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Abstract. Beginning with the work of Groth and Sahai, there has been
much interest in transforming pairing-based schemes in composite-order
groups to equivalent ones in prime-order groups. A method for achieving
such transformations has recently been proposed by Freeman, who iden-
tified two properties of pairings using composite-order groups — “can-
celling” and “projecting” — on which many schemes rely, and showed
how either of these properties can be obtained using prime-order groups.

In this paper, we give evidence for the existence of limits to such trans-
formations. Specifically, we show that a pairing generated in a natural
way from the Decision Linear assumption in prime-order groups can be
simultaneously cancelling and projecting only with negligible probability.

As evidence that these properties can be helpful together as well as indi-
vidually, we present a cryptosystem whose proof of security makes use of
a pairing that is both cancelling and projecting. Our example cryptosys-
tem is a simple round-optimal blind signature scheme that is secure in
the common reference string model, without random oracles, and based
on mild assumptions; it is of independent interest.

1 Introduction

Composite-order groups were introduced for pairing-based cryptography in 2005
by Boneh, Goh, and Nissim [12] and have since been used to realize a large num-
ber of cryptographic systems (see, e.g., the schemes surveyed by Freeman [24]).
At the same time, the limited number of elliptic curve families on which composite-
order groups can be instantiated and the larger parameter sizes associated with
composite-order groups (cf. [23, 13]) has motivated research on translating these
schemes to or obtaining similar ones in the prime-order setting.

In one of the first papers to unify the composite- and prime-order settings,
Groth and Sahai [31] developed non-interactive zero-knowledge schemes that
not only can be instantiated either in composite- or prime-order groups, but are



in fact described identically in either instantiation. What facilitates this flexi-
bility is a new abstraction for pairing-based cryptography in terms of modules
over finite commutative rings with an associated bilinear map; this abstraction
allows for the simultaneous treatment of three different cryptographic assump-
tions: the Subgroup Hiding (SGH) assumption of Boneh, Goh, and Nissim [12]
in composite-order groups; the Decision Linear (DLIN) assumption of Boneh,
Boyen, and Shacham [11], and its k-Linear family of generalizations [45, 33],3

in prime-order groups; and the so-called Symmetric External Diffie-Hellman as-
sumption [7], also in prime-order groups.

More recently, Freeman [24] and Garg, Sahai, and Waters [27] have proposed
methods for transforming schemes secure in the composite-order setting into ones
secure (under different but analogous assumptions) in the prime-order setting.
Freeman, in particular, identifies two properties of pairings on composite-order
groups, projecting and cancelling, and shows how either can be obtained in prime-
order groups. He then demonstrates how to transform several known cryptosys-
tems that rely on one of these properties from composite- to prime-order groups.

Our contribution: limits on transformations from composite to prime order. In
this paper, we show limits to the feasibility of composite-to-prime transforma-
tions such as those mentioned above, suggesting that some schemes cannot be
transformed mechanically from one setting to the other. In our main theorem,
Theorem 6.5, we show that no pairing over prime-order groups can — except in
a negligible fraction of cases — be both projecting and cancelling when subgroup
indistinguishability relies in a natural way on k-Linear, where “natural” simply
means that we follow the definition of the assumption as closely as possible.

If no cryptosystem required a pairing that is both projecting and cancelling,
however, our Theorem 6.5 would not be particularly interesting. As such, we
present a new cryptosystem — a natural pairing-based blind signature scheme
that is of independent interest, and discussed below — whose proof of security
calls for a pairing that is both projecting and cancelling.4

Blind signatures were introduced by Chaum in 1982 [17]. In a blind signature
scheme, a user interacts in a protocol with a signer to obtain a signature on a
message of the user’s choice. When the protocol execution ends, the user obtains
the signature but the signer learns nothing about the message that was signed.
Blind signatures have been used as a building block in a variety of applications,
including electronic cash [20] and electronic voting [19].

One useful feature of a blind signature scheme is concurrency. For example, if
a blind signature used to build an electronic cash system does not retain its secu-
rity even when the signer engages in multiple protocol executions concurrently,
it leaves the issuing bank susceptible to denial-of-service attacks. Concurrency

3 A family of progressively strictly weaker decisional assumptions, where 1-Linear is
DDH and 2-Linear is DLIN.

4 We emphasize that it is the security proof, not the statement of the scheme, that uses
the two pairing properties. We thus do not rule out the possibility that a different
proof strategy will show our scheme secure in prime-order groups.



turns out to be as difficult to achieve for blind signatures as it is for other cryp-
tographic protocols. While many blind signature schemes have proofs of security
only for sequential executions of the protocol, the problem is not merely with
proofs. In one example, Martinet, Poupard, and Sola [38] show that signatures
in a partially blind signature scheme of Cao, Lin and Xue [16] are forgeable if
the signer interacts with two users concurrently.

Our contribution: a round-optimal blind signature scheme. As mentioned above,
we present a new pairing-based blind signature scheme. Our blind signing pro-
tocol is round-optimal: it consists of only two moves (a request and a response),
which implies that it is secure even in the presence of concurrent signing proto-
col executions. Our scheme is practical, has a proof of security (without random
oracles) in the common reference string model, and relies for its security on
falsifiable and non-interactive assumptions: computational Diffie-Hellman and
Subgroup Hiding. These assumptions are milder than those used in any previ-
ous practical concurrently secure blind signature, including those in the random
oracle model. (“Practical” in this sense means not relying on general NIZKs for
NP as a building block.) Our scheme extends in a natural way to give a partially
blind signature scheme [3] with the same properties.

