lattice challenges [24] or the SVP-
challenges [40]: for instance, we find the shortest vector in NTRU [18]’s his-
torical 214-dimensional lattices within 242.62 clock cycles, at least 70 times less
computation than previously reported [25].

More importantly, our experiments allow us to propose an efficient simu-
lation algorithm to model the execution of BKZ with (arbitrarily) high block-
size ≥ 50, to guess the approximate length of the output vector and the time
required: in particular, this algorithm provides the first ever predictions for
c(β, n) for arbitrarily high values of β ≥ 50. For a given target length, the sim-
ulation predicts what is the approximate blocksize β required to obtain such
short lattice vectors, and how many enumeration calls will be required ap-
proximately. This can be converted into an approximate running time, once
we know a good approximation of the cost of enumeration. And we provide
such approximations for the best enumeration subroutines known.

Our simulation refines the Gama-Nguyen security estimates [9] on the con-
crete hardness of lattice problems, which did not take into account pruning,
like the security estimates of NTRU [19,16] and those of [23,39]. We illustrate
the usefulness of our simulation by revising security estimates. For instance,
our simulation suggests that the smallest NTRUSign parameter set, which was
claimed to provide at least 93-bit security against key-recovery lattice attacks,
actually offers at most 65-bit security. And we use our simulation to provide
the first concrete security assessment of the fully-homomorphic encryption
challenges [11] recently proposed by Gentry and Halevi. It seems that none of

these challenges offers a very high security level, except the largest one, which
seems to offer at most a 100-bit security level.

Roadmap. We start in Sect. 2 with background and notation on lattices. In
Sect. 3, we recall the BKZ algorithm. In Sect. 4, we present BKZ 2.0 by de-
scribing our modifications to BKZ. In Sect. 5, we briefly report on new lattice
records obtained. We present in Sect. 6 a simulation algorithm to predict the
performances of BKZ 2.0 with (arbitrarily) high blocksize, which we apply to
revise security estimates in Sect. 7. More information can be found in the full
version.

2 Preliminaries

We use row representations of matrices (to match lattice software), and use
bold fonts to denote vectors: if B = (b1, . . . , bn) is a matrix, its row vectors
are the bi’s. The Euclidean norm of a vector v ∈ Rm is ‖v‖. We denote by
Balln(R) the n-dim Euclidean ball of radius R, and by Vn(R) = Rn · πn/2

Γ(n/2+1)

its volume. The n-dim unit sphere is denoted by Sn−1. Let L be an n-dim lattice
in Rm. Its volume vol(L) is the n-dim volume of the parallelepiped generated
by any basis of L.

Orthogonalization. An n×m basis B = (b1, . . . , bn) can be written uniquely as
B = µ · D ·Q where µ = (µi,j) is n× n lower-triangular with unit diagonal, D
is n× n positive diagonal, and Q is n×m with orthonormal row vectors. Then
µD is a lower triangular representation of B (with respect to Q), B∗ = DQ =
(b∗1 , . . . , b∗n) is the Gram-Schmidt orthogonalization of the basis, and D is the
diagonal matrix formed by the

∥∥b∗i
∥∥’s. For 1 ≤ i ≤ n + 1, we denote by πi the

orthogonal projection over (b1, . . . , bi−1)
⊥. For 1 ≤ j ≤ k ≤ n, we denote by

B[j,k] the local projected block
(
πj(bj), πj(bj+1), . . . , πj(bk)

)
, and by L[j,k] the

lattice spanned by B[j,k], whose dimension is k− j + 1.

Random Lattices. There is a natural notion of random (real) lattices of given
volume, based on Haar measures of classical groups (see [1]). And there is a
simple notion of random integer lattices, used in recent experiments: For any
integer V, a random n-dim integer lattice of volume V is one chosen uniformly
at random among the finitely many n-dim integer lattices of volume V. It was
shown in [13] that, as V grows to infinity, the uniform distribution over integer
lattices of volume V converges towards the distribution of random (real) lat-
tices of unit volume, once the integer lattice is scaled by V1/n. In experiments
with random lattices, we mean an n-dim integer lattice chosen uniformly at
random with volume a random prime number of bit-length 10n: for prime
volumes, it is trivial to sample from the uniform distribution, using the Her-
mite normal form. A bit-length Θ(n2) would be preferable in theory (in order
to apply the result of [13]), but it significantly increases running times, without
affecting noticeably experimental results.

Gaussian Heuristic. Given a lattice L and a “nice” set S, the Gaussian Heuristic
predicts that the number of points in S ∩ L is ≈ vol(S)/vol(L). In some cases,
this heuristic can be proved [1] or refuted [27].

Shortest vector. A shortest vector of L has norm λ1(L) = minv∈L,v 6=0 ‖v‖, the
first minimum of L. If the Gaussian heuristic was true for any ball S, we would
expect λ1(L) ≈ GH(L) where GH(L) = vol(L)1/n · Vn(1)−1/n. Minkowski’s
theorem shows that λ1(L) ≤ 2GH(L) for any lattice L. For random real lat-
tices, λ1(L) is asymptotically equivalent to GH(L) with overwhelming prob-
ability (see [1]).

Reduced bases. We recall a few classical reductions. A basis B = (b1, . . . , bn) is:

– size-reduced if its Gram-Schmidt matrix µ satisfies |µi,j| ≤ 1/2 for 1 ≤ j <
i ≤ n.

– LLL-reduced [22] with factor ε such that 0 < ε < 1 if it is size-reduced and
its Gram-Schmidt orthogonalization satisfies ‖b∗i+1 + µi+1,ib∗i ‖2 ≥ (1 −
ε)‖b∗i ‖2 for 1 ≤ i < n. If we omit the factor ε, we mean the factor ε = 0.01,
which is the usual choice in practice.

– BKZ-reduced [41] with blocksize β ≥ 2 and factor ε such that 0 < ε < 1 if
it is LLL-reduced with factor ε and for each 1 ≤ j ≤ n: ‖b∗j ‖ = λ1(L[j,k])

where k = min(j + β− 1, n).

