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Abstract. We propose a dedicated protocol for the highly motivated
problem of secure two-party pattern matching: Alice holds a text t ∈
{0, 1}∗ of length n, while Bob has a pattern p ∈ {0, 1}∗ of length m.
The goal is for Bob to learn where his pattern occurs in Alice’s text.
Our construction guarantees full simulation in the presence of malicious,
polynomial-time adversaries (assuming that ElGamal encryption is se-
mantically secure) and exhibits computation and communication costs
of O(n+m) in a constant round complexity.
In addition to the above, we propose a collection of protocols for varia-
tions of the secure pattern matching problem: The pattern may contain
wildcards (O(nm) communication in O(1) rounds). The matches may be
approximated, i.e., Hamming distance less than some threshold (O(nm)
communication in O(1) rounds). The length, m, of Bob’s pattern is se-
cret (O(nm) communication in O(1) rounds). The length, n, of Alice’s
text is secret (O(n+m) communication in O(1) rounds).

Key words: Pattern matching, secure two-party computation, full sim-
ulation, malicious adversary.

1 Introduction

In the setting of secure two-party computation, two parties with private in-
puts wish to jointly compute some function of their inputs while preserving cer-
tain security properties like privacy, correctness and more. The standard defini-
tion [GL91,Bea92,MR91,Can00] formalizes security by comparing the execution
of such protocol to an “ideal execution” where a trusted third party computes
the function for the parties. Specifically, in the ideal world the parties just send
their inputs over perfectly secure communication lines to a trusted party, who
then computes the function honestly and sends the output to the designated
party. Then, a real protocol is said to be secure if no adversary can do more
harm in a real protocol execution than in an ideal one (where by definition no
harm can be done).

Secure two-party computation has been extensively studied, and it has been
demonstrated that any polynomial-time two-party computation can be generi-
cally compiled into a secure function evaluation protocol with polynomial com-
plexity [Yao86,GMW87,Gol04]. These results apply in various settings, (consid-
ering semi-honest and malicious adversaries). However, more often than not, the



resulting protocols are inefficient for practical uses (in part because they are gen-
eral and so do not utilize any specific properties of the protocol problem at hand)
and hence attention has been given to constructing efficient protocols for specific
functions. This approach has proved quite successful for the semi-honest setting
(see, e.g., [LP02,AMP04,FNP04,KS05,TPKC07]), while the malicious setting re-
mained impractical (a notable exception is [AMP04]).

In this paper we consider the following classic search problem: Alice holds
a text t ∈ {0, 1}∗ of length n and Bob is given a pattern (i.e., search word)
p ∈ {0, 1}∗ of length m, where the sizes of t and p are mutually known. The goal
is for Bob to learn all the locations in the text that match the pattern, while
Alice learns nothing about the pattern. This problem has been widely studied
for decades due to its potential applications for text retrieval, music retrieval,
computational biology, data mining, network security, and many more. The most
known application in the context of privacy is in compering two DNA strings;
our example is taken from [GHS10]. Consider the case of a hospital holding
a DNA database of all the participants in a research study, and a researcher
wanting to determine the frequency of the occurrence of a specific gene. This is a
classical pattern matching application, which is however complicated by privacy
considerations. The hospital may be forbidden from releasing the DNA records
to a third party. Likewise, the researcher may not want to reveal what specific
gene he is working on, nor trust the hospital to perform the search correctly.

Although most of the existing solutions are highly practical they fail to
achieve any level of security (if at all); see [Blo70,KMP77,BM77,ACR99,NM07]
for just a few examples. In this work, we focus our attention on the secure com-
putation of the basic pattern matching problem and several important variants
of it.

Our Contribution. We achieve efficiency that is a significant improvement on
the current state of the art for the following problems:

– Secure Pattern Matching. We develop an efficient, constant rounds
protocol for this problem that requires O(n+m) exponentiations and band-
width of O(n+m) group elements. Our protocol lays the foundations for the
following constructions.

– Secure Pattern Matching with Wildcards. This problem is a known
variant of the classic problem where Bob (who holds the pattern) introduces
a new “don’t care” character to its alphabet, denoted by ? (wildcard). The
goal is for Bob to learn all the locations in the text that match the pattern,
where ? matches any character in the text. This problem has been widely
looked at by researchers with the aim of generalizing the basic searching
model to searching with errors. This variant is known as pattern matching
with don’t cares and can be solved in O(n+m) time [IR07]. In this paper,
we develop a protocol that computes this functionality with O (nm) costs.

– Secure Approximate Pattern Matching. In this problem the goal is
for Bob to find the locations where the Hamming distance of the (text)
substrings and the pattern is less than some threshold τ ≤ m. We design a
protocol for this problem with O(mn) costs.



– Secure Pattern Matching where the length of the pattern or
the text remains hidden. Finally, we consider two variants with an ad-
ditional security requirement of hiding the input length. Solutions for these
problems can be achieved in O(nm) time.

Our protocols are based on ElGamal encryption and are proven secure in the
plain model under the standard DDH assumption and achieve full simulation in
the presence of malicious adversaries.

Prior Work. To the best of our knowledge, the first who considered pattern
matching in the context of secure computation were [TPKC07] who considered a
secure version of oblivious automata evaluation to achieve secure pattern match-
ing. Their protocol implements the KMP algorithm [KMP77] in the semi honest
setting. Loosely speaking, the KMP algorithm works in O(n) time and searches
for occurrences of the pattern within the text by employing the observation
that when a mismatch occurs, the pattern embodies sufficient information to
determine where the next match could begin. Their costs are linear in the input
length.

