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Abstract. We describe public key encryption schemes with security
provably based on the worst case hardness of the approximate Shortest
Vector Problem in some structured lattices, called ideal lattices. Under
the assumption that the latter is exponentially hard to solve even with a
quantum computer, we achieve CPA-security against subexponential at-
tacks, with (quasi-)optimal asymptotic performance: if n is the security
parameter, both keys are of bit-length Õ(n) and the amortized costs of
both encryption and decryption are Õ(1) per message bit. Our construc-
tion adapts the trapdoor one-way function of Gentry et al. (STOC'08),
based on the Learning With Errors problem, to structured lattices. Our
main technical tools are an adaptation of Ajtai's trapdoor key genera-
tion algorithm (ICALP'99) and a re-interpretation of Regev's quantum
reduction between the Bounded Distance Decoding problem and sam-
pling short lattice vectors.

1 Introduction

Lattice-based cryptography has been rapidly developing in the last few years, in-
spired by the breakthrough result of Ajtai in 1996 [1], who constructed a one-way
function with average-case security provably related to the worst-case complexity
of hard lattice problems. The attractiveness of lattice-based cryptography stems
from its provable security guarantees, well studied theoretical underpinnings,
simplicity and potential e�ciency (Ajtai's one-way function is a matrix-vector
multiplication over a small �nite �eld), and also the apparent security against
quantum attacks. The main complexity assumption is the hardness of approxi-
mate versions of the Shortest Vector Problem (SVP). The GapSVPγ(n) problem
consists in, given a lattice of dimension n and a scalar d, replying YES if there
exists a non-zero lattice vector of norm ≤ d and NO if all non-zero lattice vectors
have norm ≥ γ(n)d. The complexity of GapSVPγ(n) increases with n, but de-
creases with γ(n). Although the latter is believed to be exponential in n for any
polynomial γ(n), minimizing the degree of γ(n) is very important in practice, to
allow the use of a practical dimension n for a given security level.



Lattice-based public key encryption. The �rst provably secure lattice-
based cryptosystem was proposed by Ajtai and Dwork [3], and relied on a variant
of GapSVP in arbitrary lattices (it is now known to also rely on GapSVP [19]).
Subsequent works proposed more e�cient alternatives [33, 30, 9, 28]. The cur-
rent state of the art [9, 28] is a scheme with public/private key length Õ(n2)
and encryption/decryption throughput of Õ(n) bit operations per message bit.
Its security relies on the quantum worst-case hardness of GapSVPÕ(n1.5) in ar-
bitrary lattices. The security can be de-quantumized at the expense of both in-
creasing γ(n) and decreasing the e�ciency, or relying on a new and less studied
problem [28]. In parallel to the provably secure schemes, there have also been
heuristic proposals [11, 12]. In particular, unlike the above schemes which use
unstructured random lattices, the NTRU encryption scheme [12] exploits the
properties of structured lattices to achieve high e�ciency with respect to key
length (Õ(n) bits) and encryption/decryption cost (Õ(1) bit operation per mes-
sage bit). Unfortunately, its security remains heuristic and it was an important
open challenge to provide a provably secure scheme with comparable e�ciency.
Provably Secure Schemes from Ideal Lattices. Micciancio [20] intro-
duced the class of structured cyclic lattices, which correspond to ideals in poly-
nomial rings Z[x]/(xn − 1), and presented the �rst provably secure one-way
function based on the worst-case hardness of the restriction of Poly(n)-SVP to
cyclic lattices. (The problem γ-SVP consists in computing a non-zero vector of
a given lattice, whose norm is no more than γ times larger than the norm of
a shortest non-zero lattice vector.) At the same time, thanks to its algebraic
structure, this one-way function enjoys high e�ciency comparable to the NTRU
scheme (Õ(n) evaluation time and storage cost). Subsequently, Lyubashevsky
and Micciancio [17] and independently Peikert and Rosen [29] showed how to
modify Micciancio's function to construct an e�cient and provably secure colli-
sion resistant hash function. For this, they introduced the more general class of
ideal lattices, which correspond to ideals in polynomial rings Z[x]/f(x). The col-
lision resistance relies on the hardness of the restriction of Poly(n)-SVP to ideal
lattices (called Poly(n)-Ideal-SVP). The average-case collision-�nding problem
is a natural computational problem called Ideal-SIS, which has been shown to be
as hard as the worst-case instances of Ideal-SVP. Provably secure e�cient sig-
nature schemes from ideal lattices have also been proposed [18, 15, 16, 14], but
constructing e�cient provably secure public key encryption from ideal lattices
was an interesting open problem.
Our results. We describe the �rst provably CPA-secure public key encryp-
tion scheme whose security relies on the hardness of the worst-case instances of
Õ(n2)-Ideal-SVP against subexponential quantum attacks. It achieves asymp-
totically optimal e�ciency: the public/private key length is Õ(n) bits and the
amortized encryption/decryption cost is Õ(1) bit operations per message bit
(encrypting Ω̃(n) bits at once, at a Õ(n) cost). Our security assumption is
that Õ(n2)-Ideal-SVP cannot be solved by any subexponential time quantum
algorithm, which is reasonable given the state-of-the art lattice algorithms [36].
Note that this is stronger than standard public key cryptography security as-