One is usually interested in minimizing the Hermite factor ‖b1‖/vol(L)1/n

(see [9]), which is completely determined by the sequence ‖b∗1‖, . . . , ‖b∗n‖.
This is because the Hermite factor dictates the performance of the algorithm at
solving the most useful lattice problems: see [9] for approx-SVP and unique-
SVP, and [28,39,23] for SIS and LWE. It turns out that the Gram-Schmidt co-
efficients of bases produced by the main reduction algorithms (such as LLL
or BKZ) have a certain “typical shape” [9,34], provided that the input basis
is sufficiently randomized. To give an idea, the shape is roughly such that
‖b∗i ‖/‖b∗i+1‖ ≈ q where q depends on the reduction algorithm, except for the
first indexes i. This means that the Hermite factor will typically be of the form
cn where c ≈ √q.

3 The Blockwise Korkine-Zolotarev (BKZ) Algorithm

3.1 Description

The Blockwise-Korkine-Zolotarev (BKZ) algorithm [42] outputs a BKZ-reduced
basis with blocksize β ≥ 2 and reduction factor ε > 0, from an input basis
B = (b1, . . . , bn) of a lattice L. It starts by LLL-reducing the basis B, then it-
eratively reduces each local block B[j,min(j+β−1,n)] for j = 1 to n, to make sure
that the first vector of each such block is the shortest in the projected lattice.
This gives rise to Algorithm 1, which proceeds in such a way that each block
is already LLL-reduced before being enumerated: there is an index j, initially

set to 1. At each iteration, BKZ performs an enumeration of the local projected
lattice L[j,k] where k = min(j + β − 1, n) to find v = (v1, . . . , vn) ∈ Zn such
that ‖πj(∑k

i=j vibi)‖ = λ1(L[j,k]). We let h = min(k + 1, n) be the ending index
of the new block in the next iteration:

– If ‖b∗j ‖ > λ1(L[j,k]), then bnew = ∑k
i=j vibi is inserted between bj−1 and

bj. This means that we no longer have a basis, so LLL is called on the
generating set (b1, . . . , bj−1, bnew, bj, . . . , bh), to give rise to a new LLL-
reduced basis (b1, . . . , bh).

– Otherwise, LLL is called on the truncated basis (b1, . . . , bh).

Thus, at the end of each iteration, the basis B = (b1, . . . , bn) is such that
(b1, . . . , bh) is LLL-reduced. When j reaches n, it is reset to 1, unless no enu-
meration was successful, in which case the algorithm terminates: the goal of z
in Alg. 1 is to count the number of consecutive failed enumerations, to check
termination.

Algorithm 1 The Block Korkin-Zolotarev (BKZ) algorithm
Input: A basis B = (b1, . . . , bn), a blocksize β ∈ {2, . . . , n}, the Gram-Schmidt trian-

gular matrix µ and ‖b∗1‖2, . . . , ‖b∗n‖2.
Output: The basis (b1, . . . , bn) is BKZ-β reduced
1: z← 0; j← 0; LLL(b1, . . . , bn, µ);// LLL-reduce the basis, and update µ
2: while z < n− 1 do
3: j ← (j mod (n− 1)) + 1; k ← min(j + β− 1, n); h ← min(k + 1, n); // define the

local block
4: v ←Enum(µ[j,k], ‖b∗j ‖

2, . . . , ‖b∗k‖
2); // find v = (vj, . . . , vk) ∈ Zk−j+1 − 0 s.t.

‖πj(∑k
i=j vibi)‖ = λ1(L[j,k])

5: if v 6= (1, 0, . . . , 0) then
6: z ← 0; LLL(b1, . . . , ∑k

i=j vibi, bj, . . . , bh, µ) at stage j; //insert the new vector in
the lattice at the start of the current block, then remove the dependency in the current
block, update µ.

7: else
8: z ← z + 1; LLL(b1, . . . , bh, µ) at stage h− 1; // LLL-reduce the next block before

enumeration.
9: end if

10: end while

3.2 Enumeration subroutine

BKZ requires a subroutine to find a shortest vector in a local projected lat-
tice L[j,k]: given as input two integers j and k such that 1 ≤ j ≤ k ≤ n,
output v = (vj, . . . , vk) ∈ Zk−j+1 such that ‖πj(∑k

i=j vibi)‖ = λ1(L[j,k]). In
practice, as well as in the BKZ article [42], this is implemented by enumera-
tion. One sets R = ‖b∗j ‖ as an initial upper bound of λ1(L[j,k]). Enumeration

goes through the enumeration tree formed by ”half” of the vectors in the local
projected lattices L[k,k], L[k−1,k], . . . , L[j,k] of norm at most R. The tree has depth
k − j + 1, and for each d ∈ {0, . . . , k − j + 1}, the nodes at depth d are 0 and
all πk−d+1(u) ∈ L[k−d+1,k] where u = ∑k′

i=j uibi with j ≤ k′ ≤ k, uk′ > 0 and
‖πk−d+1(u)‖ ≤ R. The parent of a node u ∈ L[k−d+1,k] at depth d is πk+2−d(u)
at depth d − 1. Child nodes are ordered by increasing Euclidean norm. The
Schnorr-Euchner algorithm [42] performs a Depth First Search of the tree to
output a nonzero leaf of minimal norm, with the following modification: ev-
erytime a new (nonzero) leaf is found, one updates the enumeration radius R
as the norm of the leaf. The more reduced the basis is, the less nodes in the
tree, and the cheaper the enumeration. The running time of the enumeration
algorithm is N polynomial-time operations where N is the total number of
tree nodes. If the algorithm did not update R, Hanrot and Stehlé [15] noticed
that the number of nodes at depth d could be estimated from the Gaussian
heuristic as:

Hd(R) =
1
2
· Vd(R)

∏k
i=k−d+1

∥∥b∗i
∥∥ =

1
2
· RdVd(1)

∏k
i=k−d+1

∥∥b∗i
∥∥ . (1)

Gama et al. [10] showed that this heuristic estimate is experimentally very
accurate, at least for sufficiently large k− j + 1 and typical reduced bases. We
can therefore heuristically bound the number of nodes at depth d in the actual
Schnorr-Euchner algorithm (with update of R) by setting R = λ1(L[j,k]) and
R = ‖b∗j ‖ in Eq. (1). It is shown in [10] that for typical reduced bases, Hd(R) is
maximal around the middle depth d ≈ (k− j)/2, and the remaining Hd(R)’s
are significantly smaller.