This problem was also studied by Hazay and Lindell in [HL08] who used obliv-
ious pseudorandom function (PRF) evaluation. However, their protocol achieves
only a weaker notion of security called one-sided simulatability which does not
guarantee full simulation for both corruption cases. The only construction to
achieve full simulation in the malicious setting was developed by Gennaro et
al. [GHS10]. They took a different approach to implement the KMP algorithm
and described a protocol that runs in O(m) rounds and requires O(nm) expo-
nentiations and bandwidth.

Finally, a recent paper by Katz and Malka [KM10] presents a secure solution
for a generalized pattern matching problem, denoted text processing. Namely,
the party who holds the pattern has some additional information y and his
goal is to learn a function of the text and y, for the text locations where the
pattern matches. They show how to modify Yao’s garbled circuit approach to
obtain a protocol where the size of the garbled circuit is linear in the number
of occurrences of p in t (rather than linear in |t|). Their costs are dominated by
the size of the circuit times the number of occurrences u (as P1 sends u such
circuits). Nevertheless, they assume a common input of some threshold on the
number of occurrences.

To the best of our knowledge, the only work which addresses one of the above
variants is the work by Jarrous and Pinkas [JP09]. In this work, the authors solve
the hamming distance problem for two equal length strings against malicious
adversaries. Their protocol requires a committed oblivious transfer for each bit.
Moreover, the costs of their protocol are inflated by a statistical parameter s
for running a subprotocol for the oblivious polynomial evaluation functionality
(namely, the protocol requires O(d · s) exponentiations, where d is the degree
of the polynomial, i.e., the input length). Finally, their protocol utilizes the
Paillier encryption scheme and thus requires an RSA modulus with unknown



factorization. Our protocol, on the other hand, takes a different approach and
requires linear costs, for the case of equal length strings.

Efficiency. In addition to prior work, we compare our protocols to the generic
garbling-technique by Yao (formally proved by Lindell and Pinkas) [LP07] for se-
cure computation of any functionality in the two-party setting. Recall that Yao’s
protocol uses a Boolean circuit that computes the function, and its computa-
tional complexity is linear in the size of the circuit. Note that computing the pat-
tern matching functionality would require a circuit of size O(nm), as the circuit
will compare every pattern against every text location (As noted by [GHS10],
a circuit that implements the functionality for oblivious automata evaluation
would require O(mn logm) gates, thus the KMP technique does not contribute
to efficiency here). Consequently, our protocol for the basic pattern matching
functionality is more efficient than Yao’s construction even in the presence of
semi-honest adversaries; this is also the case for other circuit based approaches.

Organization of this paper. We first present the underlying primitives in
Section 2. The following sections then contain our protocols. The basic protocol
is presented in Section 3. This is then extended, first with wildcards in the
pattern (Section 4) followed by approximate matching (Section 5). Finally, the
paper concludes with the protocols which hide the pattern and texts lengths
(Sections 6 and 7).

2 Preliminaries and Tools

Throughout the paper, we denote the security parameter by κ. A function µ(·)
is negligible in κ (or simply negligible) if for every polynomial p(·) there exists
a value K such that µ(κ) < 1

p(κ) for all κ > K; i.e., µ(κ) = κ−ω(1). Let X =
{X(κ, a)}κ∈N,a∈{0,1}∗ and Y = {Y (κ, a)}κ∈N,a∈{0,1}∗ be distribution ensembles.

We say that X and Y are computationally indistinguishable, denoted X
c≡ Y , if

for every polynomial non-uniform distinguisher D there exists a negligible µ(·)
such that for every κ ∈ N and a ∈ {0, 1}∗∣∣∣Pr[D(X(κ, a)) = 1]− Pr[D(Y (κ, a)) = 1]

∣∣∣ < µ(κ).

2.1 The ElGamal Encryption Scheme

At the core of the proposed protocols lies the additively homomorphic variation
of ElGamal encryption – Epk (m, r) = 〈gr, hrgm〉 with distributed decryption
over a group Gq in which DDH is hard, [ElG85]. Essentially, we use the framework
of Brandt [Bra05] with minor variations. We present the computation of the
parties with respect to the ciphertext space, in particular, we write Cr meaning
〈αr, βr〉 and C/C ′ meaning 〈α/α′, β/β′〉 for ciphertexts C = 〈α, β〉 and C′ =
〈α′, β′〉, and r ∈ Zq.



2.2 Zero-knowledge Proofs for Gq and ElGamal Encryption

To prevent malicious behaviour, the parties must demonstrate that they are
well-behaved. To achieve this, our protocols utilize zero-knowledge proofs of
knowledge. All of them are Σ-protocols (with constant communication complex-
ity) which show knowledge of a witness that some statement is true (belong to
a relation, R) about one or more elements of Gq. The Σ-protocols can be made
secure against malicious verifiers using standard techniques; we denote the asso-
ciated ideal functionalities for these protocols, FRDL

ZK , FREqDL
ZK , FRisBit

ZK , FRmult
ZK ,

FRperm
ZK , and FRnze

ZK .
πDL, due to Schnorr, allows the prover to demonstrate knowledge of the so-

lution, x, to a discrete logarithm problem, [Sch89].

