
Non-Full-Active Super-Sbox Analysis:
Applications to ECHO and Grøstl

Yu Sasaki1, Yang Li2, Lei Wang2, Kazuo Sakiyama2, and Kazuo Ohta2

1 NTT Information Sharing Platform Laboratories, NTT Corporation
3-9-11 Midoricho, Musashino-shi, Tokyo 180-8585 Japan

sasaki.yu@lab.ntt.co.jp
2 The University of Electro-Communications

1-5-1 Choufugaoka, Choufu-shi, Tokyo, 182-8585 Japan
{liyang,wanglei,saki,ota}@ice.uec.ac.jp

Abstract. In this paper, we present non-full-active Super-Sbox analy-
sis which can detect non-ideal properties of a class of AES-based per-
mutations with a low complexity. We apply this framework to SHA-3
round-2 candidates ECHO and Grøstl. The first application is for the
full-round (8-round) ECHO permutation, which is a building block for
256-bit and 224-bit output sizes. By combining several observations spe-
cific to ECHO, our attack detects a non-ideal property with a time com-
plexity of 2182 and 237 amount of memory. The complexity, especially in
terms of the product of time and memory, is drastically reduced from
the previous best attack which required 2512×2512. Note that this result
does not impact the security of the ECHO compression function nor the
overall hash function. We also show that our method can detect non-
ideal properties of the 8-round Grøstl-256 permutation with a practical
complexity, and finally show that our approach improves a semi-free-
start collision attack on the 7-round Grøstl-512 compression function.
Our approach is based on a series of attacks on AES-based hash func-
tions such as rebound attack and Super-Sbox analysis. The core idea is
using a new differential path consisting of only non-full-active states.

Keywords: AES-based permutation, ECHO, Grøstl, SHA-3, Super-Sbox

1 Introduction

Hash functions are used in the wide range of cryptographic applications. Since
the break of MD5 and SHA-1 [1, 2], cryptographers have been seeking secure and
efficient hash constructions. From these backgrounds, NIST started the compe-
tition to determine the future standard hash function called SHA-3 [3].

In the SHA-3 competition, 14 algorithms are being considered as round 2 can-
didates. At the present time, none of them has been seriously broken in terms of
the important security properties such as collision resistance or preimage resis-
tance. However, regarding some candidates, building blocks such as compression
functions or internal permutations have been shown that they do not satisfy

ideal properties. Although it does not damage the security of hash functions im-
mediately, the analyses against building blocks are useful to know the potential
weakness, security margin, validity of the security proof, and so on.

Many of the SHA-3 candidates are based on the design strategy of AES [4,
5]. Recently, an outstanding progress in the cryptanalysis against AES-based
hash functions or permutations has been made [6–16]. Specifically, Rebound at-
tack proposed by Mendel et al. at FSE 2009 [7], Start-from-the-Middle attack
proposed by Mendel et al. at SAC 2009 [8], and Super-Sbox analysis applied to
the rebound attack by Lamberger et al. at Asiacrypt 2009 [15] and by Gilbert
and Peyrin at FSE 2010 [9] have wide range of their applications and are power-
ful analytic tools. In fact, the rebound based attack has been applied to several
SHA-3-candidates [7–14, 17] such as Grøstl [18], ECHO [19], JH [20], Cheetah
[21], LANE [22], Twister [23]. It has also been applied to other hash functions
[7–9, 15, 16] such as Whirlpool [24] and AES hashing modes.

ECHO [19], designed by Benadjila et al., is one of the round 2 algorithms in
the SHA-3 competition using a 2048-bit AES-based permutation. The number
of rounds in the permutation is 8 for ECHO-224 and -256, and 10 for ECHO-
384 and -512. At FSE 2010, Gilbert and Peyrin showed that the full-round
(8-round) ECHO permutation could be distinguished from an ideal permutation
with time of 2768 and memory of 2512 by using the Super-Sbox analysis [9]. After
that, Peyrin [25, 26] improved this attack which required 2512 in both time and
memory. Because the 8-round ECHO permutation is a building block to generate
256-bit or 224-bit hash values and compression part from 2048-bits to 256- or
224-bits is not considered, the impact of this attack seems almost negligible. In
addition, as long as it is evaluated by the framework of [9], the time or memory
cannot be below 2512 1. To sum up, there is no powerful analysis on the ECHO
hash function nor compression function. Even though attacks on the permutation
reached full-round, the complexity is too high.

Note that the reduced ECHO compression function is attack by Peyrin [26].
Recently, Schläffer presented the analysis on ECHO [27] and Ideguchi et al.
presented the analysis on Grøstl [28]. These results are listed in Table 1.

Our Contributions

In this paper, we present non-full-active Super-Sbox analysis which can detect
non-ideal properties of a class of AES-based permutations with a low complexity.
To demonstrate its applicability, we first apply the non-full-active Super-Sbox
analysis to the 8-round Grøstl-256 permutation, which is an AES-based permu-
tation consisting of the 8×8 state. This attack can detect a non-ideal property
of the 8-round Grøstl-256 permutation with time of 248 and memory of 28, while
detecting the same property of an ideal permutation requires 296. We then apply
this framework to the full-round (8-round) ECHO permutation by optimizing the
attack with taking several properties specific to ECHO into account. This attack
can detect a non-ideal property of the 8-round ECHO permutation with time of
1 Reasons of this limitation are explained in [9, Section 4.4] and [26, Appendix B].

2

Table 1. Comparison of attack results on ECHO and on Grøstl.