3.3 Analysis

No good upper bound on the complexity of BKZ is known. The best upper
bound known for the number of calls (to the enumeration subroutine) is ex-
ponential (see [14]). In practice (see [9]), BKZ with β = 20 is very practical,
but the running time significantly increases for β ≥ 25, making any β ≥ 40
too expensive for high-dimensional lattices. In practice, the quality of bases
output by BKZ is better than the best theoretical worst-case bounds: accord-
ing to [9], the Hermite factor for high-dimensional lattices is typically c(β, n)n

where c(β, n) seems to quickly converge as n grows to infinity, whereas theo-
retical upper bounds are c′(β)n with c′(β) significantly larger than c(β, n). For
instance, c(20, n) ≈ 1.0128 for large n. Furthermore, [14] recently showed that
if one aborts BKZ after a suitable polynomial number of calls, one can obtain
theoretical upper bounds which are only slightly worse than c′(β)n.

4 BKZ 2.0

When the blocksize is sufficiently high, namely ≥ 30, it is known [9] that the
overall running time of BKZ is dominated by the enumeration subroutine,

which finds a shortest vector in the m-dimensional local projected lattice L[j,k],
using a radius R initially set to ‖b∗j ‖, where 1 ≤ j ≤ k ≤ n and m = k− j + 1.

In this section, we describe BKZ 2.0, an updated version of BKZ with four
improvements, which we implemented by modifying NTL [44]’s implemen-
tation of BKZ [42]. The first improvement is simply an early-abort, which is
common practice in cryptanalysis, and is partially supported by the recent
theoretical result of [14]: we add a parameter that specifies how many iter-
ations should be performed, i.e. we choose the number of oracle calls; this
already provides an exponential speedup over BKZ, because the number of
calls seems to grow exponentially for fixed β ≥ 30 according to the exper-
iments of [9]. The other three improvements aim at decreasing the running
time of the enumeration subroutine: sound pruning [10], preprocessing of lo-
cal bases, and shorter enumeration radius. Though these improvements may
be considered as folklore, we stress that none had been incorporated in BKZ
(except that a weaker form of pruning had been designed by Schnorr and
Hörner [43], and implemented in NTL [44]), and that implementing them is
not trivial.

4.1 Sound Pruning

Pruning speedups enumeration by discarding certain branches, but may not
return any vector, or maybe not the shortest one. The idea of pruned enumera-
tion goes back to Schnorr and Euchner [42], and was first analyzed by Schnorr
and Hörner [43] in 1995. It was recently revisited by Gama et al. [10], who
noticed that the analysis of [43] was flawed and that the pruning was not op-
timal. They showed that a well-chosen high-probability pruning leads to an
asymptotical speedup of 2m/4 over full enumeration, and introduced an ex-
treme pruning technique which gives an asymptotical speedup of 2m/2 over
full enumeration. We incorporated both pruning with non-negligible proba-
bility, and extreme pruning using randomization. Formally, pruning replaces
each of the k − j + 1 inequalities ‖πk+1−d(u)‖ ≤ R for 1 ≤ d ≤ k − j + 1
by ‖πk+1−d(u)‖ ≤ Rd · R where 0 ≤ R1 ≤ · · · ≤ Rk−j+1 = 1 are k − j + 1
real numbers defined by the pruning strategy. For any bounding function
(R1, . . . , Rk−j+1), [10] consider the quantities N′ and psucc defined by:

– N′ = ∑
k−j+1
d=1 H′d is a heuristic estimate of the total number of nodes in the

pruned enumeration tree, where H′d = 1
2

RdVR1,...,Rd
∏k

i=k+1−d‖b∗i ‖
and VR1,...,Rd denotes

the volume of CR1,...,Rd =
{
(x1, . . . , xd) ∈ Rd, ∀1 ≤ i ≤ d, ∑i

l=1 x2
l ≤ R2

i

}
.

– psucc = psucc(R1, . . . , Rm) = Pr
u∼Sm−1

(
∀i ∈ [1, m], ∑i

l=1 u2
l ≤ R2

i

)
. Let t ∈

L[j,k] be a target vector such that ‖πj(t)‖ = R. If the local basis B[j,k] is
assumed to be randomized, then psucc is the probability that πj(t) is a leaf
of the pruned enumeration tree, under the (idealized) assumption that the
distribution of the coordinates of πj(t), when written in the normalized

Gram-Schmidt basis (b∗j /‖b∗j ‖, . . . , b∗k /‖b∗k‖) of the local basis B[j,k], look
like those of a uniformly distributed vector of norm ‖πj(t)‖.

We stress that the assumption is only an idealization: in practice, when m is
small, for a non-negligible fraction of the local blocks B[j,k], one of the vectors
of B[j,k] is a shortest vector of L[j,k], which should have had zero probability.
For the application to BKZ, it makes sense to consider various bounding func-
tions of various psucc, say ranging from 1% to 95%, but with a cost N′ as small
as possible. Based on the methodology of [10], we performed an automated
search to generate such bounding functions, for blocksizes β ranging from 35
to 90 by steps of 5, and psucc ranging from 1% to 95%.

It should be noted that BKZ calls the enumeration subroutine on lattices
L[j,k] whose dimension m = k − j + 1 is not necessarily equal to β. When
j ≤ n− β + 1, the dimension m of the block is equal to β, but when j ≥ n− β,
the dimension m of the block is strictly less than β. To avoid generating bound-
ing functions for every dimension, we decided in this case to interpolate the
bounding function found for β, and checked that interpolating does not affect
much psucc. Finally, in order to boost psucc, we added an optional parameter
ν, so that BKZ actually performs ν pruned enumerations, each starting with
a different random basis of the same local block. This corresponds to the ex-
treme pruning of [10].