RDL = {((Gq, q, g, h), x) | h = gx}

πEqDL, due to Chaum and Pedersen, demonstrates equality of two discrete
logarithm problems (as well as knowledge of the solution), [CP93].

REqDL = {((Gq, q, g1, g2, h1, h2), x) | h1 = gx1 ∧ h2 = gx2}

Phrased differently, πEqDL demonstrates that a quadruple forms a Diffie-Hellman
tuple or, equivalently, that a ciphertext is an encryption of 0.

πisBit demonstrates that for ciphertext C, either C or C
〈
1, g−1

〉
is an en-

cryption of 0, i.e. that it is an encryption of either 0 or 1. This can be obtained
directly from πEqDL using the compound proof of Cramer et al. [CGS97].

RisBit =
{

((Gq, q, g, h, α, β), (b, r)) | (α, β) = (gr, hr · gb) ∧ b ∈ {0, 1}
}

πmult, due to Abe et al., demonstrates that a party, the prover P has per-
formed a multiplication under the encryption correctly [ACF02]. I.e. given ci-
phertext C, P , knowing f , has computed Cf = Epk (f, rf ) and Cπ = Cf ·
Epk (0, rπ); clearly the plaintext of Cπ is the product of the other plaintexts.

Rmult =
{

((sk, C,Cf , Cπ), (f, rf , rπ)) s.t. Cf =
〈
grf , hrf · gf

〉
∧

Cπ = Cf · 〈grπ , hrπ 〉

}
πperm allows a prover to demonstrate that a set of encryptions, {Ci}i, is a per-

mutation and rerandomization of the another, {C ′i}i – i.e. that their plaintexts
are equal. Any protocol will do, Groth’s solution [Gro03] is one possibility.

Rperm =
{

((sk, {Ci}i , {C
′
i}i), (π, {ri}i)) s.t. 〈α′i, β′i〉 =

〈
απ(i)g

ri , βπ(i)h
ri
〉}

πnze demonstrates that the prover has obtained ciphertext C ′ from C, by
raising C to a non-zero exponent and rerandomizing, i.e. C ′ = CR · Epk (0, r).
The tricky part when constructing a proof of knowledge for the relation,

Rnze =
{

((sk, α, β, α′, β′), (R, r)) s.t. 〈α′, β′〉 =
〈
αRgr, βRhr

〉
∧R 6= 0

}
,



is to show that R 6= 0. To do this, the prover, P , picks R′ ∈R Z∗q , supplies the
verifier with additional ciphertexts, CR = Epk (R, rR), CR′ = Epk (R′, rR′), and
Cπ = Epk (RR′, rπ), and executes πmult twice: on (C,CR, C ′) and (CR, CR′ , Cπ).
The prover then sends RR′ to the verifier and demonstrates it is the plaintext
of Cπ using πEqDL. Finally, the verifier checks that the RR′ is non-zero.

The executions of πmult demonstrate that C ′ has been obtained from C
through exponentiation, and that the plaintext of Cπ depends on R. πEqDL and
the final check ensures that RR′ 6= 0 implying that so is R. Hence the protocol
demonstrates that C ′ has been obtained correctly. Further, since the verifier re-
ceives only ciphertexts along with RR′ – which is uniformly random due to R′

– πnze is zero-knowledge.

2.3 Distributed ElGamal Encryption

In a distributed scheme, the parties hold shares of the secret key so that the
combined key remains a secret. In order to decrypt, each party uses its share to
generate an intermediate computation which are eventually combined into the
decryption.

Note that the Diffie-Hellman key exchange [DH76] can be used for generating
a public key and an additive sharing of the corresponding secret key [Ped91].
The parties first agree on Gq and g. Then, each party Pi picks si ∈R Zq and
sends hi = gsi to the other. Finally, the parties compute h = h1 · h2 and set
pk = 〈Gq, q, g, h〉. Clearly the secret key associated with this public key is s =
s1 + s2. In order to ensure correct behavior, the parties must prove knowledge
of their si by running πDL on (g, hi). We denote this protocol by πKeyGen which
is correlated with the functionality FKeyGen(1κ, 1κ) = ((pk, sk1), (pk, sk2)).

To decrypt a ciphertext C = 〈α, β〉, the parties raise α to the power of their
shares, send these to each other, and prove this was done correctly. Both then
output β/(α1α2). We denote this protocol by πDec. Note that this protocol allows
variation where only one party obtains the decrypted result.

Our final primitive is a variation of πDec where P1 learns whether the ci-
phertext m of the input C = 〈α, β〉 is zero, but nothing more. P2 first raises C
to a random, non-zero power, rerandomizes the result, and sends it to P1. The
parties then execute πnze to let P1 verify P2’s behavior. They then decrypt the
final ciphertext towards P1, who concludes that m = 0 iff the masked plaintext
was 0. Simulation is trivial given access to FRnze

ZK . We denote this protocol πdec0

and the associated ideal functionality Fdec0

3 The Basic, Linear Solution

In this section we present our solution for the classic pattern matching problem.
Initially, Alice holds an n-bit string t, while Bob holds an m-bit pattern, p and
the parties wish the compute the functionality FPM defined by,

((p, n), (t,m)) 7→
{

({j | t̄j = p}n−m+1
j=1 , λ) if |p| = m and |t| = n

(λ, λ) otherwise



where λ is an empty string and t̄j is the substring of length m that begins at the
jth position in t. This problem has been widely studied for decades due to its po-
tential applications and can be solved in linear time complexity [KMP77,BM77],
when no level of security is required. We examine a secure version for this prob-
lem where Alice does not gain any information about the pattern from the pro-
tocol execution, whereas Bob does not learn anything but the matched text
locations. In our setting, the parties share no information (except for the in-
put length), though it is assumed that they are connected by an authenticated
communication channel, and that the inputs are over the binary alphabet. Ex-
tending this to larger alphabets is discussed below. Our protocol exhibits overall
linear communication and computation costs and achieves full simulation in the
presence of malicious adversaries.