Target Rounds Time Memory Attack Type Paper

8 (full) 2768 2512 Distinguisher [9]

ECHO-256/-224 8 (full) 2512 2512 Distinguisher [26]

Permutation 8 (full) 2182 237 Distinguisher Sect. 5.2

7 2128 232 Distinguisher [26]

7 2118 238 Distinguisher Append. A

ECHO-256/-224 3 264 264 Distinguisher [26]

Single-pipe Comp. Func. 3 232 238 Distinguisher Append. B

Grøstl-256 8 2112 264 Distinguisher [9]

Permutation 8 264 264 Distinguisher [28]

8 248 28 Distinguisher Sect. 4.4

Grøstl-512 7 2152 264 Semi-free-start coll. [17]

Comp. Function 7 2152 256 Semi-free-start coll. Sect. 5.3

ECHO-256 4 264 264 Collision [27]

Hash Function 5 296 264 Distinguisher [27]

ECHO-256 / -512 3/3 264/296 264/264 Semi-free-start coll. [26]

Comp. Function 7/7 2107/2106 264/264 Distinguisher [27]

Grøstl-256 Comp. Func. 10 (full) 2192 264 Distinguisher [26]

Grøstl-512 Comp. Func. 11 2640 264 Distinguisher [26]

2182 and memory of 237, while detecting the same property of an ideal permuta-
tion requires 2256. Note that the 8-round ECHO permutation is a building block
for ECHO-256 and ECHO-224. As far as we know, this is the first result on the
full-round ECHO permutation which can work with both time and memory (or
product of these factors) below 2256 (or 2224). Note, however, that the role of the
convolution in the ECHO compression function is very important for its security
and our distinguisher cannot be extended to the ECHO compression function,
nor the hash function. Finally, we show that our approach also improves the
amount of memory for the semi-free-start collision attack on the 7-round Grøstl-
512 compression function to 256 from 264. In appendices, we show new results
on the reduced-round ECHO permutation and compression function. An attack
on the 7-round ECHO permutation and a low complexity distinguisher on the
3-round single-pipe ECHO-256 compression function are included. The attack
results are summarized in Table 1. The technical details in this paper are as
follows.

Low complexity distinguishers on AES-based permutations We present
a new strategy of the Super-Sbox analysis which can work for a class of
AES-based permutations in generic. The core idea is using a differential
path whose inbound part, in particular inside the Super-Sbox, consists of
only non-full-active states. Regarding non-active bytes, the difference is al-

3

SubBytes ShiftRows AddRoundKey
S-box Multiplied by an MDS matrix Known Constant1234567

0 1234567
0 MixColumns 1234567

0
r cells

r cells c bits
Fig. 1. The operations inside a round of AES-based permutation.

ways 0 through the SubBytes and InverseSubBytes operations regardless of
its value. Hence, attackers can freely choose the value without breaking the
differential path. This freedom degrees enable attackers to control values
(or differences through the SubBytes operation) of other bytes inside the
Super-Sbox to be connected efficiently.

Observations on the property of ECHO permutation We explain two new
observations on the ECHO permutation when dealing with the byte-wise
truncated differential path. First, we find that the linearity of the jointed two
linear operations (MixColumns inside the BigSB and the following BigMC)
should be taken into account in order to correctly calculate the complexity
for a certain differential path. Second, there are freedom of the differential
paths inside BigSB available to attackers to reduce the complexity.

In Section 2, we describe AES-permutation, ECHO, and Grøstl. In Section 3,
we introduce previous work. In Section 4, we present the framework of non-full-
active Super-Sbox analysis and show its application to the 8-round Grøstl-256
permutation. In Section 5, we attack the full-round ECHO permutation and the
7-round Grøstl-512 compression function. In Section 6, we conclude this paper.
Results on other variants of ECHO are described in appendices.

2 Specifications

AES [4, 5] is a 128-bit block-cipher represented by a 4 × 4 byte state. Here we
consider a general AES-based permutation with r × r state where each element
is a c-bit word. The row and column positions of a word/byte is denoted by i
and j, respectively where i, j ∈ [0, r−1]. As shown in Fig. 1, the state is updated
by four operations in a round of the AES-based permutation.

– SubBytes (SB): non-linear word/byte substitution according to an S-box.
– ShiftRows (SR): each word/byte at row j is rotated to left by j positions.
– MixColumns (MC): multiply each column by a MDS matrix.
– AddRoundKey (AK): bit-wise XOR of the current state and a constant.

2.1 ECHO Permutation

ECHO [19] designed by Benadjila et al. is a hash function using a 2048-bit AES-
based permutation as its building block. The permutation consists of 8 rounds

4

BigSB
2-round AES per. 0 Multiplied by an MDS matrix

BigSR BigMC123 1230
AES state

Fig. 2. One round of ECHO permutation.

F C D 1

Fig. 3. Notations for ECHO BigWords.

for ECHO-224 and -256, and 10-rounds for ECHO-384 and -512. The 2048-bit
internal state can be represented by a 4× 4 matrix where each element is a 128-
bit AES state called a BigWord. The round operation in the ECHO permutation
manipulates 128-bit BigWords instead of 8-bit bytes. One round of the ECHO
permutation shown in Fig. 2 has three operations:

– BigSB: substituting each BigWord by applying two AES-rounds.
– BigSR: each BigWord at row j is rotated to left by j positions.
– BigMC: multiply each 4 bytes of the ECHO state by a MDS matrix.

To simplify the dedicated analysis on ECHO, as introduced by [26], we denote
4 types of byte-wise truncated differences of the BigWord as shown in Fig. 3.

2.2 Grøstl Permutation and Compression Function

Grøstl designed by Gauravaram et al. [18] is another hash function built upon
the AES-based permutations. Grøstl-256 permutation uses an 8× 8 state where
each element is an 8-bit byte, while Grøstl-512 permutation uses an 8×16 state.
The number of rounds in the permutation is 10 for Grøstl-224 and -256, and 14
for Grøstl-384 and -512. The Grøstl-512 uses different ShiftRows operation from
Grøstl-256, where the bytes at row 7 are rotated to left by 11 positions.

3 Previous Work

Rebound attack was proposed by Mendel et al. at FSE 2009 [7], which is useful
to analyze AES-based permutations. It divides a differential path into two parts;
inbound and outbound phases. Inbound phase controls the most expensive part
of the differential path with a very low average complexity, then outbound path
is satisfied probabilistically. It needs to make sure the total number of starting
points generated at the inbound phase is enough to fulfill the outbound path.