4.2 Preprocessing of Local Blocks

The cost of enumeration is strongly influenced by the quality of the local basis,
especially as the blocksize increases: the more reduced the local basis, the big-
ger the volumes of the local projected lattices L[k−d+1,k], and therefore the less
nodes in the most populated depths of the enumeration tree. This is folklore,
but since BKZ improves regularly the quality of the basis, one might think
there is no need to change the local basis before enumeration. However:

– For each enumeration, the local basis is only guaranteed to be LLL-reduced,
even though the whole basis may be more than LLL-reduced.

– In high blocksizes, most enumerations are successful: they find a shorter
vector than the first block vector. This implies that a local LLL-reduction
will be performed to get a basis from a generating set: see Line 6 in Alg. 1.
At the next iteration, the enumeration will proceed on a typical LLL-reduced
basis, and not something likely to be better reduced.

This suggests that for most enumerations, the local basis is only LLL-reduced,
and nothing more, even though other local bases may be better reduced: this
was confirmed by experiments.

Hence, we implemented a simple speedup: ensure that the local basis is
significantly more reduced than LLL-reduced before each enumeration, but
without spending too much time. We used a recursive aborted-BKZ prepro-
cessing to the local basis before enumeration: we performed an automated
search to find good parameters depending on β.

4.3 Optimizing the Enumeration Radius

It is folklore that the enumeration cost is also influenced by the choice of the
initial radius R, even though this radius is updated during enumeration. Ini-
tially, the radius is R = ‖b∗j ‖, but if we knew before hand how short would
be the output vector, we would choose a lower initial radius R, decreasing
the enumeration time. Indeed, the number of nodes at depth d of the enumer-
ation tree (pruned or not) is proportional to Rd. Unfortunately, not much is
known (from a theoretical point of view) on how small should be λ1(L[j,k]),
except general bounds. So we performed experiments to see what was the fi-
nal norm found by enumeration in practice: Fig. 1 compares the final norm
(found by enumeration) to GH(L[j,k]), depending on the starting index j of the
local block, for one round of BKZ. For the lowest indices j, one sees that the fi-
nal norm is significantly lower than GH(L[j,k]), whereas for the largest indices,
it is significantly larger. In the middle, which accounts for most of the enumer-
ations, the ratio between the final norm and the Gaussian heuristic prediction
is mostly within 0.95 and 1.05, whereas the ratio between the norm of the first
local basis vector and GH(L[j,k]) is typically slightly below 1.1. We therefore
used the following optimization: for all indexes j except the last 30 ones, we
let R = min(

√
γGH(L[j,k]), ‖b∗j ‖) instead of R = ‖b∗j ‖, where γ is a radius

parameter. In practice, we selected
√

γ =
√

1.1 ≈ 1.05.

Fig. 1. Comparing
‖b∗j ‖, λ1(L[j,k]) and
GH(L[j,k]), for each
local block B[j,k].

5 New Lattice Records

Here, we briefly report on experiments using 64-bit Xeon processors to break
some lattice records, which suggest that BKZ 2.0 is currently the best lattice
reduction algorithm in practice.

5.1 Darmstadt’s Lattice Challenge

Darmstadt’s lattice challenge [24] started in 2008. For each dimension, the
challenge is to find a vector of norm < q in an Ajtai lattice [2], where q de-

pends on the dimension; and try to minimize the norm. Until now, the highest
challenge solved was 725: the first solutions to all challenges in dimension 575
to 725 were found by Gama and Nguyen in 2008, using NTL’s implementation
of BKZ with SH pruning. Shorter solutions have been found since (see the full
list [24]), but no challenge of higher dimension had been solved. All solutions
were found by reducing appropriate sublattices of much smaller dimension
(typically around 150-200), whose existence follows from the structure of Aj-
tai lattices: we followed the same strategy.

BKZ 2.0 with blocksize 90 (18 pruned-enumerations at 5%) found the first
ever solution to challenges 750, 775 and 800, and significantly shorter vectors
in all challenges 525 to 725, using in total about 3 core-years, as summarized
in Table 1: the first column is the dimension of the challenge, the second one
is the dimension of the sublattice we used to find the solution, the third one
is the best norm found by BKZ 2.0, the fourth one is the previous best norm
found by former algorithms, the fifth one is the ratio between norms, and the
sixth one is the Hermite factor of the reduced basis of the sublattice, which
turns out to be slightly below 1.01dim. The factor 1.01dim was considered to be
the state-of-the-art limit in 2008 by Gama and Nguyen [9], which shows the
improvement.

Table 1. New Solutions for Darmstadt’s lattice challenge [24]

Dim(lattice) Dim(sublattice) New norm Previous norm Ratio Hermite factor
800 230 120.054 Unsolved 1.00978230

775 230 112.539 Unsolved 1.00994230

750 220 95.995 Unsolved 1.0976220

725 210 85.726 100.90 0.85 1.00978210

700 200 78.537 86.02 0.91 1.00993200

675 190 72.243 74.78 0.97 1.00997190

650 190 61.935 66.72 0.93 1.00993190

625 180 53.953 59.41 0.91 1.00987180

600 180 45.420 52.01 0.87 1.00976180

575 180 39.153 42.71 0.92 1.00977180

550 180 32.481 38.29 0.85 1.00955180

525 180 29.866 30.74 0.97 1.00990180

5.2 SVP Challenges

The SVP challenge [40] opened in May 2010. The lattices L are random integer
lattices of large volume, so that λ1(L) ≈ GH(L) with high probability. The
challenge is to find a nearly-shortest vector, namely a nonzero lattice vector of
norm ≤ 1.05GH(L). Using BKZ 2.0 with blocksize 75, 20%-pruning, we were
able to solve all challenges from dimension 90 to 112.