Our blind signatures combine the Waters signature scheme [46] with non-
interactive witness-indistinguishable proofs developed in a line of papers by
Groth, Ostrovsky, and Sahai [30, 29, 31]. In this structure our scheme is related
to the group signature scheme of Boyen and Waters [15]. The primary disadvan-
tage of our scheme, as with the Boyen-Waters group signature, is its bit-at-a-time
nature, which makes the user’s blind signing request large: some 40 kilobytes at
the 1024-bit security level. The signer’s response and the resulting signatures,
however, are short.

Related work. The blind signature literature is extensive and varied. Below, we
briefly survey the most closely related schemes with concurrent security; see [5,
4] for more complete recent treatments.

In the random oracle model, there exist elegant round-optimal blind signa-
tures, due to Chaum [18] and Boldyreva [10], that feature short public keys,
short signatures, and an efficient blind signing protocol. Unfortunately the se-
curity proofs for these schemes rely on strong interactive assumptions: the RSA
known-target inversion assumption [9] and the chosen-target CDH assumption
(by contrast, the underlying ordinary signatures can be shown secure using RSA
and CDH, respectively).

In the common reference string model, several practical concurrently secure
blind signature schemes have been proposed. Unlike our scheme, these schemes
rely on assumptions that are interactive or whose statement size grows with
the number of queries in the reduction (i.e., “q-type”). Kiayias and Zhou [35]
give four-move blind and partially-blind signature schemes secure under the
(interactive) LRSW assumption [37], the Paillier assumption [42], and DLIN.
Okamoto [40] gives four-move blind and partially blind signature schemes based
on the (q-type) Two-Variable Strong Diffie-Hellman assumption and Paillier.



Fuchsbauer [25] gives two-move blind signature schemes based on the (q-type)
Asymmetric Double Hidden Strong Diffie-Hellman assumption, the Asymmet-
ric Weak Flexible CDH assumption, and DLIN. Finally, Abe, Haralambiev, and
Ohkubo [4] give two-move blind signature schemes based on the (q-type) Simul-
taneous Flexible Pairing assumption and DLIN. (The last two papers appeared
together as [2].)

Also in the common reference string model, blind signatures that use general
NIZKs for NP (and are therefore not practical) were given by Juels, Luby, and
Ostrovsky [34], Fischlin [22], and Abe and Ohkubo [5]. The Fischlin and Abe-
Ohkubo schemes are round-optimal.

Okamoto [40] first observed that the Waters signature can be combined with
witness-indistinguishable proofs for a simple NP language to yield blind and
partially blind signatures. Our scheme could be viewed as an instantiation of
Okamoto’s framework (though we blind the message differently) where we take
advantage of Groth-Ostrovsky-Sahai proofs to eliminate a round of interaction.

Until recently, no concurrently secure blind signature schemes were known in
the plain public-key model. The first such scheme was given by Hazay et al. [32];
it relies on general NIZKs, and its round complexity is poly-logarithmic in the
number of concurrent executions for which security must be guaranteed.

Applications and extensions. Finally, as an application of our techniques, we
show (in the full version of our paper [39]) how our blind signatures may be used
within the Waters IBE system [46] to yield a blind IBE scheme, as introduced
by Green and Hohenberger [28]. Compared to Green and Hohenberger’s blind
extraction protocol, our protocol achieves concurrent security but adds a com-
mon reference string and a reliance on the SGH assumption.5 Furthermore, the
Waters signature naturally extends into a hierarchical identity-based signature
(cf. [43]); applying our construction at level 2 of the resulting signature gives
an identity-based blind signature [47] concurrently secure in the common refer-
ence string model.6 Alternatively, using the Boyen-Waters group signature [15]
at level 1 of the hierarchy and our blind signature at level 2 gives a group blind
signature [36] concurrently secure in the common reference string model.

2 Mathematical Background

In this paper, we work with bilinear groups, which are cyclic groups G of some
finite order that admit a nondegenerate bilinear map e : G×G→ GT . Because we
generalize the concept of a group and work with modules, we are able to describe

5 The efficient range proofs due to Boudot [14] rely on the Strong RSA assumption
(due to Baric and Pfitzmann [8]) and require a common reference string. If the
scheme of Green and Hohenberger is instantiated with these range proofs then its
assumptions and setup model are comparable to those of our scheme, but without
providing concurrent security.

6 One could also obtain an identity-based blind signature through generic composition
of our blind signature and an ordinary signature [26].



our scheme without relying on any particular properties of the underlying group
(with the caveat, as mentioned above, that the scheme is provably secure only
for composite-order groups).

2.1 Modules

We first recall the definition of a module; this serves as the foundation for our
blind signature scheme, and more specifically for the Groth-Sahai commitments
used in our scheme. (See [21, Ch. 10] for further background on modules.)

Definition 2.1. Let (R,+, ·, 0, 1) be a finite commutative ring. An R-module A
is an abelian group (A,+, 0) such that there exists an operator (namely, scalar
multiplication) R×A→ A, denoted by (r, x) 7→ rx, satisfying the following four
properties for all r, s ∈ R and x, y ∈ A:

– (r + s)x = rx+ sx.
– r(x+ y) = rx+ ry.
– r(sx) = (rs)x.
– 1x = x.

When A is written multiplicatively our operator becomes exponentiation and
the requirements are written as xr+s = xr · xs, (x · y)r = xr · yr, (xr)s = xrs,
and x1 = x for all r, s ∈ R and x, y ∈ A.

The concept of a module generalizes that of a vector space: when R is a field,
the definitions of an R-module and an R-vector space coincide. The concept of a
module also generalizes the concept of an abelian group, as any abelian group can
be viewed as a Z-module. If A is isomorphic toRr as abelian groups, then r is the
rank of A. When R is a field, module rank is the same as vector space dimension.
In cryptography, we are most used to working with Z/nZ- and Fp-modules; for
example, any finite group of exponent p can be viewed as a Fp-module.