Here and below, we have the parties jointly (and securely) transform their
input from binary representation into elements of Zq (we assume that m < log2 q;
larger pattern-lengths can be accommodated, e.g. by increasing the plaintext
space.), while exploiting the fact that every two consecutive substrings of the
text are closely related. Informally, both parties break their inputs into bits
and encrypt each bit separately. Next, the parties map every m consecutive
encryptions of bits into a single encryption that denotes an m-character for which
its binary representation is assembled from these m bits. Thus, the problem is
reduced to comparing two elements of Zm (embedded into Zq). The crux of our
protocol is to efficiently compute this mapping.

We are now ready to give a detailed description of our construction.

Protocol πPM

– Inputs: The input of Alice is a binary string t of length n and an integer m,
whereas the input of Bob is a binary string p of length m and an integer n. The
parties share a security parameter 1κ as well.

– The protocol:

1. Alice and Bob run protocol πKeyGen(1κ, 1κ) to generate a public key pk =
〈Gq, q, g, h〉, and the respective shares sA and sB of the secret key sk of Alice
and Bob.

2. Bob sends encryptions Pi = Epk(pi; rpi), i = 1, . . . ,m, of his m-bit pattern,
p, to Alice. Further, for each encryption the parties run the zero-knowledge
proof of knowledge πisBit, allowing Alice to verify that the plaintext of Pi is
a bit known to Bob, i.e. that he has provided a bit-string of length m. Both
parties then compute an encryption of Bob’s pattern,

P ←
mY
i=1

P 2i−1

i (1)

using the homomorphic property of ElGamal encryption.

3. Alice sends encryptions, Tj = Epk(tj ; rtj ) j = 1, . . . , n, of the bits tj of her n-
bit text, t, to Bob. Further, for each encryption the parties run πisBit, allowing
Bob to verify that the plaintext of Tj is a bit known to Alice, i.e. that she has
indeed provided the encryption of a bit-string of length n that she knows.



4. Let t̄j be the m-bit substring of Alice’s text t, starting at position j =
1, . . . , n−m+ 1. For each such string both parties compute an encryption
of that string,

T̄j ←
j+m−1Y
i=j

T 2i−j
i . (2)

5. For every T̄j , j = 1, . . . , n−m+ 1, both parties compute

∆j ← T̄j · P−1. (3)

6. For every ∆j j = 1, . . . , n−m+ 1, Alice and Bob reveal to Bob whether its
plaintext δj is zero by running πdec0. Bob then outputs j if this is the case.

Correctness of πPM. Before turning to our proof, we explain the intuition
and demonstrate that protocol πPM correctly determines which substrings of the
text t match the pattern p. Recall that the value P that is computed in Eq. (1)
(Step 2) is an encryption of Bob’s pattern, p =

∑m
i=1 2i−1pi. This follows from

the homomorphic property of ElGamal encryption,

P =
m∏
i=1

P 2i−1

i = Epk

(
m∑
i=1

2i−1pi,

m∑
i=1

2i−1rpi

)
. (4)

Note that P is obtained deterministically from the Pi, hence both Alice and Bob
hold the same fixed encryption. Similarly, in Eq. (2) computed in Step 4, the
parties compute encryptions of the substrings of length m of Alice’s text,

t̄j =
j+m−1∑
i=j

2i−jti,

see a detailed discussion in the complexity paragraph regarding the efficiency
of this step. As with P , the parties hold the same, fixed encryptions (with ran-
domness rt̄j =

∑j+m−1
i=j 2i−jrti). The encryption ∆j computed by Eq. (3) is an

encryption of δj = t̄j − p, i.e. the (Zq) difference between the substring of the
text starting at position j and the pattern.

∆j = T̄j · P−1

= Epk
(
t̄j − p, rt̄j − rp

)
At this point, it simply remains for Bob to securely determine which of the ∆j

are encryptions of zero, as
δj = 0⇔ t̄j = p.

Security of πPM. We are now ready to prove the following theorem,

Theorem 1 (linear pattern matching): Assume that πKeyGen, πdec0 and πisBit are
as described in Section 2 and that (G,E,D) is the ElGamal scheme. Then πPM

securely computes FPM in the presence of malicious adversaries.

Proof. We separately prove security in the case that Alice is corrupted and the
case that Bob is corrupted. Our proof is in a hybrid model where a trusted party
computes the ideal functionalities FKeyGen, Fdec0 and FRisBit

ZK .



Bob is corrupted. Let A denote an adversary controlling Bob. In this case we
need to prove that Bob does not learn anything but the matching text locations.
We construct a simulator S as follows,

1. S is given a pattern p of length m, an integer n and A’s auxiliary input and
invokes A on these values.

2. S emulates the trusted party for πKeyGen as follows. It first chooses two ran-
dom elements sA, sB ∈ Gq and hands A, its share sB and the public key
〈Gq, q, g, h = gsA·sB 〉.