6 Predicting BKZ 2.0 by Simulation

We now present an efficient simulation algorithm to predict the performances
of BKZ 2.0 with high blocksize β ≥ 50 in high dimension, in terms of running
time and output quality. Our simulation is fairly consistent with experiments
using several core-years on 64-bit Xeon processors, on random lattices and
Darmstadt’s lattice challenges. Accordingly, we believe that our simulation
can be used to predict approximately what can be achieved using much larger
computational power than used in our experiments, thereby leading to more
convincing security estimates.

6.1 Description

The goal of our simulation algorithm is to predict the Gram-Schmidt sequence
(‖b∗1‖, ‖b∗2‖, . . . , ‖b∗n‖) during the execution of BKZ, more precisely at the be-
ginning of every round: a round occurs whenever j = 0 in Step 3 of Alg. 1, so
one round of BKZ costs essentially n − 1 enumeration calls. We assume that
the input basis is a “random” reduced basis, without special property.

The starting point of our simulation is the intuition, based on Sect. 4.3, that
the first minimum of most local blocks looks like that of a random lattice of
dimension the blocksize: this phenomenon does not hold in small blocksize
≤ 30 (as noted by Gama and Nguyen [9]), but it becomes more and more true
as the blocksize increases, as shown in Fig. 2, where we see that the expectation
and the standard deviation of λ1(L)

GH(L) seem to converge to that of a random
lattice. Intuitively, this may be explained by a concentration phenomenon: as

Fig. 2. Comparing λ1(L)
GH(L) for a non-

extreme local block during BKZ-β re-
duction, with a random lattice of dimen-
sion β. Expectations with and without
standard deviation are given.

! 1
/G

H

Blocksize

Average value for local block during BKZ "
Standard deviation

1

1.02

1.04

1.06

1.08

1.1

1.12

20 25 30 35 40 45 50

Average value for random lattices

Standard deviation for random lattices

the dimension increases, random lattices dominate in the set of lattices, so
unless there is a strong reason why a given lattice cannot be random, we may
assume that it behaves like a random lattice.

Once we can predict the value of λ1(L[j,k]) for each local block, we know
that this will be the new value of ‖b∗j ‖ by definition of the enumeration sub-
routine, which allows to deduce the volume of the next local block, and there-

fore iterate the process until the end of the round. This gives rise to our simu-
lation algorithm (see Alg. 2).

Algorithm 2 Simulation of BKZ reduction
Input: The Gram-Schmidt norms, given as `i = log(‖b∗i ‖), for i = 1, . . . , n,

a blocksize β ∈ {45, . . . , n}, and a number N of rounds.
Output: A prediction for the Gram-Schmidt norms `′i = log(‖b∗i ‖), i = 1, . . . , n, after

N rounds of BKZ reduction.
1: for k = 1, . . . , 45 do
2: rk ← average log(‖b∗k‖) of an HKZ-reduced random unit-volume 45-dim lattice
3: end for
4: for d = 46, . . . , β, do cd ← log(GH(Zd)) = log(Γ(d/2+1)1/d

π1/2) end for
5: for j = 1, . . . , N do
6: φ← true //flag to store whether L[k,n] has changed
7: for k = 1 to n− 45 do
8: d← min(β, n− k + 1) // Dimension of local block
9: f ← min(k + β, n) //End index of local block

10: log V ← ∑
f
i=1 `i −∑k−1

i=1 `′i
11: if φ = true then
12: if log V/d + cd < `k then
13: `′k ← log V/d + cd;
14: φ← false
15: end if
16: else
17: `′k ← log V/d + cd
18: end if
19: end for
20: log V ← ∑n

i=1 `i −∑n−45
i=1 `′i

21: for k = n− 44 to n do
22: `′k ←

log V
45 + rk+45−n

23: end for
24: `1,...,n ← `′1,...,n
25: end for

We predict this first minimum λ1(L[j,k]) as follows:

– For most indexes j, we choose GH(L[j,k]), unless ‖b∗j ‖ was already better.
– However, for the last indexes j, namely those inside the last β-dimensional

block L[n−β+1,n], we do something different: since this last block will be
HKZ-reduced at the end of the round, we assume that it behaves like an
HKZ-reduced basis of a random lattice of the same volume. Since these
averages may be expensive to compute for large β, we apply a simpli-
fied rule: we determine the last 45 Gram-Schmidt norms from the average
Gram-Schmidt norms (computed experimentally) of an HKZ-reduced ba-
sis of a random 45-dim lattice of unit volume, and we compute the first
β− 45 Gram-Schmidt norms using the Gaussian heuristic. But this model

may not work with bases of special structure such as partial reductions of
the NTRU Hermite normal form, which is why we only consider random
reduced bases as input.

This simulation algorithms allows us to guess the approximate Hermite factor
achieved by BKZ 2.0, given an arbitrary blocksize, as summarized in Table 2:
for a given dimension n, one should run the simulation algorithm, because
the actual blocksize also depends on the dimension. As mentioned in Sect. 2,

Table 2. Approximate required blocksize for high-dimensional BKZ, as predicted by
the simulation

Target Hermite Factor 1.01n 1.009n 1.008n 1.007n 1.006n 1.005n

Approximate Blocksize 85 106 133 168 216 286

the Hermite factor dictates the performances at solving lattice problems rele-
vant to cryptography: see [9] for approx-SVP and unique-SVP, and [28,39,23]
for SIS and LWE. Obviously, we can only hope for an approximation, since
there are well-known variations in the Hermite factor when the input basis is
randomized.

The simulation algorithm also gives us an approximate running time, us-
ing the number of rounds, provided that we know the cost of the enumeration
subroutine: we will discuss these points more precisely later on.