2.2 Groth-Sahai commitments

Groth and Sahai [31] devise two types of commitments: commitments to elements
in anR-module A, and commitments to elements in the ringR. For our purposes,
we will need only commitments to bits; we can simplify things even further by
always setting A = G for our bilinear group G.

To form commitments to module elements, Groth and Sahai define an R-
module B and two homomorphisms τ : A→ B and ρ : B → A.7 These maps are
defined such that, for some elements h1, . . . , hm in B, ρ(hi) = 1 for all i and ρ is
non-trivial for all x that are not contained in B1 := 〈h1, . . . , hm〉. A commitment
to x ∈ A is then defined as c(x) = τ(x)

∏m
i=1 h

ri
i for random values r1, . . . , rm ←

R. This means that the hi elements act as keys for the commitment scheme,
and that the common reference string is (R, A,B, τ, ρ, h1, . . . , hm). There are
two cases:
7 Our notation differs from that of Groth and Sahai, but the ideas are the same.



– Hiding keys: in this case, the hi elements generate the whole module B; in
other words, B1 = 〈h1, . . . , hm〉 = B. This implies that τ(A) ⊆ B1, which
means that c(x) will be perfectly hiding (as each commitment will be a
random element of B).

– Binding keys: in this case, B1 6= B and ρ(c) = ρ(τ(x)hr) = ρ ◦ τ(x) for some
restricted space of inputs x. To determine what this restricted space is, we
see that c will generally reveal the coset of B1 where τ(x) lives. Thus in
order for the commitment to be perfectly binding we must restrict the space
of inputs x to be the inverse image of B2 ' B/B1; because we know that
B1 6= B, both B2 and τ−1(B2) are non-trivial and so this domain restriction
is actually meaningful. (Since B is an abelian group, the quotient module is
always well-defined.)

It is clear from these definitions that a set of keys cannot be both hiding and
binding, as the settings require very different properties of the commitment
keys h1, . . . , hm. To get any meaningful blindness properties, however, we need
these two settings to be indistinguishable. We therefore require an assumption
that implies this indistinguishability; the choice of assumption depends on the
instantiation being used.

3 Security Notions for Blind Signatures

We define a blind or partially blind signature scheme in the common reference
string (CRS) model to be a collection of four protocols: a Setup(1k) algorithm
that outputs the CRS σCRS , a KeyGen(σCRS ) algorithm that outputs the signing
key pair (pk, sk), a BlindSign protocol, which consists of an interaction of the
form User(σCRS , pk,M)↔ Signer(σCRS , sk) (in which the signer outputs success
if the protocol is successful, and the user outputs success and the unblinded sig-
nature σ), and finally a Verify(σCRS , pk,M, σ) algorithm that outputs accept if
the signature is valid and fail if not.

In general, there are two properties that blind and partially blind signatures
must satisfy: blindness and one-more unforgeability. Informally, the blindess re-
quirement says that in the process of signing a user’s message, the signer does
not learn anything abut the message he is signing. The one-more unforgeability
requirement says that if the user interacts with the signer ` times, then he should
be able to produce ` signatures and no more (so in particular, he cannot produce
`+ 1). We now describe these properties more formally.

3.1 Blind signatures

Formal definitions of blind signatures were introduced by Juels, Luby, and Ostro-
vsky [34], although both properties were considered informally in Chaum’s orig-
inal paper on the subject [17], and one-more unforgeability was considered for-
mally in Pointcheval and Stern’s work on security arguments for signatures [44].



In the Juels-Luby-Ostrovsky formalization, the blindness property is defined
as follows: the adversary is given a public-private key pair and outputs two mes-
sages M0 and M1. He then engages in two signing protocols with honest users:
the first user requests a signature on message Mb and the second on message
M1−b, where b is a random bit unknown to the adversary. The adversary is then
given the resulting signatures σ0 and σ1, but only if both interactions are suc-
cessful, and his goal is to guess the bit b (given the messages, the corresponding
signatures, and the signing protocol transcripts).

In this paper, we use a stronger version of the blindness property which
allows the adversary to generate the signing key pair himself, possibly in a mali-
cious manner. This strengthening was proposed independently in several recent
papers [1, 41, 35].

The one-more unforgeability property can be defined as follows: the adversary
is given a public key and engages in multiple executions of the blind signing
protocol with a signer; the adversary is able to choose how to interleave the
executions. At the end, the adversary is considered successful if he is able to
output `+ 1 distinct message-signature pairs (M1, σ1), . . . , (M`+1, σ`+1), where
` is the number of executions in which the signer outputs success.

In this definition, two message-signature pairs (Mi, σi) and (Mj , σj) are con-
sidered distinct even if Mi = Mj (so if σi and σj are just two different signatures
on the same message) for i 6= j. Unfortunately, this means that any signature
scheme in which signatures can be re-randomized (like our signature scheme, as
we will see in Section 4) will automatically be unable to satisfy one-more un-
forgeability. We therefore weaken the property by requiring that the adversary
be unable to output `+ 1 message-signature pairs in which the messages are all
distinct.8 This modified definition was also considered recently by Okamoto [41].

We put all this information together and give a formal definition of security
for blind signature schemes in the full version of this paper [39].

3.2 Partially blind signatures

The security properties of blind signatures can also be extended to partially blind
signatures; these formalizations are due to Abe and Okamoto [6]. For partially
blind signatures, the adversary outputs two info strings info(0) and info(1) in
addition to its messages M0 and M1. It then interacts with two separate users in
the same manner as before, except this time the first user requests a signature on
Mb using info(0) and the second requests a signature on M1−b with info info(1).
The adversary is given the resulting signatures σ0 and σ1 if both interactions
were successful and if info(0) = info(1). As before, his goal is to guess the bit b.