Start-from-the-Middle attack was proposed by Mendel et al. at SAC 2009 [8].
It improves the rebound attack by extending the number of controlled rounds
from 2 to 3. The idea is to utilize the independence and the freedom of each
search procedure as much as possible. As a result, without increasing the time
and memory, 3 rounds of the differential path can be fulfilled efficiently.

Super-Sbox analysis for the rebound attack was independently proposed by
Lamberger et al. at Asiacrypt 2009 and by Gilbert and Peyrin at FSE 2010 [9].

5

Super-Sbox combines 2 non-linear layers and 1 diffusion layer to 1 non-linear
layer with a larger substitution-box. It can extend the inbound phase by one
more round. As a side effect, attackers need to spend more time and memory to
exploit the differential property of the Super-Sbox.

Peyrin proposed a differential path for ECHO with an increased granularity
[26]. This can reduce the number of active bytes inside an active BigWord, and
thus the attack complexity can be reduced.

4 Framework of Non-Full-Active Super-Sbox Analysis

In this section, we use the following notations:

r: a number of rows and columns in a state.
c: a number of bits of each cell (word) in a state.
s: a number of non-active columns in the initial state of the differential path.
Col(x): a state where x columns are fully active, namely, r×x bytes are active.
SR(Col(x)), SR−1(Col(x)): a state where Col(x) is passed over SR and SR−1.
F : a state where all bytes are active.
x/y: a state where y bytes become non-active from a state x.

In the Super-Sbox analysis, as long as we follow the strategy of Gilbert and
Peyrin [9], the attack complexity is lower-bounded by 2rc. In this section, we
present a new framework called non-full-active Super-Sbox analysis which can
detect non-ideal properties with a lower complexity. We first make a truncated
differential path whose inbound part, in particular inside the Super-Sbox, con-
sists of non-full-active states. For non-active bytes, the differential transition 0
to 0 is always held regardless of its value, and thus attackers can freely choose
the value without breaking the path. This gives attackers the freedom degrees
to adjust other bytes inside the Super-Sbox.

Non-full-active Super-Sbox analysis can be applied to AES-based permuta-
tions. We assume that the MixColumns operation is composed of MDS matrix
[5]. Namely, the sum of the number of active bytes in the input and output states
is greater than or equal to r + 1, otherwise 0.

4.1 Non-Full-Active Truncated Differential Path

We show a generic description of the non-full-active differential path. The dif-
ferential path has a parameter s, which is the number of non-active columns in
the initial state. The parameter s determines the complexity of the attack. The
differential path is depicted in Fig. 4 with instantiating the case r = 8 and s = 3.

To make the differential path, we start from the state after the 2nd and 5th
rounds, whose states are Col(1)/s and SR−1(Col(1))/(r− (s+1)), respectively.
The differential propagation through the 3rd round in forward and the 5th round
in backward are deterministic, which result in F/Col(s) and F/SR−1(Col(r −
(s + 1))), respectively. We then need to check that the differential propagation

6

1R 2R 3R 4R 5R 6R 7R 8R

1R 2R 3R 4R 5R 6R 7R 8R

SR-1(Col(1))

F / SR-1(Col(s))

1

SR-1(Col(1)) / s

Col(1)

Col(1) / s

F

F / Col(s)

F

F / SR-1(Col(r- (s+1)))

SR-1(Col(1))

SR-1(Col(1)) / (r-(s+1))

1

Col(1) / s

Col(1)

F / Col(s)

F

F

Fig. 4. (Bottom) New differential path for 8-round AES-based permutations with in-
stantiating r = 8 and s = 3. (Top) Previous path for the Super-Sbox analysis [9].

through the MixColumns operation in the 4th round is consistent with the MDS
property. Because input and output states have r− s and r− (r− (s+1)) active
bytes in each column respectively, the sum of active bytes in the input and output
is r− s + r− (r− (s +1)) = r + 1. Hence, the differential path is consistent with
the MDS property. Next, we determine the differential propagation through the
6th round in forward. The number of active bytes should be reduced as much as
possible after the 6th round in order to make the target non-ideal property hard
for an ideal permutation. Hence, we maximize the number of non-active bytes
with satisfying the MDS property, which results in the state Col(1)/s. Similarly,
we determine the differential propagation through the 2nd round in backward.
We make the number of active bytes to be the same as the state after the 6th
round2, which results in SR−1(Col(1))/s. The rest of the path is deterministic.

4.2 Low Complexity Inbound Phase

We explain how to compute the inbound phase for our path. Details of states
inside the inbound phase are shown in Fig. 5, with denoting each state by #i,
where 0 ≤ i ≤ 8. The inbound phase starts from the state after the SubBytes in
the 3rd round (#0) and the state input to the 6th round (#8). The goal of the
inbound phase is finding paired values satisfying the differential path through
#0 to #8. We find 2c such paired values with 2c computations and 2c memory.

States #0 and #8 include r − s and s + 1 active bytes, respectively. First,
we choose and fix the differences of all active bytes in #0 and the differences
of s active bytes out of s + 1 active bytes in #8. Then, for each 2c possible
differences of the last active byte in #8, we aim to store a corresponding paired
value. Due to the linearity of the operations, we can compute the corresponding
differences in state #2 and corresponding s-byte differences in each column of
#6. The Super-Sbox analysis can be applied between #2 and #6, namely we can
compute them column by column independently. Previous Super-Sbox analysis
spent 2rc of time and 2rc of memory for this computation, while we efficiently
connect these two states by using the freedom degrees of the non-active states.
2 With a lower probability, the number of active bytes can be smaller. However, this

will not lead to any advantage in the distinguishing attack.