sumptions. On the other hand, contrary to most of public key cryptography,
lattice-based cryptography allows security against subexponential quantum at-
tacks. Our main technical tool is a re-interpretation of Regev's quantum reduc-
tion [33] between the Bounded Distance Decoding problem (BDD) and sampling
short lattice vectors. Also, by adapting Ajtai's trapdoor generation algorithm [2]
(or more precisely its recent improvement by Alwen and Peikert [5]) to structured
ideal lattices, we are able to construct e�cient provably secure trapdoor sig-
natures, ID-based identi�cation schemes, CCA-secure encryption and ID-based
encryption. We think these techniques are very likely to �nd further applications.

Most of the cryptosystems based on general lattices [33, 30, 31, 9, 28] rely on
the average-case hardness of the Learning With Errors (LWE) problem intro-
duced in [33]. Our scheme is based on a structured variant of LWE, that we
call Ideal-LWE. We introduce novel techniques to circumvent two main di�cul-
ties that arise from the restriction to ideal lattices. Firstly, the previous cryp-
tosystems based on unstructured lattices all make use of Regev's worst-case to
average-case classical reduction [33] from BDD to LWE (this is the classical step
in the quantum reduction of [33] from SVP to LWE). This reduction exploits
the unstructured-ness of the considered lattices, and does not seem to carry over
to the structured lattices involved in Ideal-LWE. In particular, the probabilistic
independence of the rows of the LWE matrices allows to consider a single row
in [33, Cor. 3.10]. Secondly, the other ingredient used in previous cryptosystems,
namely Regev's reduction [33] from the computational variant of LWE to its
decisional variant, also seems to fail for Ideal-LWE: it relies on the probabilistic
independence of the columns of the LWE matrices.

Our solution to the above di�culties avoids the classical step of the reduc-
tion from [33] altogether. Instead, we use the quantum step to construct a new
quantum average-case reduction from SIS (the unstructured variant of Ideal-SIS)
to LWE. It also works from Ideal-SIS to Ideal-LWE. Combined with the known
reduction from worst-case Ideal-SVP to average-case Ideal-SIS [17], we obtain a
quantum reduction from Ideal-SVP to Ideal-LWE. This shows the hardness of
the computational variant of Ideal-LWE. Because we do not obtain the hardness
of the decisional variant, we use a generic hardcore function to derive pseudoran-
dom bits for encryption. This is why we need to assume the exponential hardness
of SVP. The encryption scheme follows as an adaptation of [9, Sec. 7.1].

The main idea of our new quantum reduction from Ideal-SIS to Ideal-LWE is
a re-interpretation of Regev's quantum step in [33]. The latter was presented as
a worst-case quantum reduction from sampling short lattice vectors in a lattice L
to solving BDD in the dual lattice L̂. We observe that this reduction is actually
stronger: it is an average-case reduction which works given an oracle for BDD in L̂
with a normally distributed error vector. Also, as pointed out in [9], LWE can be
seen as a BDD with a normally distributed error in a certain lattice whose dual
is essentially the SIS lattice. This leads to our SIS to LWE reduction. Finally
we show how to apply it to reduce Ideal-SIS to Ideal-LWE � this involves a
probabilistic lower bound for the minimum of the Ideal-LWE lattice. We believe
our new SIS to LWE reduction is of independent interest. Along with [22], it