The one-more unforgeability property is also quite similar to the property for
blind signatures; here, the adversary is allowed to choose the info string for each
interaction with the signer. The goal is then for the adversary to output an info
string info∗ as well as `+ 1 message-signature pairs (M1, σ1), . . . , (M`+1, σ`+1),

8 We observe that blind signatures satisfying this weakened unforgeability property
are still sufficient for e-cash and other standard applications of blind signatures.



where ` represents the number of interactions in which the signer output success
while using the info string info∗.

4 Underlying Signature Scheme

As our underlying signature scheme we use a slightly modified version of the
Waters signature scheme [46]. Essentially, we just need to generalize the Waters
signature scheme by bringing it into the language of modules so that we can use
it in combination with Groth-Sahai commitments to create our blind signature
scheme.

4.1 CRS setup

For the Waters signature, the required elements for the common reference string
are a bilinear group G, the target group GT and the bilinear map e : G×G→ GT ,
as well as generators g, u′, u1, . . . , uk for G, where k denotes the length of the
messages to be signed. We now add in the elements discussed in Section 2.2:
we start with a ring R such that G can be interpreted as an R-module. We
then add in an R-module B, a map τ : G → B, a map ρ : B → G, and
a bilinear map E : B × B → BT , which also requires us to specify a target
module BT and the resulting τT and ρT maps. This means that the CRS will
be σsig = (R, G,GT , B,BT , e, E, τ, τT , ρ, ρT , g, u′, u1, . . . , uk). The relations be-
tween all these maps are summarized in the following figure:

Fig. 1. Commutative diagram for our modules.

4.2 Signing protocol

In our generalized Waters signature, the size of the message space will be {0, 1}k
for some value k (for example, to use hash-and-sign with SHA-1 as the hash
function we would set k = 160). As noted above, the CRS, which is shared
between the user and the signer, will contain k + 1 random generators of G.

– Setup(1k) : Output a tuple σsig that has been computed as described in the
previous section.

– KeyGen(σsig): Pick a random value α← R and set A = E(τ(g), τ(g))α. The
public key will be pk = A and the secret key will be sk = α (actually, τ(g)α

will suffice).



– Sign(σsig , sk,M): Write the message out bitwise as M = b1 . . . bk, and write
sk = τ(g)α. Pick a random r ← R and compute

S1 = τ(g)α
(
τ(u′)

k∏
i=1

τ(ui)bi

)r
and S2 = τ(g)−r.

Output the signature σ = (S1, S2).
– Verify(σsig , pk,M, σ): Again, write the message out bitwise as M = b1 . . . bk;

also write the signature as σ = (S1, S2) and the public key as pk = A. Check
that these values satisfy the following equation:

E(S1, τ(g)) · E
(
S2, τ(u′)

k∏
i=1

τ(ui)bi

)
= A. (1)

If they do, output accept; else, output fail.

One nice property of the Waters signature (and our extended Waters sig-
nature) is that anyone can re-randomize a signature by choosing s ← R and
computing S′1 = S1 ·

(
τ(u′)

∏
i τ(ui)bi

)s and S′2 = S2 · τ(g)−s. Since this results
in S′1 = τ(g)α

(
τ(u′)

∏
i τ(ui)bi

)r+s and S′2 = τ(g)−(r+s), the re-randomization
process really does give us a valid signature. In particular, the randomness in the
resulting signature (S′1, S

′
2) will be information-theoretically independent from

the randomness r chosen by the signer in the signature (S1, S2).
We recall the computational Diffie-Hellman (CDH) assumption used for the

Waters signature:

Assumption 4.1. Let G be an algorithm that outputs a tuple (q,G, g), where
G is a group of order q (not necessarily prime) and g is a generator of g. We
say that G satisfies the computational Diffie-Hellman assumption if it is com-
putationally infeasible to compute the value gab given the tuple (g, ga, gb). More
formally, for all PPT adversaries A there exists a negligible function ν(·) and a
security parameter k0 such that the following holds for all k > k0:

Pr
[
(q,G, g)← G(1k); a, b← Zq : A(g, ga, gb) = gab

]
= ν(k).

The Waters signature scheme is existentially unforgeable if G satisfies the
CDH assumption. In our extended version, the signature scheme will be existen-
tially unforgeable if B satisfies the CDH assumption. As the proof is a trivial
extension of Waters’ proof, we will not include it here.

5 Our Blind Signature Scheme

In this section we describe our blind signature scheme. Although we describe
only the partially blind setting, our description also encapsulates the fully blind
setting, which corresponds to the case k0 = 0.



5.1 CRS setup

In our CRS we must include all the necessary elements for Groth-Sahai commit-
ments as well as values in the tuple σsig of Section 4.1. This means our CRS will
be σCRS = (σsig , h1, . . . , hm), where the hi elements are binding keys for Groth-
Sahai commitments. Specifically, the elements hi generate a proper submodule
B1 of the module B used in the Waters signature scheme.

5.2 The partially blind protocol

In the following protocol, the user and signer both have access to an info string
info. At the end of the protocol, the user obtains a signature on info||M for a
message M , while the signer learns nothing beyond the fact that the message M
followed the guidelines laid out in info. In addition, the user and the signer will
have agreed upon the length of the info string; call it k0 for 0 ≤ k0 ≤ k. Setting
k0 = 0 corresponds to a fully blind signature, while setting k0 = k corresponds
to an ordinary run of the (generalized) Waters signature scheme.