6.2 Consistency with Experiments

It turns out that our simulation matches well with experiments using random
lattices and Darmstadt’s lattice challenges. First, the prediction of the Gram-
Schmidt sequence (‖b∗1‖, ‖b∗2‖, . . . , ‖b∗n‖) by our simulation algorithm is fairly
accurate for random reduced bases, as shown in Fig. 3 This implies that our

Fig. 3. Predicted vs. actual values of
Gram-Schmidt norms during BKZ-50 re-
duction of a 200-dim random lattice.

simulation algorithm can give a good prediction of the Hermite factor of BKZ

at any given number of rounds, which is confirmed by Fig. 4. Furthermore,

1.0095

1.01

1.0105

1.011

1.0115

1.012

1.0125

1.013

10 20 30 40 50 60 70

H
e
rm

it
e
 F

a
c
to

r1
/n

number of rounds

Evolution of the Hermite factor with the number of rounds

Prediction

Fig. 4. Evolution and prediction
of (‖b1‖/vol(L)1/n)1/n during
BKZ-90 reduction in dim 180
for Darmstadt’s lattice chal-
lenges 500–625.

Fig. 4 suggests that a polynomial number of calls seems sufficient to obtain
a Hermite factor not very far from that of a full reduction: the main progress
seems to occur in the early rounds of BKZ, which justifies the use of aborted-
BKZ, which complements the theoretical results of [14].

6.3 Enumeration subroutine

It remains to estimate the cost of the enumeration subroutine, with a radius
equal to the Gaussian heuristic. First, we computed upper bounds, by ap-
plying extreme pruning on bases reduced with BKZ 2.0, following the search
method of [10]: Table 3 gives the approximate cost (in terms of logarithmic
number of nodes) of extreme pruning for blocksizes 100-250, using BKZ-75-
20% as preprocessing, and radius equal to the Gaussian heuristic. Numbers

Table 3. Upper bound on the cost of the enumeration subroutine, using extreme prun-
ing with aborted-BKZ preprocessing. Cost is given as log2(number of nodes).

Blocksize 100 110 120 130 140 150 160 170 180 190 200 250
BKZ-75-20% 41.4 47.1 53.1 59.8 66.8 75.2 84.7 94.7 105.8 117.6 129.4 204.1

Simulation of BKZ-90/100/110/120 40.8 45.3 50.3 56.3 63.3 69.4 79.9 89.1 99.1 103.3 111.1 175.2

of nodes can be approximately converted into clock cycles as follows: in the
implementation of [10], one node requires about 200 clock cycles for double-
precision enumeration, but this figure depends on the dimension, and for high
blocksize, we may need higher precision than double precision. For instance,
Table 3 says that applying extreme pruning in blocksize 120 would cost at
most approximately 253 nodes, which is less than 30 core-years on a 1.86-GHz
Xeon, assuming double precision. This is useful to determine parameters for

feasible attacks. However, these upper bounds should not be considered as
tight: the performances of enumeration techniques depend on preprocessing,
and it is likely that better figures (than Table 3) can be obtained with better pre-
processing, including BKZ 2.0 with different parameters. In fact, Table 3 also
provides a better upper bound, based on our simulation of BKZ with higher
blocksizes 90–120 as a preprocessing. In order to provide security estimates
with a good security margin, we need to estimate how much progress can be
made. Interestingly, there are limits to enumeration techniques. Nguyen [33]
established a lower bound on the number of nodes at each depth of the enu-
meration tree, assuming that the Gaussian heuristic estimates well the number
of nodes (as is usual in analyzing the complexity of enumeration techniques).
The lower bounds are based on the Rankin invariants γn,m(L) of a lattice:

γn,m(L) = min
S sublattice of L

dim S = m

(
vol(S)

vol(L)m/n

)2

.

In particular, [33] shows that the number of nodes in the middle depth of a full
enumeration of a d-dim lattice L with radius GH(L) is≥ Vd/2(1)

√
γd,d/2(L)/Vd(1).

For typical lattices L, the Rankin invariant γn,m(L) is heuristically close to the
following lower bound on Rankin’s constant γn,m (see [7]):

γn,m ≥
(

n
∏n

j=n−m+1 Z(j)

∏m
j=2 Z(j)

) 2
n

(2)

where Z(j) = ζ(j)Γ(j
2)/π

j
2 and ζ is Riemann’s zeta function: ζ(j) = ∑∞

p=1 p−j.
These lower bounds are for full enumeration, but they can be adapted to prun-
ing by taking into account the actual speedup of pruning (as analyzed in [10]),
which is asymptotically 2n/4 for high-probability pruning and 2n/2 for ex-
treme pruning. Table 4 gives the figures obtained with respectively the actual
speedup of the so-called linear pruning, and the asymptotical speedup 2n/2 of
extreme pruning. Compared to the upper bounds of Table 3, there is a signifi-

Table 4. Lower bounds on the cost (in log-nodes) of the enumeration subroutine using
linear pruning or extreme pruning, following [33,10].

Blocksize 100 120 140 160 180 200 220 240 280 380
Linear pruning 33.6 44.5 56.1 68.2 80.7 93.7 107.0 120.6 148.8 223.5

Extreme pruning 9 15 21.7 28.8 36.4 44.4 52.8 61.5 79.8 129.9

cant gap: the lower bound of linear pruning tells us how much progress could
be made if a stronger preprocessing was found for enumeration.

Finally, we note that asymptotically, heuristic variants [36,30,45] of sieve
algorithms [3] are faster than pruned enumeration. However, it is unclear how

meaningful it is for security estimates, since these variants require exponential
space and are outperformed in practice. And more experiments than [36,30]
would be required to evaluate precisely their practical running time. But our
model can easily adapt to new progress in the enumeration subroutine, due
to Table 2.

7 Revising Security Estimates

Here, we illustrate how our simulation algorithm can be used to obtain ar-
guably better security estimates than previously known.

7.1 NTRU Lattices

In the NTRU cryptosystem [18], recovering the secret key from the public key
amounts to finding a shortest vector in high-dimensional lattices of special
structure. Because NTRU security estimates are based on benchmarks with
BKZ, it is interesting to see the limits of this methodology.