7

SB SR MC SB

SB SR MC

SR

AK

MC

AK AK

SB

0 # 1 # 2 # 3

4 # 5 # 6 # 7 # 8

Outbound Inbound Super-Sbox

Super-Sbox Inbound Outbound

: non-active : active (difference is fixed) : active (produce all possible differences)

4A # 5A # 6A

2A

Fig. 5. Inbound phase for the new differential path with non-full-active states.

SubBytes MixColumns SubBytes

Table
Look up

Table
Look up

#2A #4A #5A #6A

solve
system of
equations

start

store 2c

results

compute(2c times)

Fig. 6. Computation procedures inside each Super-Sbox.

In the following, we only show the Super-Sbox computations in the left most
column, which is emphasized with bold squares in Fig. 5. The other columns can
be connected with the same procedure.

Computation procedure inside the Super-Sbox. The operations inside the
Super-Sbox are shown in Fig. 6. Because the ShiftRows operation does not give
any impact inside the Super-Sbox, we omit it in Fig. 6. To stress that each Super-
Sbox is computed column by column, we denote the states inside the Super-Sbox
by #2A, #4A, #5A, and #6A in Fig. 6. The goal of this procedure is efficiently
producing 2c paired values which satisfy the fixed part of the differences of #2A
and #6A. This procedure finds 2c paired values with a time complexity of 2c

and 2c memory. The attack procedure is as follows.

0. For each active byte whose difference is fixed in #2A and #6A, compute SB
and Inverse-SB for all possible 2c values and a fixed difference. Store these
2c values and corresponding output differences as a look up table. We sort
tables according to the output differences so that table look-up only requires
1 memory access. As a result, (r − s) + s = r look-up tables are prepared.

8

1. Choose a difference of one active byte in #4A. (The top byte of #4A is
chosen in Fig. 6.)

2. We have other r−s−1 active bytes in #4A and need to make sure the same
number of bytes in #5A are non-active. This is done by solving a system
of equations and we will obtain one solution of the system. As a result,
differences in #4A and #5A become consistent and are uniquely fixed.

3. From a fixed difference of #4A and the given difference of #2A, for each
active byte, we obtain a pair of values which connects these differences by
looking up tables generated in Step 0. Do the same for fixed s-byte differences
of #6A and #5A. Note that values for non-active bytes are not fixed yet.

4. Then we connect the values of active bytes of #4A and #5A. We use the
freedom degrees of non-active bytes to effectively achieve this. There are s
non-active bytes in #4A and s active bytes in #5A whose values are fixed
in Step 3. By solving a system of equations, we can calculate the values of s
non-active bytes in #4A so that the fixed s bytes of #5A can be consistent.

5. With the fixed values in #4A, we compute the non-fixed active byte in #5A,
and further compute the corresponding value in #6A. We store entire values
and differences of states #2A and #6A in a table.

6. We iterate Step 1 to Step 5 2c times by changing the difference of the chosen
active byte in #4A.

Complexity of inbound phase. We assume r and s are enough small com-
pared to 2c (e.g. r = 8, s = 3, and 2c = 256 in Fig. 4). Step 0 requires 2c

computations and 2c memory. Step 1 to Step 4 can be computed with a com-
plexity of 1 (Based on the assumption, the cost for looking-up r tables and
solving systems of equations of size s are ignored). Step 5 uses a memory of 1.
Because Steps 1 to 5 are repeated 2c times in Step 6, the complexity of this
procedure is time 2c and memory 2c. Note that 2c values and differences of the
non-fixed active byte are stored in the table. Therefore, we obtain 1 solution on
average for any difference of the non-fixed byte.

After we finish the computation for all Super-Sboxes, we choose a difference
of the non-fixed byte in #8 in Fig 5. For each of its possible 2c differences,
we compute the corresponding difference in #6, and obtain the value which
connects #2 to #6 by looking up each Super-Sbox. Note, we obtain one solution
on average for any pair of differences in #2 and #6. To sum up, we can obtain
2c starting points, which are solutions of the inbound phase, with time 2c and
memory 2c. In other words, we obtain a starting point with time 1 on average.

4.3 Outbound phase and the freedom degrees

After the inbound phase, we compute the outbound phase. The differential
path described in Fig. 4 has two probabilistic differential propagations: 1) the
backward computation through the 2nd round and 2) the forward computation
through the 6th round. In both rounds, the MixColumns or InverseMixColumns
operations need to produce s non-active bytes. Therefore, for each of these

9

Table 2. The complexity to find a property with our attack and ideal permutation.

s 1 2 3 4 5 6 7 8

Ours 22c 24c 26c 28c 210c 212c 214c 216c

Ideal 2
cr
2 2cr 2

3cr
2 22cr 2

5cr
2 23cr 2

7cr
2 24cr

rounds, the success probability is 2−cs. Finally, this attack requires 22cs starting
points for the outbound, and each starting point is generated with time 1 on
average. Hence, with a time 22cs, we find a pair following the differential path.

We also need to confirm that the available freedom degree is enough. Our
attack starts from the states #0 and #8 in Fig. 5. #0 and #8 include r− s and
s+1 active bytes respectively, and thus we have 2c(r+1) freedom degrees in total.
Hence, as long as the parameter s satisfies 2c(r+1) ≥ 22cs, which is converted to
below, we have enough freedom degrees.

s ≤ r + 1
2

(1)

4.4 Target Class of AES-Based Permutations and an Example

Let us consider the complexity for an ideal permutation. The last MixColumns is
not taken into account because it is fully linear. Hence, the problem is regarded
as finding a crs-bit collision. A crs-bit collision can be found by the birthday
attack because attackers have enough freedom degrees due to Eq. (1). Hence,
the complexity for an ideal permutation is 2

crs
2 . The comparison of the non-full-

active Super-Sbox analysis and the ideal case is shown in Table 2.
From Table 2, we can see r > 4 is a condition so that our attack can work.