– Setup(1k): Output σCRS as described in the previous section (Section 5.1).
– KeyGen(σCRS ): Same as KeyGen from Section 4.2.
– User(σCRS , pk, info,M): First write the info string out bitwise, as info =
b1 . . . bk0 , and similarly write the message as M = bk0+1 . . . bk. Now, for each
i such that k0 < i ≤ k, pick random values ti1, . . . , tim ← R and compute

ci = τ(ui)bi ·
m∏
j=1

h
tij

j and πij =
(
τ(ui)2bi−1 ·

m∏
j=1

h
tij

j

)tij

,

where ci acts as a GS commitment to the bit bi and ~πi = {πij}mj=1 acts as
a proof that the value contained in ci is in fact a 0 or a 1. Send the tuple
req = (ck0+1, ~πk0+1, . . . , ck, ~πk) as a request to the issuer (and save some
state information state).

– Signer(σCRS , sk, info, req): First, write info = b1 . . . bk0 and sk = τ(g)α.
Upon receiving the request, check that each ci is indeed a commitment to a
0 or 1 by checking that

E
(
ci, τ(ui)−1ci

)
=
∏m
j=1E(hj , πij) (2)

for each k0 < i ≤ k. If this equation fails to hold for any value of i, abort
the protocol and output ⊥. Otherwise, compute the value

c = τ(u′)
( k0∏
i=1

τ(ui)bi

)( k∏
i=k0+1

ci

)
.

Finally, pick a random value r ← R and compute

K1 = τ(g)α · cr, K2 = τ(g)−r, and K3j = h−rj for 1 ≤ j ≤ m.

Set ~K3 = {K3j}mj=1, send the tuple (K1,K2, ~K3) back to the user, and output
success and info.



– User(state, (K1,K2, ~K3)): First, check that K2 and ~K3 were formed properly
by checking satisfiability of

E
(
K3j , τ(g)

)
= E(K2, hj) (3)

for each 1 ≤ j ≤ m. If this equation does not verify for some j, abort and
output ⊥. Otherwise, unblind the signature by computing

S1 = K1

k∏
i=k0+1

m∏
j=1

K
tij

3j and S2 = K2. (4)

Next verify that this is a valid signature on info||M by running Verify(σCRS ,
pk, info||M, (S1, S2)). If this step outputs fail, abort the protocol and output
⊥. If it outputs accept, however, re-randomize the signature by choosing a
random value s← R and computing

S′1 = S1

(
τ(u′)

k∏
i=1

τ(ui)bi

)s
and S′2 = S2 · τ(g)−s.

The final signature is σ = (S′1, S
′
2); output σ as well as info and success.

– Verify(σCRS , pk,M, σ): Same as Verify from Section 4.2.

Theorem 5.1. The blind signature scheme outlined above is correct and par-
tially blind, under the assumption that the hi values in the hiding and binding
settings are indistinguishable.

The proof of Theorem 5.1 appears in the full version of this paper [39]. The
theorem demonstrates correctness and (partial) blindness, but it does not show
one-more unforgeability. In order to prove this last property, we need to define
two properties of pairings, adapted from Freeman [24, §3] for our purposes:

Definition 5.2. A pairing E : B × B → BT is cancelling if there exists a de-
composition B = B1 ×B2 such that E(b1, b2) = 1 for all b1 ∈ B1, b2 ∈ B2.

Definition 5.3. A pairing E : B×B → BT is projecting if there exists a decom-
position B = B1 ×B2, a submodule B′T ⊂ BT , and homomorphisms π : B → B
and πT : BT → BT , such that B1 ⊆ ker(π), π(x) = x for x ∈ B2, B′T ⊆ ker(πT ),
and πT (E(x, y)) = E(π(x), π(y)) for all x, y ∈ B.

As we will see below, the pairing E has both of these properties (with respect
to the same decomposition B = B1 × B2) when instantiated using composite-
order groups under the Subgroup Hiding (SGH) assumption. Because SGH also
provides the necessary indistinguishability properties, we obtain the following
theorem, a proof of which can be found in the full version of this paper [39]:

Theorem 5.4. The blind signature scheme outlined above is one-more unforge-
able under the SGH assumption and the assumption that the modified Waters sig-
nature scheme in Section 4 is existentially unforgeable on the submodule B2 ⊆ B.



5.3 Instantiation under the SGH assumption

We first recall the Subgroup Hiding (SGH) assumption:

Assumption 5.5 ([12]). Let G be an algorithm that outputs a tuple (p, q,G,GT , e)
such that G and GT are both groups of order n = pq and e : G × G → GT is
a nondegenerate bilinear map. We say that G satisfies the Subgroup Hiding as-
sumption if it is computationally infeasible to distinguish between an element of
G and an element of Gq. More formally, for all PPT adversaries A there exists
a negligible function ν(·) and a security parameter k0 such that the following
holds for all k > k0:∣∣∣Pr

[
(p, q,G,GT , e)← G(1k);n = pq;x← G : A(n,G,GT , e, x) = 0

]
− Pr

[
(p, q,G,GT , e)← G(1k);n = pq;x← G : A(n,G,GT , e, xp) = 0

]∣∣∣ < ν(k).

To instantiate our blind signature scheme under this assumption, we use a
group G of order n = pq with p, q prime. We define B = G and τ to be the
identity map; this means that we can use E = e. We need only one hi element,
namely an h1 such that h1 generates Gq in the binding setting and h1 generates
the whole group G in the hiding setting. The SGH assumption tells us that
these choices of h1 are indistinguishable. We can also describe our ρ map as
ρ(ci) = cqi = (uqi )

bi since h1 has order q. Because the ui are all generators for G
and therefore uqi 6= 1, we see that the ρ map will indeed reveal the bit bi.