In the original article [18], the smallest parameter set NTRU-107 corre-
sponds to lattices of dimension 214, and it was estimated that key recovery
would cost at least 250 elementary operations. The best experimental result
to recover the secret key for NTRU-107 by direct lattice reduction (without
ad-hoc techniques like [25,26,9] which exploit the special structure of NTRU
lattices) is due to May in 1999 [25], who reported one successful experiment
using BKZ with SH pruning [43], after 663 hours on a 200-MHz processor, that
is 248.76 clock cycles. We performed experiments with BKZ 2.0 on 10 random
NTRU-107 lattices: We applied LLL and BKZ-20, which takes a few minutes
at most; We applied BKZ -65 with 5%-pruning, and checked every 5 minutes
if the first basis vector was the shortest vector corresponding to the secret key,
in which case we aborted. BKZ 2.0 was successful for each lattice, and the
aborted BKZ-65 reduction took less than 2000s on the average, on a 2.83Mhz
single core. So the overall running time is less than 40 minutes, that is 242.62

clock cycles, which gives a speedup of at least 70, compared to May’s experi-
ment, and is significantly lower than 250 elementary operations. Hence, there
is an order of magnitude between the initial security estimate of 250 and the
actual security level, which is approximately at most 40-bit.

Now, we revisit recent parameters for NTRUSign. In the recent article by
Hoffstein et al. [17], a summary of the latest parameters for NTRU encryption
and signature is given. In particular, the smallest parameter for NTRUsign
is (N, q) = (157, 256), which is claimed to provide 80-bit security against all
attacks knowns, and 93-bit security against key-recovery lattice attacks. Sim-
ilarly to [9], we estimate that finding the secret key is essentially as hard as
recovering a vector of norm < q in a lattice of dimension 2N = 314 and vol-
ume qN , which corresponds to a Hermite factor of 1.008862N . We ran our sim-
ulation algorithm for these parameters to guess how many rounds would be
required, depending on the blocksize, starting from a BKZ-20 reduced basis

(whose cost is negligible here): about six rounds of BKZ-110 should be suf-
ficient to break NTRUSign-157, which corresponds to roughly 211 enumera-
tions. And according to Table 3, extreme pruning enumeration in blocksize
110 can be done by searching through at most 247 nodes, which corresponds
to roughly 254 clock cycles on a typical processor. This suggests that the secu-
rity level of the smallest NTRUSign parameter against state-of-the-art lattice
attacks is at most 65-bit, rather than 93-bit, which is a significant gap.

7.2 Gentry-Halevi’s Fully-Homomorphic Encryption Challenges

We now turn to Gentry-Halevi’s main Fully-Homomorphic Encryption Chal-
lenges [11], for which no concrete security estimate was given. Decrypting a
ciphertext amounts to solve a BDD instance, which can be done up to the dis-
tance mini ‖bi‖∗/2 using Babai’s nearest plane algorithm. Targetting a given
value of mini ‖bi‖∗ can be transformed into a target Hermite factor in the dual
lattice. This allows us to estimate the required Hermite factor to solve the BDD
instance, based on the approximate distance of the BDD instance and the lat-
tice volume, which is summarized in Table 5.

Table 5. Security Assessment of Gentry-Halevi’s main challenges [11]

Dimension n 512 2048 8192 32768
Name Toy Small Medium Large

Target Hermite factor [9] 1.67n 1.14n 1.03n 1.0081n

Algorithm expected LLL LLL LLL BKZ with blocksize ≈ 130
to decrypt a fresh ciphertext

Time estimate 30 core-days ≤ 45 core-years ≤ 68582 core-years ≈ 2100 clock-cycles

Accordingly, we speculate that decryption for the toy, small and medium
challenge can be solved by LLL reduction, which is not straightforward due
to the lattice dimension and the gigantic bit-size of the basis (note that there is
new theoretical progress [37] on LLL-reduction for large entries). We checked
that this was indeed the case for the toy challenge, by performing an actual
reduction using a modification of fplll [4]. For the small and medium chal-
lenges, we extrapolated running times from truncated challenges, using the
fact that our modification of fplll has heuristic running time O(n3d2) where
d is the bit-size of the lattice volume, where the O constant depends on the
floating-point precision (which increases with the dimension). According to
our simulation, breaking the large challenge would require a blocksize ≈ 130
and approximately 60000 rounds (starting from an LLL basis), that is, 231 enu-
meration calls. Based on Table 3, this enumeration routine would cost at most
260 nodes, so the security offered by the large challenge is at most roughly
100-bit. On the other hand, if ever a stronger preprocessing for enumeration
is found, Table 4 suggests that the security level could potentially drop by a
factor in the range 210 − 240.

Acknowledgements. Part of this work is supported by the Commission of the
European Communities through the ICT program under contract ICT-2007-
216676 ECRYPT II.

References

1. M. Ajtai. Generating random lattices according to the invariant distribution. Draft
of March 2006.

2. M. Ajtai. Generating hard instances of lattice problems. In Proc. STOC ’96, pages
99–108. ACM, 1996.

3. M. Ajtai, R. Kumar, and D. Sivakumar. A sieve algorithm for the shortest lattice
vector problem. In Proc. STOC ’01, pages 601–610. ACM, 2001.

4. D. Cadé, X. Pujol, and D. Stehlé. FPLLL library, version 3.0. Sep 2008.
5. L. Devroye. Non-uniform random variate generation, 1986. Available from http:

//cg.scs.carleton.ca/~luc/rnbookindex.html.
6. U. Fincke and M. Pohst. Improved methods for calculating vectors of short

length in a lattice, including a complexity analysis. Mathematics of Computation,
44(170):463–471, 1985.

7. N. Gama, N. Howgrave-Graham, H. Koy, and P. Q. Nguyen. Rankin’s constant
and blockwise lattice reduction. In Proc. CRYPTO ’06, volume 4117 of LNCS, pages
112–130. Springer, 2006.

8. N. Gama and P. Q. Nguyen. Finding short lattice vectors within Mordell’s inequal-
ity. In Proc. STOC ’08. ACM, 2008.

9. N. Gama and P. Q. Nguyen. Predicting lattice reduction. In Proc. EUROCRYPT ’08,
volume 4965 of LNCS, pages 31–51. Springer, 2008.

10. N. Gama, P. Q. Nguyen, and O. Regev. Lattice enumeration using extreme pruning.
In Proc. EUROCRYPT ’10, volume 6110 of LNCS. Springer, 2010.