Therefore, our attack cannot be applied to AES (r = 4). Note that the ECHO
permutation is regarded as an AES-based permutation with r = 4 at a BigWord
level. However, it has other structures and this enables us to greatly reduce the
attack complexity on the ECHO permutation. See Section 5 for details.

Let us consider an application for a real primitive. Grøstl-256 uses an AES-
based permutation with r = c = 8. In previous Super-Sbox analysis [9], the
8-round permutation is distinguished with time 2112 and memory 264, which
is too expensive to be implemented. In our attack, we choose s = 3, whose
differential path is shown in Fig. 4. Consequently, from Table 2, we can detect a
pair of values following the differential path with time 248 and 28 memory, while
finding a pair of values in an ideal permutation requires 296, which is infeasible.
Choosing other s is also possible as long as s ≤ 4.

5 Applications to ECHO and Grøstl

5.1 New Observations on ECHO

In this section, we explain several new observations on the ECHO permutation
when dealing with the dedicated byte-wise differential path.

10

D SuperSboxD D D CC CBigMCCC1 11 1 SR,MC,AKBigSR#1 #2 #3 #4
Fig. 7. A differential path for a 1-round ECHO permutation.

Complexity analysis for jointed MixColumns and BigMC. In the ECHO
permutation, 2-round AES permutation inside BigSB can be considered as a
non-linear layer with Super-Sboxes and a diffusion layer consisting of ShiftRows,
MixColumns and AddRoundKey. Note that from the second MixColumns inside
BigSB to the following BigMC are successively performed. We show that the
linearity of jointed MixColumns and BigMC should be considered to correctly
compute the complexity for certain differential paths.

As an example, let us check the complexity for the differential path shown
in Fig. 7 assuming the differences and real values at state #1 have full freedom.
In the previous analysis [26, Appendix B], the complexity for this differential
path is likely to be divided into three parts and analyzed independently. State
#1 to #2 can be fulfilled when the output of each active Super-Sbox has only 1
active byte. Since there are totally 12 bytes required to be zero, the probability
is regarded as 2−96. The complexity from #2 to #3 is 1. And since 12 bytes
are required to be zero from #3 to #4, the probability is regarded as 2−96. As
a result, the total probability is regarded as 2−96×2 = 2−192. However we show
that MixColumns and BigMC cannot be considered separately, and thus the
correct probability needs to be reconsidered.

We can see that the freedom of the difference for state #2 or #3 is at most
232, since #2 has only 4 active bytes. As a contradiction for the previous analysis,
the freedom of difference at #3 (232) seems impossible to fulfill the differential
propagation to #4 (2−96). However, we show that this propagation is fulfilled
only with a probability of 2−24, and thus 232 freedom degrees are enough.

This fact can be understood from two directions. First, for a position-fixed
active byte and the fixed MDS matrix used in MixColumns between #2 and
#3, the 4 active bytes inside each active BigWord at #3 has a fixed linear
relationship. Then if BigMC generates the required difference at #4 for one of
4 active-byte positions with a probability of 2−24 (e.g. 4 top-left bytes from 4
active BigWord at #3 generate 1 active byte at the top-left of state #4), the
other three active-byte positions become the same differential pattern at #4
with probability 1. Another interpretation is that one can switch the operation
order, namely performing BigMC first and MixColumns later. When 4 active
bytes in #2 generate only 1 active byte through BigMC with a probability of
2−24, the differential path from #3 to #4 through MixColumns is fulfilled with
probability 1. As a result, the total complexity is 296+24 = 2120 instead of 2192.
Note that this fact was independently discovered by [27] as SuperMixColumns.

Freedom of the differential path inside BigSB. We can use the freedom of
the differential path inside BigSB to reduce the attack complexity. Our attacks

11

F F F
F F F

F F F
F F F

F
F

F

BigSB F F F
F F F
F F F
F F F

[F,F,F]

BigSR

BigMC
D
D
D

BigSB D
D
D

[F,F,D]

BigSR

BigMC
F F F
F F F
F F F
F F F

BigSB F
F

F
[D,C,F]

BigSR

BigMC
F F

F F
F F

F F

BigSB F F F
F F F

F F F
F F F

[F,F,F]

BigSR

BigMC

D
D

BigSB D D
D D
D D
D D

[F,F,D]

BigSR

BigMC
C
C
C

BigSB C
C[D,1,C]

BigSR

BigMC
F F F
F F F
F F F
F F F

BigSB F
F

F
[C,F,F]

BigSR

BigMC
F F F F
F F F F
F F F F
F F F F

BigSB F F F
F F F

F F F
F F F

[F,F,F]

BigSR

BigMC

Outbound Inbound Super-Sbox

Super-Sbox Inbound Outbound

Pr.=2-32

Pr.=2-54 Jointed MC and BigMC

Freedom of DP inside BigSB

α

β

Fig. 8. Non-full active differential path for 8-round ECHO permutation.

only care about the differences at the start and end states of the permutation.
We notice that while keeping the differential path at a BigWord level, attackers
can use the freedom of the differential paths at a byte level inside BigSB.

We again use the differential path in Fig. 7 as an example. In order to fulfill
the differential path, the 4 active bytes in state #2 must be at the same position
inside the leftmost column of each BigWord3. As a result, the differential path
inside the BigSB has 4 choices for the positions of active bytes, and thus, the
complexity for the differential path in Fig. 7 can be reduced from 2120 to 2118.

5.2 Attack on Full-Round ECHO Permutation

Truncated Differential path. We use the differential path explained in Sec-
tion 4.1 with parameter s = 1 at a BigWord level, which is shown in Fig. 8.
We use the notation BigSB[x, y, z], where x, y, z ∈ {F, D, C, 1} to show that x,
which is the input differential pattern to BigSB, changes into y after the 1st
AES-round and into z after the 2nd AES-round.