Because h1 will generate either G or Gq, we have B = Gp×Gq, which means
(looking back at the statement of Theorem 5.4) that we assume for the secu-
rity of our blind signature that CDH is hard in Gp. To see that the pairing
e is cancelling, note that every element of Gp can be written as a = gαq for
some α ∈ Fp and every element of Gq can be written as as b = gβp for some
β ∈ Fq. Then e(a, b) = e(gαq, gβp) = e(gαβpq, g) = e

(
(gn)αβ , g

)
= 1 because G

has order n. To see that e is projecting, note that there exists a λ ∈ Zn such
that λ ≡ 1 mod p and λ ≡ 0 mod q, and that furthermore this value is efficiently
computable (given the factorization of n) using the Chinese Remainder Theo-
rem. Thus exponentiating by λ cancels out the Gq component of a group element
while leaving the Gp component unchanged. This allows us to define π(z) = zλ

for z ∈ G and πT (zT ) = (zT )λ for zT ∈ GT . These maps are easily seen to satisfy
the projecting properties.

Finally, to compute the value h1 we can set h1 = g in the hiding setting
and h1 = gp in the binding setting. This means that, as with the map ρ, the
factorization of n will be required as a trapdoor to compute h1.

The obvious downside of using our scheme under the SGH assumption is the
use of a composite-order group, which necessitates a common reference string
generated by a trusted third party.9 The upside, on the other hand, is that the

9 It is an open problem to replace the trusted third party with an efficient secure
multiparty computation protocol for computing the CRS.



scheme is as efficient as possible under this assumption, as each part of the
signature involves only one group element.10

6 Converting to a Prime-Order Setting

In this section we argue that our scheme cannot be instantiated securely under a
natural usage of the k-Linear family of assumptions in prime-order groups. The
k-Linear family generalizes the Decision Diffie-Hellman and Decision Linear [11]
assumptions (which can be recovered by setting k = 1 or 2, respectively) and is
defined as follows:

Assumption 6.1 ([45, 33]). Let G be a generation algorithm that outputs a tu-
ple (p,G, g) such that p is prime, G is a group of order p, and g is a generator of
G. We say that G satisfies the k-Linear assumption if it is computationally infea-
sible to distinguish between tuples of the form (gα1 , . . . , gαk+1 , gα1r1 , . . . , gαkrk ,

gαk+1
Pk

i=1 ri) and tuples of the form (gα1 , . . . , gαk+1 , gα1r1 , . . . , gαk+1rk+1) for
random αi, ri ← Fp. More formally, for all PPT adversaries A there exists
a negligible function ν(·) and a security parameter k0 such that the following
holds for all k > k0:∣∣∣∣∣∣Pr

 (p,G,g)←G(1k)

α1,...,αk+1
R←Fp

r1,...,rk
R←Fp

: A(gα1 , . . . , gαk+1 , gα1r1 , . . . , gαk+1
Pk

i=1 ri) = 0


−Pr

 (p,G,g)←G(1k)

α1,...,αk+1
R←Fp

r1,...,rk+1
R←Fp

: A(gα1 , . . . , gαk+1 , gα1r1 , . . . , gαk+1rk+1) = 0

∣∣∣∣∣∣ < ν(k),

Let G be a bilinear group of prime order p with a pairing e : G × G → GT .
When we refer to a “natural” use of the k-Linear assumption, we mean that
we define the module B to be Gk+1 and the module B1 to be generated by k
elements of B that span a rank-k submodule. Indeed, one way to interpret the
k-Linear assumption is that a random element in the submodule B1 of Gk+1

generated by elements of the form (1, . . . , 1, gαi , 1, . . . , 1, g) for i = 1, . . . , k is
indistinguishable from a random element of Gk+1. Our use of the assumption
generalizes this interpretation only slightly, by randomizing the generators of
B1. Note that in our setup the quotient module B2 = B/B1 has Fp-rank 1.

Following Freeman [24, §2], we define a (symmetric) pairing on B by setting
BT = (GT )m for some integer m and choosing (k + 1) × (k + 1) (symmetric)
matrices E(`) over Fp for ` = 1, . . . ,m. We then set the `th component of the
pairing to be

E
(

(g1, . . . , gk+1), (h1, . . . , hk+1)
)(`)

:=
k+1∏
i,j=1

e(gi, hj)e
(`)
ij , (5)

10 Of course, the number of bits taken to represent the composite-order group element,
approximately 1024, is much larger than it would be for a prime-order group element,
which can be as small as 160 bits (at the 80-bit security level).



where e(`)ij denotes the (i, j)-th entry of E(`). The connection between this setup
and the k-Linear assumption is given by the following theorem:

Theorem 6.2 ([24, Theorem 2.5]). Let G,B,B1, BT be as described above,
with B1 a uniformly random rank-k submodule of B. If G satisfies the k-Linear
assumption, then a random element of B1 is computationally indistinguishable
from a random element in B.

While any scheme based on Groth-Sahai proofs requires the projecting prop-
erty of Definition 5.3 and the indistinguishability of elements in B1 and B (i.e.,
the indistinguishability of hiding and binding commitment keys), our scheme
also requires the cancelling property of Definition 5.2. In the remainder of this
section, we show that for any k, the three properties (projecting, cancelling,
and key indistinguishability) cannot simultaneously be obtained in prime-order
groups using the k-Linear assumption as described above, except with negligible
probability (over the choice of the module B1).

We start by showing that the image of a symmetric pairing on a group G of
prime order p must also have order p. In what follows, we denote by E(B,B)
the submodule of BT generated by all elements of the form E(x, y) for x, y ∈ B.