provides an alternative to Regev's quantum reduction from GapSVP to LWE.
Ours is weaker because the derived GapSVP factor increases with the number
of LWE samples, but it has the advantage of carrying over to the ideal case. Also,
when choosing practical parameters for lattice-based encryption (see, e.g., [23]),
it is impractical to rely on the worst-case hardness of SVP. Instead, the practical
average-case hardness of LWE is evaluated based on the best known attack which
consists in solving SIS. Our reduction justi�es this heuristic by showing that it
is indeed necessary to (quantumly) break SIS in order to solve LWE.
Road-map. We provide some background in Section 2. Section 3 shows how to
hide a trapdoor in the adaptation of SIS to ideal lattices. Section 4 contains the
new reduction between SIS and LWE. Finally, in Section 5, we present our CPA-
secure encryption scheme and brie�y describe other cryptographic constructions.
Notation. Vectors will be denoted in bold. We denote by 〈·, ·〉 and ‖ · ‖ the
inner product and the Euclidean norm. We denote by ρs(x) (resp. νs) the stan-
dard n-dimensional Gaussian function (resp. distribution) with center 0 and
variance s, i.e., ρs(x) = exp(−π‖x‖2/s2) (resp. νs(x) = ρs(x)/sn). We use
the notations Õ(·) and Ω̃(·) to hide poly-logarithmic factors. If D1 and D2 are
two probability distributions over a discrete domain E, their statistical distance
is ∆(D1, D2) = 1

2

∑
x∈E |D1(x)−D2(x)|. If a function f over a countable do-

main E takes non-negative real values, its sum over an arbitrary F ⊆ E will be
denoted by f(F ). If q is a prime number, we denote by Zq the �eld of integers
modulo q. We denote by Ψs the reduction modulo q of νs.

2 Reminders and Background Results on Lattices

We refer to [21] for a detailed introduction to the computational aspects of lat-
tices. In the present section, we remind the reader very quickly some fundamental
properties of lattices that we will need. We then introduce the so-called ideal
lattices, and �nally formally de�ne some computational problems.
Euclidean lattices. An n-dimensional lattice L is the set of all integer lin-
ear combinations of some linearly independent vectors b1, . . . , bn ∈ Rn, i.e.,
L =

∑
Zbi. The bi's are called a basis of L. The ith minimum λi(L) is the

smallest r such that L contains i linearly independent vectors of norms ≤ r.
We let λ∞1 (L) denote the �rst minimum of L with respect to the in�nity norm.
If B = (b1, . . . , bn) is a basis, we de�ne its norm by ‖B‖ = max ‖bi‖ and its
fundamental parallelepiped by P (B) = {∑i cibi | c ∈ [0, 1)n}. Given a basis B
for lattice L and a vector c ∈ Rn, we de�ne c mod L as the unique vector
in P (B) such that c − (c mod L) ∈ L (the basis being implicit). For any lat-
tice L and any s > 0, the sum ρs(L) is �nite. We de�ne the lattice Gaussian
distribution by DL,s(b) = ρs(b)

ρs(L) , for any b ∈ L. If L is a lattice, its dual L̂ is the
lattice {b̂ ∈ Rn | ∀b ∈ L, 〈b̂, b〉 ∈ Z}. We will use the following results.

Lemma 1 ([29, Lemma 2.11] and [27, Lemma 3.5]). For any x in an n-
dimensional lattice L and s ≥ 2

√
ln(10n)/π/λ∞1 (L̂), we have DL,s(x) ≤ 2−n+1.



Lemma 2 ([22, Lemma 2.10]). Given an n-dimensional lattice L, we have
Prx∼DL,s [‖x‖ > s

√
n] ≤ 2−n+1.

Ideal lattices. Ideal lattices are a subset of lattices with the computationally
interesting property of being related to polynomials via structured matrices. The
n-dimensional vector-matrix product costs Õ(n) arithmetic operations instead
of O(n2). Let f ∈ Z[x] a monic degree n polynomial. For any g ∈ Q[x], there is a
unique pair (q, r) with deg(r) < n and g = qf + r. We denote r by g mod f and
identify r with the vector r ∈ Qn of its coe�cients. We de�ne rotf (r) ∈ Qn×n as
the matrix whose rows are the xir(x) mod f(x)'s, for 0 ≤ i < n. We extend that
notation to the matrices A over Q[x]/f , by applying rotf component-wise. Note
that rotf (g1)rotf (g2) = rotf (g1g2) for any g1, g2 ∈ Q[x]/f . The strengths of our
cryptographic constructions depend on the choice of f . Its quality is quanti�ed
by its expansion factor (we adapt the de�nition of [17] to the Euclidean norm):