Inbound phase. The detailed differential path for the inbound phase is de-
scribed in Fig. 9. The inbound phase starts from a middle of BigSB in the 3rd
round (#α) and the input state to the 6th round (#β), where the differential
form in #α is C. We first choose and fix a difference of #α and a difference
of one of active BigWords of #β, and compute the corresponding differences of
#2 and #6. In the inbound phase, for each of 232 possible differences of the
non-fixed active BigWord in #β, we find a pair of values that satisfies the cho-
sen differences of #α and #β. The attack procedure follows the one explained
in Section 4.2 with some optimization specific to ECHO. In the followings, we
describe details to compute 1 Super-Sbox of ECHO with the size of 128 bits.

0. Generate a look-up table for each 4 active BigWord with fixed difference
in #2A and #6A, With the procedure in Section 4.2, this costs 2128 time

3 If 4 active bytes in state #2 are in different positions inside each BigWord, the path
for Fig. 7 becomes impossible. This may be used as a countermeasure of our attack.

12

Outbound Inbound Super-Sbox

Super-Sbox Inbound Outbound

α # 0 # 1 # 2 # 3

5 # 6 # 7 # β# 4

: non-active : active (difference is fixed) : active (produce all possible differences)

Big
SB

Big
MC

Big
SR

Big
SB

Big
MC

Big
SB

Big
MC

Big
SR

SR
MC

SB
SR
MC

Big
SR

AKAK
SB

BigSB

2A

4A #5A #6A

Fig. 9. Inbound phase for 8-round ECHO permutation.

and 2128 memory. [8] pointed out that this could be performed efficiently
by looking inside BigSB. The BigSB can be regarded as 4 Super-Sboxes
(SB, SR, MC, AK, SB) with the size of 32 bits and the linear part (SR, MC,
AK). Then, for a given output difference of BigSB, we can calculate back the
corresponding difference of the linear part, and thus values are searched by
looking up four 32-bit Super-Sboxes independently. Hence, look-up tables for
4 BigWords can be generated by computing 16 Super-Sboxes, which requires
16× 232 in both time and memory.

1. Choose a difference of one active BigWord in #4A.
2. By solving a system of equations, compute differences of 2 active BigWords

in #4A so that 2 target BigWords in #5A can be non-active.
3. For each active BigWord with fixed difference, obtain a pair of values which

connects differences between #4A and #2A, and between #6A and #5A by
looking up tables generated in Step 0.

4. By solving a system of equations, calculate the value of 1 non-active BigWord
in #4A so that the fixed value of 1 BigWord in #5A can be consistent.

5. With the fixed paired values in #4A, compute the non-fixed active BigWord
in #5A and #6A. Only if the computed difference of #6A has the diagonal
form D, store entire values and differences of states #2A and #6A in a table.

6. Iterate Steps 1 to 5 2128 times by changing the difference of the chosen
BigWord in #4A.

In Step 0, look up tables are generated with 236 time and 236 memory. Steps 1
to 5 are iterated 2128 times. In Step 5, the computed difference has the diagonal
form D with a probability of 232/2128 = 2−96, and thus we store 232 data after
2128 iterations. Hence, the complexity for 1 Super-Sbox with the size of 128 bits is
2128 computations and 236+232 memory. Note that we need 236+(4×232) < 237

memory for 4 Super-Sboxes. In the end, the inbound phase generates 232 starting
points with 2128 computations and 237 memory, which is 296 computations on
average to generate 1 starting point.

13

Success probability and freedom degrees. If details are considered, Step 3
succeeds only probabilistically. Look-up tables for each BigWord consists of 4
Super-Sboxes with the size of 32 bits. Assume that each Super-Sbox has the
same property as the AES Sbox. Namely, for a randomly given a pair of input
and output differences, with a probability of approximately 2−1, there exists
approximately 2 paired values satisfying the differences. In Step 3, we look-
up 16 Super-Sboxes. Hence, the success probability is 2−16 and we obtain 216

paired values. We compute Steps 4 and 5 for all 216 paired values, and thus they
are computed 2128 times in total by the 2128 iteration of Step 6. Consequently,
the total time and memory for the inbound phase will not change. Note that
the estimation by using average numbers is imprecise only if the cost for the
outbound phase is cheaper than the inbound phase. Because our attack iterates
the inbound phase 254 times, the evaluation with average numbers is valid.

We then check the freedom degrees. In the inbound phase, we can choose up
to 296 differences for #α and 232 differences for the fixed active BigWord in #β.
Hence, the inbound phase can be iterated 2128 times and thus we can generate
2160 starting points in maximum, which are enough to satisfy the outbound.

Outbound phase. The differential path shown in Fig. 8 includes two proba-
bilistic differential propagations.

InverseBigMC in the 2nd round. For each of diagonal positions, Inverse
MixColumns outputs one non-active byte. This probability is (2−8)4 = 2−32.

BigSB and BigMC in the 6th round. Observations explained in Section 5.1
are applied for this part. The probability that the differences in 2 BigWords
propagate as D → 1 → C is (2−24)2 = 2−48. By taking the freedom of
the differential path inside BigSB into account, the probability becomes
4× 2−48 = 2−46. In the BigMC operation, MC is computed for 4 positions.
Due to the property of jointed MixColumns and BigMC operations, all of the
4 positions will make 1 non-active byte with a probability of 2−8 in total. As
a result, the total success probability of the 6th round is 2−46× 2−8 = 2−54.

In the end, the success probability of the outbound phase is 2−32×2−54 = 2−86.

Total complexity and comparison with ideal case. In our attack, we
generate 286 starting points and each of them is generated with 296 computations
on average. Hence, the total complexity is 286×296 = 2182. Note that this attack
requires 237 memory. On the other hand, for the ideal case, the property is
regarded as finding a 512-bit collision. This requires 2256, which is much higher
than our attack on ECHO.