Lemma 6.3. If G is a group of prime order p and e : G×G→ GT is a nonde-
generate symmetric bilinear map, then the order of e(G,G) is p.

Proof. We first observe that e(G,G) has exponent p; to see this, note that since
G has order p, we have e(x, y)p = e(xp, y) = e(1, y) = 1 for any x, y ∈ G.
Since e(G,G) has exponent p, any element is of the form z =

∏
i e(xi, yi)

ci for
xi, yi ∈ G and ci ∈ Fp. Since G is cyclic, we can write xi = gai and yi =
gbi for a generator g and unique ai, bi ∈ Fp. By bilinearity, we can write z =
e(g, g)

P
i aibici , and therefore e(G,G) is a cyclic group generated by e(g, g); the

nondegeneracy of e implies that e(g, g) has order p. ut

Lemma 6.3 shows that by replacing GT with e(G,G), we may assume without
loss of generality that GT has order p. We make this assumption in the remainder
of the section. We will also assume that the values used to define the pairing
E on the module B are independent of the submodules B1 and B2; if they are
not independent, then the fact that they are related to the (publicly known)
generators of B1 gives an adversary information about B1 that could be used
to break the indistinguishability assumption. Similarly, if the pairing depends
on B2, then the adversary may be able to use this information to compute an
element y ∈ B2; then given an element x in either B1 or B, he could compute
E(x, y) and conclude that x ∈ B1 if and only if the resulting value is 1.

We can now show that in the prime-order setting our indistinguishability
restrictions on B and its submodules will, with high probability, yield a pairing
E that can be either projecting or cancelling, but not both at the same time.
Our approach is to construct a cancelling pairing and then show that it implies
that the image of the pairing E is of order p. We will then show that this implies
that the pairing cannot satisfy the projecting property.



In general, there are two methods in the literature for cancelling paired group
elements. As seen in Section 5.3, the cancelling in the composite setting is fairly
straightforward: it follows from the fact that the orders of the Gp and Gq sub-
groups are relatively prime. In a prime-order setting this is not an option, as
every component (i.e., G, GT , B, B1, B2, BT ) has exponent p. We therefore
need to use linear combinations of exponents in order to successfully cancel ele-
ments. Our next result can be interpreted as showing that forming these linear
combinations requires us to combine elements in the pairing and thus shrink
the size of the pairing’s image. To simplify notation, we state the proposition
relative to the (k − 1)-Linear assumption.

Proposition 6.4. Let G be a bilinear group of prime order p with pairing e : G×
G→ GT . Let B be the rank-k G-module Gk, let BT = (GT )m for some positive
integer m, and let E : B×B → BT be a nondegenerate pairing defined as in (5).
If B1 is a uniformly random rank-(k − 1) submodule of B and E is a cancelling
pairing that is independent of the decomposition B = B1×B2, then e(B,B) has
order p with overwhelming probability.

Proof. To start, we write elements in B as either a = (a1, . . . , ak) or b =
(b1, . . . , bk) with ai, bi ∈ G. Equivalently, we can fix a generator g of G and
write a = (gα1 , . . . , gαk) and b = (gβ1 , . . . , gβk) for exponents αi, βi ∈ Fp. As we
saw in (5) above, the element E(a,b) ∈ BT is a tuple of elements of GT , in which
each entry is of the form T =

∏
i,j e(ai, bj)

eij . By assumption, the coefficients
eij ∈ Fp are independent of the αi and βi values.

Suppose that a ∈ B1 and b ∈ B2; let us see what we require in order to
have T = 1. Let a1, . . . ,ak−1 be a set of generators of B1, and write au =
(gαu1 , . . . , gαu,k−1) for u = 1, . . . , k − 1. Then a general element of B1 is given
by a = ar1 · · ·ark−1 for arbitrary r1, . . . , rk−1 ∈ Fp. Since B1 has rank k − 1,
the submodule B2 has rank 1 and a general element of B2 is given by b =
(gβ1t, . . . , gβkt) for some fixed β1, . . . , βk ∈ Fp and arbitrary t ∈ Fp. Looking
back at how our element T is computed in (5), we can see that the condition
T = 1 is equivalent to

∑
u

ru

(∑
i

αui

(∑
j

eijβjt

))
= 0

In matrix notation, this is ~r·A·E ·~b·t = 0, where ~r is the row vector (r1, . . . , rk−1),
E = [eij ] is the k × k matrix specifying the pairing coefficients (denoted E(`) in
(5)), A = [αui] is the (k−1)×k matrix whose rows are the vectors corresponding
to the generators of B1, and ~b is the column vector (β1, . . . , βk). Because this
requirement must hold for all values of ~r and t, we can further reduce the equation
to A · E ·~b = 0. We now consider two different cases: when E is invertible and
when E is singular.

We first consider the case where E is singular. The cancelling property re-
quires that A · E · ~b = 0. If E · ~b = 0, then the pairing is degenerate in this
component, as any element paired with ~b will be 1. Therefore, this cannot be



the only type of element in the pairing tuple, or else the entire pairing would be
degenerate. On the other hand, if E ·~b 6= 0, then since A ·E ·~b = 0, we see that
E ·~b is a nonzero vector in both the image of E and the kernel of A.