EF(f, k) = max
{‖g mod f‖

‖g‖ | g ∈ Z[x] \ {0} and deg(g) ≤ k (deg(f)− 1)
}

,

where we identi�ed the polynomial g mod f (resp. g) with the coe�cients vector.
Note that if deg(g) < n, then ‖rotf (g)‖ ≤ EF(f, 2) · ‖g‖. We will concentrate
on the polynomials x2k

+ 1, although most of our results are more general. We
recall some basic properties of x2k

+ 1 (see [7] for the last one).

Lemma 3. Let k ≥ 0 and n = 2k. Then f(x) = xn + 1 is irreducible in Q[x].
Its expansion factor is ≤ √

2. Also, for any g =
∑

i<n gix
i ∈ Q[x]/f , we

have rotf (g)T = rotf (ḡ) where ḡ = g0 −
∑

1≤i<n gn−ix
i. Furthermore, if q is

a prime such that 2n|(q − 1), then f has n linear factors in Zq[x]. Finally,
if k ≥ 2 and q is a prime with q ≡ 3 mod 8, then f = f1f2 mod q where each fi

is irreducible in Zq[x] and can be written fi = xn/2 + tix
n/4 − 1 with ti ∈ Zq.

Let I be an ideal of Z[x]/f , i.e., a subset of Z[x]/f closed under addition and
multiplication by any element of Z[x]/f . It corresponds to a sublattice of Zn.
An f -ideal lattice is a sublattice of Zn that corresponds to an ideal I ⊆ Z[x]/f .
Hard lattice problems. The most famous lattice problem is SVP. Given a
basis of a lattice L, it aims at �nding a shortest vector in L \ {0}. It can be re-
laxed by asking for a non-zero vector that is no longer than γ(n) times a solution
to SVP, for a prescribed function γ(·). The best polynomial time algorithm [4,
35] solves γ-SVP only for a slightly subexponential γ. When γ is polynomial in n,
then the most e�cient algorithm [4] has an exponential worst-case complexity
both in time and space. If we restrict the set of input lattices to ideal lattices,
we obtain the problem Ideal-SVP (resp. γ-Ideal-SVP), which is implicitly pa-
rameterized by a sequence of polynomials f of growing degrees. No algorithm
is known to perform non-negligibly better for Ideal-SVP than for SVP. It is
believed that no subexponential quantum algorithm solves the computational
variants of SVP or Ideal-SVP in the worst case. These worst-case problems can
be reduced to the following average-case problems, introduced in [1] and [9].



De�nition 1. The Small Integer Solution problem with parameters q(·), m(·),
β(·) (SISq,m,β) is as follows: Given n and a matrix G sampled uniformly in
Zm(n)×n

q(n) , �nd e ∈ Zm(n) \ {0} such that eT G = 0 mod q(n) (the modulus be-
ing taken component-wise) and ‖e‖ ≤ β(n). The Ideal Small Integer Solution
problem with parameters q, m, β and f (Ideal-SISf

q,m,β) is as follows: Given n
and m polynomials g1, . . . , gm chosen uniformly and independently in Zq[x]/f ,
�nd e1, . . . , em ∈ Z[x] not all zero such that

∑
i≤m eigi = 0 in Zq[x]/f and ‖e‖ ≤

β, where e is the vector obtained by concatenating the coe�cients of the ei's.

The above problems can be interpreted as lattice problems. If G ∈ Zm×n
q ,

then the set G⊥ = {b ∈ Zm | bT G = 0 mod q} is an m-dimensional lat-
tice and solving SIS corresponds to �nding a short non-zero vector in it. Sim-
ilarly, Ideal-SIS consists in �nding a small non-zero element in the Z[x]/f -
module M⊥(g) = {b ∈ (Z[x]/f)m | 〈b, g〉 = 0 mod q}, where g = (g1, . . . , gm). It
can be seen as a lattice problem by applying the rotf operator. Note that the m
of SIS is n times larger than the m of Ideal-SIS. Lyubashevsky and Miccian-
cio [17] reduced Ideal-SVP to Ideal-SIS. The approximation factors in [17] are
given in terms of the in�nity norm. For our purposes, it is more natural to use
the Euclidean norm. To avoid losing a √n factor by simply applying the norm
equivalence formula, we modify the proof of [17]. We also adapt it to handle the
case where the Ideal-SIS solver has a subexponentially small success probability,
at the cost of an additional factor of Õ(

√
n) in the SVP approximation factor.