3. S receives from A, m encryptions and A’s input for the trusted party for
FRisBit

ZK . If the conditions for which the functionality outputs 1 are not met,
S aborts by sending ⊥ to the trusted party for FPM and outputs whatever
A outputs.

4. Otherwise, S defines P according to the witness for πisBit and sends it to its
trusted party. Let Z be the set of returned indices.

5. S defines a text t′ that is consistent with Z. That is, for every j ∈ Z, S
defines the substring t′j = p1, . . . , t

′
j+m−1 = pm. For the remaining indices S

uses the bit one. (S verifies that the only matches in t′ indeed correspond
to the indices from set Z). S completes the execution as the honest Alice
would on input t′.

6. If at any point A sends an invalid message S aborts, sending ⊥ to the trusted
party for FPM. Otherwise, it outputs whatever A does.

It is immediate to see that S runs in probabilistic polynomial time. We prove next
that the adversary’s views are computational indistinguishable via a reduction
to the security of ElGamal. Recalling that the only difference within these views
is with respect to the text locations that do not match the pattern, (as S uses the
bit one instead of the actual bit value from t) we reduce the ability to distinguish
these views to the ability to distinguish the encryptions of the real text against
the simulated one for these locations.

Assume there exists a distinguisher D for these executions, we construct
a distinguisher DE breaking the semantic security of ElGamal encryption as
follows. Upon receiving a public key pk and auxiliary input t, DE engages in an
execution of πKeyGen with A and sends it (sB , pk) where sB ∈R Zq. DE continues
emulating the role of Alice as S does except for Step 3 where it needs to send
the encryptions of t1, . . . , tn. In this step DE outputs two sets of plaintexts: (i)
t1, . . . , tn and, (ii) t′1, . . . , t

′
n. We denote by T̃1, . . . , T̃n the set of encryptions it

receives back. DE hands A this set and completes the run as follows. In Step 6
DE replaces ∆j with an encryption of zero if and only if j ∈ Z. Otherwise, DE

sends an encryption of a random value in Z∗q . Clearly, this step is computed
differently than in both the hybrid and simulated executions. Nevertheless, we
claim that the distributions on the encryptions are identical. This is due to the
fact that for every matched text location the masking result equals zero, and for
every non-matching text location the masking result equals a random element
of Z∗q . Hence, the adversary’s views are identical.

Finally, DE invokes D on A’s output and outputs whatever D outputs. Note
that if DE is given the encryptions of t then the adversary’s view is distributed



as in the hybrid execution. Moreover, if it receives an encryption of t′, then the
adversary’s view is as in the simulation with S.

Alice is corrupted. Since Alice does not receive any output from the execution,
we only need to prove that privacy is preserved, and that Bob’s output cannot
be affected (except with negligible probability). The proof follows the outlines
of the former case. Therefore, due to space considerations we omit the details
here.

Complexity of πPM. The round complexity is constant, as the key generation
process and the zero knowledge proofs run in constant rounds. Further, the
number of group elements exchanged is bounded by O(n + m), as there are
n−m+1 substrings of length m and each zero-knowledge proof requires constant
number of group elements.

Regarding computational complexity, it is clear that except for Step 4 at
most O(m + n) exponentiations are required. Note first that Eq. (2) can be
implemented using the square and multiply technique. Namely, for every j =
1, . . . , n−m+ 1, T̄j is computed by (. . . ((Tj)2 · Tj+1)2 · Tj+2 . . .)2 · Tj+m−1.

This requires O(m) multiplications for each text location, which amounts to
total O(nm) multiplications for the entire text. Reducing the number of multipli-
cations into O(n) (on the expense of increasing the number of exponentiations)
can be easily shown. Loosely speaking, in addition to sending an encryption of 0
or 1 for each text location, Alice sends an encryption of 0 or 2m, respectively, and
proves consistency. From practical point of view, it may be much more efficient
to compute O(m) multiplications for each location, than proving this consistency
(even though it only requires a constant number of exponentiations.)

Finally, note that our protocols utilize ElGamal encryption which can be
implemented over an elliptic curve group. This may reduce the modulus value
dramatically, as now only 160 bits are typically needed for the size of the key.

3.1 Variations

Non-binary alphabets Alphabets of larger size, s, can be handled by encoding
the characters as elements of Zs and using s-ary rather than binary notation for
the T̄j and P . Proving in ZK that an encryption contains a valid character
is straightforward, e.g. it can be provided in binary (which of course requires
O(log s) encryptions).

Long patterns When the pattern length, m, (or the alphabet size, s) is large,
requiring q > sm may not be acceptable. This can be avoided by encoding
the pattern p and substrings t̄j into multiple Zq values, {p(i)}i, {t̄(i)j }i. Having

computed encryptions {∆i}i of the differences {δi = p(i) − t̄(i)j }i, Alice raises
each encryption to a random, non-zero exponents ri, rerandomizes them and
sends them to Bob (and proves that everything was done correctly). The parties
then executes πdec0 on the product of these encryptions and Bob reports a match



if a 0 is found. Note that the plaintext of this product is
∑
i ri · δi. Thus, if the

pattern matches, all δi = 0 implying that this is an encryption of 0. If one or
more δi 6= 0, then the probability of this being an encryption of 0 is negligible.