5.3 Improving Semi-Free-Start Collisions on 7-round Grøstl-512

We improve the semi-free-start collision attack on 7-round Grøstl-512 compres-
sion function proposed by Mendel et al. [17]. It uses the previous Super-Sbox

14

#P2
SH

MB

AC

SB

SH

MB

AC

SB

SH

MB

AC

SB

SH

MB

AC

SB

SH

MB

AC

SB

SH

MB

AC

SB

SH

#P2 #P3
SH #P3 #P3

SH #P4 #P4
SH

Outbound Inbound Super-Sbox Inbound Outbound

9th 9th

Fig. 10. (Bottom) New differential path for Grøstl-512. (Top) Previous path.

analysis and thus requires 264 memory. We show the memory can be reduced to
256 with the non-full-active Super-Sbox analysis. Because our outbound phase
is the same as [17], we only explain the inbound phase.

In the Super-Sbox analysis with a rectangle state such as r×2r, several Super-
Sboxes include non-active bytes. Hence, the framework explained in Section 4
can be applied and the data stored for each Super-Sbox can be reduced. In
the previous differential path [17, Fig.7] shown in Fig. 10, the 9th Super-Sbox
at #PSH

3 takes a full-active column as input and output a full-active column,
which requires 264 memory. In fact, this is a bottleneck in the entire attack.

We reduce the number of active bytes where we choose the differences at the
initial step of the inbound phase (#P4). This results in a differential path where
each Super-Sbox has at least one non-active byte. The new path is shown in
Fig. 10. Each Super-Sbox can be computed based on the procedure explained
in Section 4.2, which results in generating 256 starting points with 256 time and
256 memory. Note that the differential propagation from #PSH

3 to #P3 must be
consistent with the MDS property. We confirmed that the amount of memory
could not be below 256 due to this limitation.

Because we reduced the number of active bytes, the freedom degree was also
reduced. The success probability of the outbound phase is 2−152, and thus we
need 2152 starting points. Because our attack can choose 22-byte differences (8-
byte for #PSH

2 and 14-byte for #P4) at the initial step, up to 28×22 = 2176

starting points can be produced, which is enough to satisfy the outbound path.

6 Conclusions

We presented the non-full-active Super-Sbox analysis which can detect non-ideal
properties of a class of AES-based permutations with a low complexity. The core
idea is using a differential path consisting of only non-full-active states. This gives
us the freedom to efficiently control inside the Super-Sbox. We then applied this
framework to the full-round ECHO permutation by taking properties specific to
ECHO into account. Consequently, our attack could detect a non-ideal property
with time 2182 and memory 237. Note because of the convolution operation, our
attack cannot be extended to the hash or compression function. We then applied
our approach to Grøstl to obtain the distinguishing attack on the 8-round Grøstl-

15

256 permutation with a practical cost, and to obtain an improvement on the
semi-free-start collision attack on the 7-round Grøstl-512 compression function.

References

1. Wang, X., Yu, H.: How to break MD5 and other hash functions. In: EUROCRYPT
2005. Volume 3494 of LNCS. Springer-Verlag (2005) 19–35

2. Wang, X., Yin, Y.L., Yu, H.: Finding collisions in the full SHA-1. In: CRYPTO
2005. Volume 3621 of LNCS., Springer-Verlag (2005) 17–36

3. U.S. Department of Commerce, National Institute of Standards and Technology:
Federal Register /Vol. 72, No. 212/Friday, November 2, 2007/Notices. (2007)

4. U.S. Department of Commerce, National Institute of Standards and Technology:
Specification for the ADVANCED ENCRYPTION STANDARD (AES) (Federal
Information Processing Standards Publication 197). (2001)

5. Daemen, J., Rijmen, V.: The design of Rijndael: AES – the Advanced Encryption
Standard (AES). Sprnger-Verlag (2002)

6. Peyrin, T.: Cryptanalysis of Grindahl. In: ASIACRYPT 2007. Volume 4833 of
LNCS., Springer-Verlag (2007) 551–567

7. Mendel, F., Rechberger, C., Schläffer, M., Thomsen, S.S.: The rebound attack:
Cryptanalysis of reduced Whirlpool and Grøstl. In: FSE 2009. Volume 5665 of
LNCS., Springer-Verlag (2009) 260–276

8. Mendel, F., Peyrin, T., Rechberger, C., Schläffer, M.: Improved cryptanalysis of the
reduced Grøstl compression function, ECHO permutation and AES block cipher.
In: SAC 2009. Volume 5867 of LNCS., Springer-Verlag (2009) 16–35

9. Gilbert, H., Peyrin, T.: Super-Sbox cryptanalysis: Improved attacks for AES-like
permutations. In: FSE 2010. Volume 6147 of LNCS. (2010) 365–383

10. Rijmen, V., Toz, D., Varici, K.: Rebound attack on reduced-round versions of JH.
In: FSE 2010. Volume 6147 of LNCS. (2010) 286–303

11. Wu, S., Feng, D., Wu, W.: Cryptanalysis of the LANE hash function. In: SAC
2009. Volume 5867 of LNCS., Springer-Verlag (2009) 126–140

12. Wu, S., Feng, D., Wu, W.: Practical rebound attack on 12-round Cheetah-256. In:
ICISC 2009. Volume 5984 of LNCS., Springer-Verlag (2010) 300–314

13. Matusiewicz, K., Naya-Plasencia, M., Nikolić, I., Sasaki, Y., Schläffer, M.: Rebound
attack on the full LANE compression function. In: ASIACRYPT 2009. Volume
5912 of LNCS., Springer-Verlag (2009) 106–125

14. Mendel, F., Rechberger, C., Schläffer, M.: Cryptanalysis of Twister. In: ACNS
2009. Volume 5536 of LNCS., Springer-Verlag (2009) 342–353

15. Lamberger, M., Mendel, F., Rechberger, C., Rijmen, V., Schläffer, M.: Rebound
distinguishers: Results on the full Whirlpool compression function. In: ASI-
ACRYPT 2009. Volume 5912 of LNCS., Springer-Verlag (2009) 126–143