Next we consider the case where E is invertible, and consider not only the
element T but also another element T ′ in the target tuple. The element T ′

will have its own associated coefficient matrix E′, with the requirement that
A · E′ ·~b = 0. Then we have A · E ·~b = A · E′ ·~b = 0, which implies that ~b is
contained in both the kernel of A ·E and the kernel of A ·E′. Since A has rank
k − 1 and we are assuming E to be invertible, we know that the dimension of
ker(A · E) is 1. Furthermore, since E is invertible we can write

A · E′ ·~b = A · (E · E−1) · E′ ·~b = A · E · (E−1 · E′ ·~b) = 0,

which implies that E−1E′ · ~b is also contained in the kernel of A · E. Since
this kernel is one-dimensional, E−1E′ ·~b must be a constant multiple of ~b; i.e.,
E−1E′ ·~b = λ ·~b for some λ ∈ Fp and ~b is an eigenvector of E−1E′.

We now observe that because A has rank k − 1, its kernel has rank one;
furthermore, choosing a rank-(k − 1) submodule B1 is equivalent to choosing
the one-dimensional subspace ker(A). Since E is invertible and independent of
B1, this is equivalent to choosing the one-dimensional subspace ker(A · E). Let
~u be any vector in ker(A · E). Then ~u = γ ·~b for some γ ∈ Fp, and our analysis
above shows that ~u is an eigenvector of E−1E. Since ker(A · E) can contain
any nonzero vector ~u, this implies that every vector is an eigenvector of E−1E.
Therefore E−1E′ must be a diagonal matrix with the same value in each diagonal
entry; in other words, we have E−1E′ = cI for some constant c ∈ Fp. Thus we
have E′ = cI · E = c · E, and so T ′ = T c.

It remains only to put everything together. Let E(`) be the coefficient matrix
from (5) used to compute the `th component of the pairing. Our argument above
shows that if one of the matrices E(`) is invertible, then all matrices E(`′) are
constant multiples of E(`), and therefore the order of e(B,B) is the same as
the order of e(G,G) = GT , which is p. Thus if the pairing E is cancelling and
the order of e(B,B) is greater than p, then none of the matrices E(`) can be
invertible.

Now suppose all of the E(`) are singular. Our consideration of this case
above shows that if the pairing E is cancelling, then there must be some matrix
E(`) with ker(A) ∩ im(E(`)) 6= {0}. As noted above, choosing the module B1

is equivalent to choosing the one-dimensional subspace kerA. Since E(`) is not
invertible, we have dim(im(E(`))) ≤ k− 1. Thus the number of one-dimensional
subspaces in im(E(`)) is at most (pk−1 − 1)/(p − 1), while the number of one-
dimensional subspaces in Fkp is (pk−1)/(p−1). We conclude that the probability
(taken over a uniformly random choice of ker(A) and thus also of A) that ker(A)
has nontrivial intersection with the image of E(`) is at most (pk−1−1)/(pk−1) <
2/p. Taking a union bound, we conclude that the probability that ker(A) ∩
im(E(`)) 6= 0 for some ` is at most 2m/p, which is negligible. ut

Putting all this together, we can prove our main theorem:



Theorem 6.5. Let G be a bilinear group of prime order p with pairing e : G×
G→ GT . Let B be the rank-k G-module Gk, let BT = (GT )m for some positive
integer m, and let E : B × B → BT be a nondegenerate pairing defined as in
(5). If B1 is a uniformly random rank-(k − 1) submodule of B and E is a can-
celling pairing that is independent of the decomposition B = B1 ×B2, then with
overwhelming probability the pairing E cannot be projecting (with respect to the
same decomposition B = B1 ×B2).

Proof. By Proposition 6.4, we know that if E is cancelling, then E(B,B) has
order p with overwhelming probability. This means that E(B,B) is cyclic and
any nonzero element is a generator.

Suppose E is projecting and choose some x ∈ B1. Since E is nondegenerate,
there is some y ∈ B such that E(x, y) 6= 1. Now the projecting property implies
that πT (E(x, y)) = E(π(x), π(y)) = E(1, π(y)) = 1. Since E(x, y) generates
E(B,B), we conclude that πT (E(B,B)) = {1}.

On the other hand, now choose some x′ ∈ B2. Then there is some y′ ∈
B such that E(x′, y′) 6= 1. Furthermore, the cancelling property implies that
without loss of generality we can assume y′ ∈ B2. The projecting property now
implies that πT (E(x′, y′)) = E(π(x′), π(y′)) = E(x′, y′) 6= 1, so we conclude that
πT (E(B,B)) = E(B,B), contradicting our conclusion above. ut

7 Conclusions and Open Problems

In this paper we have shown that there are limitations on transformations of
pairing-based cryptosystems from composite- to prime-order groups. In partic-
ular, we have given evidence that two properties of composite-order pairings
identified by Freeman — cancelling and projecting — cannot be simultaneously
obtained in prime-order groups.

Specifically, we have shown that a pairing defined in a natural way with
subgroup hiding provided by the Decision Linear assumption can be both can-
celling and projecting with only negligible probability. As evidence that both
properties are sometimes called for simultaneously, we have presented a natural
cryptographic scheme whose proof of security calls for a pairing that is both
cancelling and projecting. This scheme is a practical round-optimal blind (and
partially blind) signature secure in the common reference string model, under
mild assumptions and without random oracles.

Many open questions remain. First, we would like either to generalize our
result so it applies to a wider class of pairings constructed from prime order
groups (possibly including asymmetric pairings), or instead to show that no such
generalization is possible by exhibiting a pairing in prime-order groups that is
simultaneously projecting and cancelling. Second, we have given evidence that
our specific proof strategy for our blind signature scheme is unlikely to generalize
to prime-order groups, but have not settled the question of whether our scheme
when instantiated in prime-order groups is in fact provably secure (by means of a
different, ad-hoc proof) or insecure (i.e., actually susceptible to attack). Finally,
it is interesting to consider whether a more general procedure (not relying on



Freeman’s properties) can be used to transform every composite-order scheme to
a prime-order one, or whether some schemes provably cannot be so transformed.
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