Hiding match locations It may be required that Bob only learns the number
of matches and not the actual locations of the hits. One example is determining
how frequently some gene occurs rather than where it occurs in some DNA
sequence. This is easily achieved by simply having Alice pick a uniformly random
permutation and permute (and rerandomize) the ∆j of Eq. (3). The encryptions
are sent to Bob, and πperm is executed, allowing him to verify Alice’s behavior.
Finally, πdec0 is run and Bob outputs the number of encryptions of 0 received.

Correctness is immediate: An encryption of 0 still signals that a match oc-
curred. However, due to the random permutation that Alice applies, the locations
are shuffled, implying that Bob does not learn the actual matches.

4 Secure Pattern Matching with Wildcards

The first variant of the classical pattern matching problem allows Bob to place
wildcards, denoted by ?, in his pattern; these should match both 0 and 1. More
formally, the parties wish the compute the functionality FPM−? defined by,

((p, n), (t,m)) 7→

{
({j | t̄j

?≡ p}n−m+1
j=1 , λ) if |p| = m and |t| = n

(λ, λ) otherwise

where t̄j is the substring of length m that begins at the jth position of t and
?≡

is defined as “equal except with respect to ?-positions.” This problem has been
widely looked at by researchers with the aim to generalize the basic searching
model to searching with errors. This variant is known as pattern matching with
don’t cares and can be solved in O(n+m) time [IR07]. The secure version of this
problem guarantees that Alice will not be able to trace the locations of the don’t
cares in addition to the security requirement introduced for the basic problem.

The core idea of the solution is to proceed as in the standard one with
two exceptions: Bob must supply the wildcard positions in encrypted form, and
the substrings of Alice’s text must be modified to ensure that they will match
(i.e. equal) the pattern at those positions. Achieving correctness and ensuring
correct behavior requires substantial modification of the protocol. Intuitively,
for every m-bit substring t̄j of t, Bob replaces Alice’s value by 0 at the wildcard
positions resulting in a string t̄′j , see Step 6 below. Similarly, a pattern p′ is
obtained from p by replacing the wildcards by 0. Clearly this ensures that the
bits of t̄′j and p′ are equal at all wildcard positions. Thus, t̄′j = p′ precisely when
t̄j equals p at all non-wildcard positions.

Protocol πPM−?

– Inputs: The input of Alice is a binary string t of length n and an integer m,
whereas the input of Bob is a string p over the alphabet {0, 1, ?} of length m and
an integer n. The parties share a security parameter 1κ as well.



– The protocol:

1. Alice and Bob run protocol πKeyGen(1κ, 1κ) to generate a public key pk =
〈Gq, q, g, h〉, and the respective shares sA and sB of the secret key sk.

2. For each position i = 1, . . . ,m, Bob first replaces ? by 0

p′i ←

(
1 if pi = 1

0 otherwise
.

He then sends encryptions P ′i = Epk(p′i; rp′i) for i = 1, . . . ,m to Alice, and for
each one they execute πisBit. Finally, both parties compute an encryption of
Bob’s “pattern” in binary,

P ′ ←
mY
i=1

P ′i
2i−1

.

3. For each position i = 1, . . . ,m of Bob’s pattern, he computes a bit denoting
the occurrences of a ?,

wi ←

(
0 if pi = ?

1 otherwise
.

He then encrypts these and sends the result to Alice,

Wi ← Epk (wi, rwi) ,

and the two run πisBit for each one.
4. For each i = 1, . . . ,m, Bob and Alice run πisBit on Wi/P

′
i . This demonstrates

to Alice that if p′i is set, then so is wi, i.e. that only 0’s occur at wildcard
position.

5. Alice supplies her input as in Step 3 of Protocol πPM in Section 3. She sends
encryptions, Tj = Epk(tj ; rtj ) j = 1, . . . , n, of the bits of t to Bob. Then the
parties run πisBit for each of the encryptions.

6. For every entry i = 1, . . . ,m of every m-bit substring of t starting at position
j = 1, . . . , n−m+ 1, Bob computes an encryption

T̂j,i ← (Tj+i−1)wi · Epk (0, rj,i) .

He sends these to Alice, and they run πmult on each triple
“
Tj+i−1,Wi, T̂j,i

”
,

allowing Alice to verify that Bob has correctly multiplied the plaintexts of the
Wi onto the Tj+i−1. Both parties then compute encryptions of the modified
substrings of Alice’s text

T̄ ′j ←
mY
i=1

“
T̂j,i
”2i−1

.

7. The protocol concludes as Protocol πPM does. For each of the T̄ ′j where j =
1, . . . , n−m+ 1, the parties compute

∆j ← T̄ ′j · P ′
−1

,

and run πdec0. This reveals to Bob which of plaintexts δj are 0. For each δj = 0
he concludes that the pattern matched and outputs j.



To see that the protocol does not introduce new opportunities for malicious
behavior, first note that Alice specification is essentially as in the basic protocol
πPM. Regarding Bob, the proofs of correct behavior limit him to supplying an in-
put that an honest Bob could have supplied as well. Bob’s input, p′i i = 1, . . . ,m,
is first shown to be a bit string, Step 2. The invocations of πisBit of Step 3 then
ensure that so is the “wildcard string.” Finally, in Step 4 it is verified that for
each wildcard pi of p, p′i = 0. In other words, there is a valid input where the
honest Bob would send encryptions of the values that the malicious Bob can
use. The only remaining option for a malicious Bob is in Step 6, however, the
invocations of πmult ensure his correct behavior. Formal simulation is analogous
to that in Section 3. We state the following theorem:

Theorem 2 (wildcards): Assume that πKeyGen, πdec0, πisBit, and πmult are as de-
scribed in Section 2 and that (G,E,D) is the ElGamal scheme. Then πPM−?

securely computes FPM−? in the presence of malicious adversaries.