11. C. Gentry and S. Halevi. Public challenges
for fully-homomorphic encryption. Available at
https://researcher.ibm.com/researcher/view_project.php?id=1548, 2010.

12. O. Goldreich, S. Goldwasser, and S. Halevi. Challenges for the GGH cryptosystem.
Available at http://theory.lcs.mit.edu/~shaih/challenge.html, 1997.

13. D. Goldstein and A. Mayer. On the equidistribution of Hecke points. Forum Math.,
15(2):165–189, 2003.

14. G. Hanrot, X. Pujol, and D. Stehlé. Analyzing blockwise lattice algorithms using
dynamical systems. In Proc. CRYPTO ’11, LNCS. Springer, 2011.

15. G. Hanrot and D. Stehlé. Improved analysis of Kannan’s shortest lattice vector
algorithm. In Proc. of CRYPTO ’ 07, volume 4622 of LNCS. Springer, 2007.

16. P. S. Hirschhorn, J. Hoffstein, N. Howgrave-Graham, and W. Whyte. Choosing
NTRUEncrypt parameters in light of combined lattice reduction and MITM ap-
proaches. In Proc. ACNS ’09, volume 5536 of LNCS, pages 437–455, 2009.

17. J. Hoffstein, N. Howgrave-Graham, J. Pipher, and W. Whyte. Practical lattice-based
cryptography: NTRUEncrypt and NTRUSign. 2010. In [35].

18. J. Hoffstein, J. Pipher, and J. H. Silverman. NTRU: A ring-based public key cryp-
tosystem. In Proc. ANTS-III, volume 1423 of LNCS, pages 267–288. Springer, 1998.

19. J. Hoffstein, J. H. Silverman, and W. Whyte. Estimated breaking times for ntru
lattices. Technical report, NTRU Cryptosystems, October 2003. Report #012, v2.

20. R. Kannan. Improved algorithms for integer programming and related lattice
problems. In Proc. STOC ’83, pages 193–206. ACM, 1983.

21. M. S. Lee and S. G. Hahn. Cryptanalysis of the GGH cryptosystem. Mathematics in
Computer Science, 3:201–208, 2010.

22. A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovász. Factoring polynomials with ratio-
nal coefficients. Mathematische Ann., 261:513–534, 1982.

23. R. Lindner and C. Peikert. Better key sizes (and attacks) for LWE-based encryption.
Cryptology ePrint Archive, Report 2010/613. Full version of CT-RSA ’11.

24. R. Lindner and M. Rückert. TU Darmstadt lattice challenge. Available at
http://www.latticechallenge.org/.

25. A. May. Cryptanalysis of NTRU–107. Draft of 1999, available on May’s webpage.
26. A. May and J. H. Silverman. Dimension reduction methods for convolution mod-

ular lattices. In Proc. CaLC, volume 2146 of LNCS, pages 110–125. Springer, 2001.
27. J. E. Mazo and A. M. Odlyzko. Lattice points in high dimensional spheres. Monat-

sheft Mathematik, 17:47–61, 1990.
28. D. Micciancio and O. Regev. Lattice-based cryptography. In Post-quantum cryptog-

raphy, pages 147–191. Springer, Berlin, 2009.
29. D. Micciancio and P. Voulgaris. A deterministic single exponential time algorithm

for most lattice problems based on Voronoi cell computations. In Proc. STOC ’10.
ACM, 2010.

30. D. Micciancio and P. Voulgaris. Faster exponential time algorithms for the shortest
vector problem. In Proc. SODA ’10, pages 1468–1480. ACM–SIAM, 2010.

31. P. Q. Nguyen. Cryptanalysis of the Goldreich-Goldwasser-Halevi cryptosystem
from Crypto ’97. In Proc. of Crypto ’99, volume 1666 of LNCS. Springer, 1999.

32. P. Q. Nguyen. Public-key cryptanalysis. In I. Luengo, editor, Recent Trends in Cryp-
tography, volume 477 of Contemporary Mathematics. AMS–RSME, 2009.

33. P. Q. Nguyen. Hermite’s constant and lattice algorithms. 2010. In [35].
34. P. Q. Nguyen and D. Stehlé. LLL on the average. In ANTS, pages 238–256, 2006.
35. P. Q. Nguyen and B. Vallée, editors. The LLL Algorithm: Survey and Applications.

Information Security and Cryptography. Springer, 2010.
36. P. Q. Nguyen and T. Vidick. Sieve algorithms for the shortest vector problem are

practical. J. of Mathematical Cryptology, 2(2):181–207, 2008.
37. A. Novocin, D. Stehlé, and G. Villard. An LLL-reduction algorithm with quasi-

linear time complexity. In Proc. STOC ’11. ACM, 2011.
38. M. Pohst. On the computation of lattice vectors of minimal length, successive

minima and reduced bases with applications. SIGSAM Bull., 15(1):37–44, 1981.
39. M. Rückert and M. Schneider. Estimating the security of lattice-based cryptosys-

tems. Cryptology ePrint Archive, Report 2010/137.
40. M. Schneider and N. Gama. SVP challenge. Available at

http://www.latticechallenge.org/svp-challenge/.
41. C.-P. Schnorr. A hierarchy of polynomial lattice basis reduction algorithms. Theo-

retical Computer Science, 53(2-3):201–224, 1987.
42. C.-P. Schnorr and M. Euchner. Lattice basis reduction: improved practical algo-

rithms and solving subset sum problems. Math. Programming, 66:181–199, 1994.
43. C.-P. Schnorr and H. H. Hörner. Attacking the Chor-Rivest cryptosystem by im-

proved lattice reduction. In Proc. of Eurocrypt ’95, volume 921 of LNCS. Springer,
1995.

44. V. Shoup. Number Theory C++ Library (NTL) version 5.4.1. Available at
http://www.shoup.net/ntl/.

45. X. Wang, M. Liu, C. Tian, and J. Bi. Improved Nguyen-Vidick heuristic sieve algo-
rithm for shortest vector problem. Cryptology ePrint Archive, Report 2010/647.