16. Lamberger, M., Mendel, F., Rechberger, C., Rijmen, V., Schläffer, M.: The rebound
attack and subspace distinguishers: Application to Whirlpool. Cryptology ePrint
Archive, Report 2010/198 (2010)

17. Mendel, F., Rechberger, C., Schläffer, M., Thomsen, S.S.: Rebound attack on the
reduced Grøstl hash function. In: CT-RSA 2010. Volume 5985 of LNCS., Springer-
Verlag (2010) 350–365

18. Gauravaram, P., Knudsen, L.R., Matusiewicz, K., Mendel, F., Rechberger, C.,
Schläffer, M., Thomsen, S.S.: Grøstl addendum. Submission to NIST (updated)
(2009)

16

BigMC[D,1,C] BigMCBigMCBigSB[F,F,F]BigSR BigMC BigSB[F,F,D]BigSR BigMC BigSB[D,C,F]BigSRBigSB[F,F,D]BigSR BigMC BigSBBigSR BigSB[C,F,F]BigSR BigMC BigSB[F,F,F]BigSR
Outbound Inbound

Inbound Outbound
#FFFFF FFFF F D D FDDD F F F F F F FF F F FF F F FF F F FD D D DD D D D CCCCCCCC CC FF FFFFFFFF F F F FF F F F F F F FF F F FF F F FF F F FF F F FF F F FF F F FF F F FDDDD DDDD DDDD DDDDDDDD DDDD DDDD DDDD

#E
#B #A

#C#D

2-118
Fig. 11. Differential path for 7-round ECHO permutation.

19. Benadjila, R., Billet, O., Gilbert, H., Macario-Rat, G., Peyrin, T., Robshaw, M.,
Seurin, Y.: SHA-3 proposal: ECHO. Submission to NIST (updated) (2009)

20. Wu, H.: The hash function JH. Submission to NIST (updated) (2009)

21. Khovratovich, D., Biryukov, A., Nikolić, I.: The hash function Cheetah: Specifica-
tion and supporting documentation. Submission to NIST (2008)

22. Indesteege, S.: The LANE hash function. Submission to NIST (2008)

23. Ewan Fleischmann, C.F., Gorski, M.: The Twister hash function family. Submis-
sion to NIST (2008)

24. Rijmen, V., Barreto, P.S.L.M.: The Whirlpool hashing function. Submitted to
NISSIE (2000)

25. Peyrin, T.: Improved differential attacks for ECHO and Grøstl. In: CRYPTO
2010. Volume 6223 of LNCS. (2010) 370–392

26. Peyrin, T.: Improved differential attacks for ECHO and Grøstl. Cryptology ePrint
Archive, Report 2010/223 (2010) Extended version of the CRYPTO 2010 article.

27. Schläffer, M.: Subspace distinguisher for 5/8 rounds of the ECHO-256 hash func-
tion. In: Preproceedings of SAC 2010. (2010) 379–398

28. Ideguchi, K., Tischhauser, E., Preneel, B.: Improved collision attacks on the
reduced-round Grøstl hash function. Cryptology ePrint Archive, Report 2010/375
(2010) Appeared in the accepted papers list of ISC 2010.

A Attack Procedures on 7-Round ECHO Permutation

Using the differential path shown in Fig. 11, we present an attack on the 7-round
ECHO permutation with time of 2118 and memory of 238.

Step 1 An attacker picks up a difference at state #A (from 2128 patterns) and
calculates the difference back to #B (state after the second SubBytes).

Step 2 The transformation from #B to #C can be divided into 64 independent
4-byte Super-Sboxes. For each Super-Sbox with fixed output difference, by
testing all 232 output values, the attacker can make a table of all possible
input values and differences. At the end of Step 2, all the possible pairs at
#C are stored in a table named T1 that is composed of 64 small tables each
with size 232. Hence, we need 238 memory for this step.

17

BigMCBigSB[F,F,D]BigSR BigMC BigSB[D,C,F]BigSR BigSB[F,F,F]BigSR BigMCF D D FDDD F F F F F F FF F F FF F F FF F F F BBA BA AB ABBA BA AB AFFFF FFFF FFFF FFFFFFFF FFFF FFFF FFFFBBX BA AB ABBX BA AB A F F
#A#B#C#D#E#F#G

Fig. 12. Differential path of 3-round single-pipe ECHO compression function.

Step 3 For each active BigWord at #D, the attacker picks up a difference and
calculates a corresponding difference of BigColumn at #C. Then attacker
checks whether the calculated difference exists in T1. Once it exists, the
attacker uses the corresponding real values at #C to calculate back the real
values at #D. This test is repeated for all possible differences for each active
BigWord of #D, and all possible differences and real values at #D are stored
in a new table named T2. The time and memory for Step 3 are both 232.

Step 4 For all the possible pairs at each active BigWord at #D, the attacker
calculates the pairs at #E and stores the results as a table named T3.

Step 5 For all the possible 232 differences at #F, the attacker calculates the
differences at #E and checks whether the calculated difference exists in T3.

When Steps 1 to 5 are applied to Fig. 11, the inbound and backward outbound
phases are merged and calculated efficiently. ABy applying the procedure once,
with time of 232 and memory of 238, the attacker gets 232 start points. Note that
with the 2128 freedom of the differences at #A, the forward outbound phase can
be fulfilled. As a result, the total complexity is 2118 in time by the observations
in Section 5.1 and 238 in memory.

B Attack on 3-Round ECHO-SP Compression Function

Note that, for the attack in Appendix A, there is no specific requirement for the
differences at state #A. Using this property we can find a non-ideal property of
the 3-round single-pipe ECHO compression function specified in [19].

The differential path is shown in Fig. 12. An attacker makes sure the differ-
ences at #A can be cancelled in the compression calculation, i.e. for each row
of BigWords at #A, the difference labeled as A is the same with the one labeled
as B. By applying the procedure in Appendix A, this differential path can be
satisfied using 232 time and 238 memory, while it costs 264 for the ideal case.

18