Regarding complexity, clearly the most costly part of the protocol is Step 6
which requires Bob to sends Θ (nm) encryptions, T̂j,i to Alice, as well as an
invocation of πmult for each of them. Hence, communication and computation
complexity is increased to O (nm), while round complexity remains constant.

5 Secure Approximate Matching

The second variation considered is approximate pattern matching: Alice holds an
n-bit string t, while Bob holds an m-bit pattern p. The parties wish to determine
approximate matches – strings with Hamming distance less than some threshold
τ ≤ m. This is captured by the functionality FAPM defined by,

((p, n, τ), (t,m, τ ′)) 7→


({j | δH (t̄j , p) < τ}n−m+1

j=1 , λ) if |p| = m ≥ τ = τ ′

and |t| = n
(λ, λ) otherwise

where δH denotes Hamming distance and t̄j is the substring of length m that
begins at the jth position in t. We assume that the parties share some threshold
τ ∈ N. Note that this problem is an extension of pattern matching with don’t
cares problem introduced in Section 4. Bob is able to learn all the matches within
some error bound instead of learning the matches for specified error locations.

Two of the most important applications of approximate pattern matching
are spell checking and matching DNA sequences. The most recent algorithm
for solving this problem without considering privacy is by Amir et al. [ALP00]
which introduced a solution in time O(n

√
τ log τ). Our solution achieves O(nm)

computation and communication complexity.
The main idea behind the construction is to have the parties securely supply

their inputs in binary as above. Then, to determine the matches, the parties
first compute the (encrypted) Hamming distances hj using the homomorphic
properties of ElGamal encryption (Steps 5 and 6). They then check whether



hj = k for each k < τ . To avoid leaking information, these results are permuted
before the final decryption.

Protocol πAPM

– Inputs: The input of Alice is a binary string t of length n, an integer m and a
threshold τ ′, whereas the input of Bob is a binary string p of length m, an integer
n and a threshold τ . The parties share a security parameter 1κ as well.

– The protocol:

1. Alice and Bob run protocol πKeyGen(1κ, 1κ) to generate a public key pk =
〈Gq, q, g, h〉, and the respective shares sA and sB of the secret key sk.

2. Alice sends Bob τ ′ and the parties continue if τ = τ ′.
3. As in the basic solution, Bob first sends encryptions Pi = Epk(pi; rpi) i =

1, . . . ,m, of the bits of his m-bit pattern, p, to Alice. They then run πisBit for
each one.

4. Alice similarly provides encryptions, Tj = Epk(tj ; rtj ) j = 1, . . . , n of her input
as in πPM; for each one the parties execute πisBit.

5. For every entry i = 1, . . . ,m of every m-bit substring of t starting at position
j = 1, . . . , n−m+ 1, Bob computes an encryption

Πj,i ← T pij+i−1 · Epk (0, rj,i) . (5)

He sends these to Alice, and for each triple (Tj+i−1, Pi, Πj,i) the parties run
πmult. This allows Alice to verify that Bob has correctly multiplied the plain-
texts of the Pi onto the Tj+i−1.

6. For every entry i = 1, . . . ,m of every m-bit substring of t starting at position
j = 1, . . . , n−m+ 1, both parties compute encryptions Xj,i,

Xj,i ← Tj+i−1 · Pi ·Π−2
j,i .

Note that as the plaintext ofΠj,i is pi·tj+i−1, the plaintext of Xj,i is pi⊕tj+i−1.
For every j = 1, . . . , n−m+ 1 – i.e. for every substring – both parties compute

Hj ←
mY
i=1

Xj,i.

7. For every k = 0, . . . , τ − 1 (i.e. for every Hamming distance which would
be considered a match) and for every substring of length m starting at j =
1, . . . , n−m+ 1, both parties compute

∆j,k ← Hj ·
D

1, g−k
E

. (6)

8. For every j = 1, . . . , n−m+ 1, Alice picks a uniformly random permutation
πj : Zτ → Zτ and applies πj to the set {∆j,k}k,`

∆′j,0, . . . ,∆
′
j,τ−1

´
← πj (∆j,0, . . . ,∆j,τ−1) ,

rerandomizes all encryptions,

∆′′j,k ← ∆′j,k · Epk
`
0, r′j,k

´
for j = 1, . . . , n−m+ 1 and k = 0, . . . , τ − 1, and sends the ∆′′j,k to Bob.
For every permutation, j = 1, . . . , n−m+ 1, the parties execute πperm on`
(∆j,0, . . . ,∆j,τ−1) ,

`
∆′′j,0, . . . ,∆

′′
j,τ−1

´´
allowing Bob to verify that the plain-

texts of the ∆′′j,k correspond to those of the ∆j,k for all (fixed) j.



9. Finally, Alice and Bob execute πdec0 on each ∆′′j,k for j = 1, . . . , n−m+ 1
and k = 0, . . . , τ − 1. This reveals to Bob which plaintexts δj,k are 0. He then
outputs j iff this is the case for one of δ′′j,0, . . . , δ

′′
j,τ−1.

Correctness follows from the intuition: The plaintexts of the Hj from Equa-
tion (5) are the sum of the ones of the Xj,i i = 1, . . . ,m. I.e. it is the number
of differing bits of p and t̄j – the Hamming distance – as the plaintext of Xj,i is
tj+i−1 + pi − 2 · tj+i−1 · pi = tj+i−1 ⊕ pi.

Each threshold test is performed using τ tests of equality, one for each possible
value k < τ , where each test simply subtracts the associated k from Hj under the
encryption, Eq. (6), at which point the parties may mask and decrypt towards
Bob. Note that the standard masking combined with the permutation of Step 8
ensures that for every potential match, Bob either receives τ uniformly random
encryptions of random, non-zero values, or τ − 1 such encryptions and a single
encryption of zero. Hence we state the following theorem:

Theorem 3 (approximate): Assume that πKeyGen, πdec0 and πisBit, and πmult are
as described in Section 2 and that (G,E,D) is the ElGamal scheme. Then πAPM

securely computes FAPM in the presence of malicious adversaries.

Regarding complexity, the most expensive steps are those associated with
computing the Hamming distances, Steps 5 and 6, as there are Θ(nm) Πj,i and
Xj,i. The concluding steps – computing, randomizing (permuting), and decrypt-
ing the ∆j,k – require Θ(nτ) work, however, as τ ≤ m this is no more expensive.
Hence overall communication and computation is O(mn), while round complex-
ity is constant as in the previous solutions.

6 Hiding the Pattern Length

Here Alice is not required to know the length m of Bob’s pattern, only an upper
bound M ≥ m. Moreover, she will not learn any information about m. More
formally, the parties wish to compute the functionality FPM−hpl defined by,

((p, n), (t,M)) 7→
{

({j | t̄j = p}n−m+1
j=1 , λ) if |p| ≤M and |t| = n

(λ, λ) otherwise

where t̄j is the substring of length m that begins at the jth position in t. A pro-
tocol πPM−hpl that realizes FPM−hpl can be obtained through minor alterations of
πPM−?. Due to space constraints we only sketch these, and postpone the detailed
description and simulator proof to the full version of the paper.

The main idea is to have Bob construct a pattern p̂ of length M by padding
p with M −m wildcards. Though not completely correct, intuitively, executing
πPM−? on input ((p̂, n) , (t,M)) provides the desired result, as the wildcards en-
sure that the irrelevant postfixes of the t̄j are “ignored.” There are two reasons
why this does not suffice. Firstly, the wildcards of πPM−? mean match any char-
acter, however, matches must also be found when the wildcards occur after the



end of the text (where there are no characters). Secondly, a malicious Bob must
not have full access to wildcard-usage – i.e. he must not be able to arbitrarily
place wildcards, they must occur only at the end of p̂.

– Matching t̄j when j > n − M + 1: The solution to the former problem
is completely straightforward: extend (pad) t with symbols that only match
wildcards. Going into more detail, first let N = n+M − 1. The parties pad
Alice’s encrypted text, T1, . . . , Tn with M − 1 default encryptions of 2,

Tn+1 = . . . = TN =
〈
1, g2

〉
.

Then, rather than use a binary representation for the encryptions P ′ and T̄ ′j
(Steps 2 and 6 of πPM−?), we use a ternary representation

P̂ ←
M∏
i=1

(P ′i )
3i−1

, T̄ ′j ←
j+M−1∏
i=j

T̂ 3i−j

j,i .

Intuitively, this works as we have simply extended our alphabet with an
additional character, 2.

– Ensuring a proper p̂: To prevent malicious behavior, Bob should demon-
strate to Alice that p̂ has been properly constructed, i.e. that all wildcards
occur at the end of the pattern. This can be done by showing that w1, . . . , wM
is monotonically non-increasing, i.e. that a 1 (non-wildcard) never follows a
0 (wildcard). Bob can demonstrate this fact by executing πisBit on Wi/Wi+1

for i = 1, . . . ,M − 1.

Complexity is equivalent to πPM−?. We conclude with the following theorem,

Theorem 4 (pattern length hiding): Assume that πKeyGen, πDec, πisBit, and πmult

are as described in Section 2 and that (G,E,D) is the ElGamal scheme. Then
πPM−hpl securely computes FPM−hpl in the presence of malicious adversaries.

7 Hiding the Text Length

The final variant does not require Bob to know the actual text length n, only an
upper boundN ≥ n. Moreover, he learns no information about n other than what
can be inferred from the output. This property is desirable in applications where
it is crucial to hide the size of the database as it gives away sensitive information.
More formally, the parties wish the compute the functionality FPM−htl,

((p,N), (t,m)) 7→
{

({j | t̄j = p}n−m+1
j=1 , λ) if |p| = m and |t| ≤ N

(λ, λ) otherwise

where t̄j is the substring of length m that begins at the jth position in t.
Due to space constraints, we only sketch the solution. The core idea is to

have Alice pad her text with N − n 2s, and then demonstrate that any 2s occur
at the end. The details of the solution are similar to those of πPM−hpl above.



Regarding complexity, it can be shown that only O(N +m) encryptions change
hands, hence only this many zero-knowledge proofs of knowledge are needed as
well; i.e. communication and computation complexity are linear. The required
number of rounds is constant.

Theorem 5 (text length hiding): Assume that πKeyGen, πdec0 and πisBit are as
described in Section 2 and that (G,E,D) is the ElGamal scheme. Then πPM−htl

securely computes FPM−htl in the presence of malicious adversaries.
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