Theorem 1. Suppose that f is irreducible over Q. Let m = Poly(n) and q =
Ω̃(EF(f, 3)βm2n) be integers. A polynomial-time (resp. subexponential-time) al-
gorithm solving Ideal-SISf

q,m,β with probability 1/Poly(n) (resp. 2−o(n)) can be
used to solve γ-Ideal-SVP in polynomial-time (resp. subexponential-time) with
γ = Õ(EF2(f, 2)βmn1/2) (resp. γ = Õ(EF2(f, 2)βmn)).

The problem LWE is dual to SIS in the sense that if G ∈ Zm×n
q is the SIS-

matrix, then LWE involves the dual of the lattice G⊥. We have Ĝ⊥ = 1
q L(G)

where L(G) = {b ∈ Zm | ∃s ∈ Zn
q , Gs = b mod q}.

De�nition 2. The Learning With Errors problem with parameters q,m and a
distribution χ on R/[0, q) (LWEq,m;χ) is as follows: Given n, a matrix G ∈ Zm×n

q

sampled uniformly at random and Gs + e ∈ (R/[0, q))n, where s ∈ Zn
q is chosen

uniformly at random and the coordinates of e ∈ (R/[0, q))m are independently
sampled from χ, �nd s. The Ideal Learning With Errors problem with parame-
ters q, m, a distribution χ on R/[0, q) and f (Ideal-LWEf

m,q;χ) is the same as
above, except that G = rotf (g) with g chosen uniformly in (Zq[x]/f)m.

We will use the following results on the LWE and Ideal-LWE lattices.

Lemma 4. Let n,m and q be integers with q prime, m ≥ 5n log q and n ≥ 10.
Then for all but a fraction ≤ q−n of the G's in Zm×n

q , we have λ∞1 (L(G)) ≥ q/4
and λ1(L(G)) ≥ 0.07

√
mq.



Lemma 5. Let n,m and q be integers with q = 3 mod 4 prime and m ≥ 41 log q
and n = 2k ≥ 32. Then for all but a fraction ≤ q−n of the g's in (Zq[x]/f)m,
we have λ∞1 (L(rotf (g))) ≥ q/4 and λ1(L(rotf (g))) ≥ 0.017

√
mnq.

3 Hiding a Trapdoor in Ideal-SIS

In this section we show how to hide a trapdoor in the problem Ideal-SIS. Aj-
tai [2] showed how to simultaneously generate a (SIS) matrix A ∈ Zm×n

q and
a (trapdoor) basis S = (s1, . . . , sm) ∈ Zm×m of the lattice A⊥ = {b ∈ Zm :
bT A = 0 mod q}, with the following properties:
1. The distribution of A is close to the uniform distribution over Zm×n

q .
2. The basis vectors s1, . . . , sm are short.

Recently, Alwen and Peikert [5] improved Ajtai's construction in the sense that
the created basis has shorter vectors: ‖S‖ = Õ(n log q) with m = Ω(n log q)
and overwhelming probability and ‖S‖ = O(

√
n log q) with m = Ω(n log2 q).

We modify both constructions to obtain a trapdoor generation algorithm for the
problem Ideal-SIS, with a resulting basis whose norm is as small as the one of [5].

Before describing the construction, we notice that the construction of [5]
relies on the Hermite Normal Form (HNF), but that here there is no Hermite
Normal Form for the rings under scope. We circumvent this issue by showing
that except in negligibly rare cases we may use a matrix which is HNF-like.

Theorem 2. There exists a probabilistic polynomial time algorithm with the fol-
lowing properties. It takes as inputs n, σ, r, an odd prime q, and integers m1,m2.
It also takes as input a degree n polynomial f ∈ Z[x] and random polynomials
a1 ∈ (Zq[x]/f)m1 . We let f =

∏
i≤t fi be the factorization of f over Zq. We

let κ = d1 + log qe, ∆ =
(∏

i≤t

(
1 +

(
q
3r

)deg fi
)
− 1

)1/2

and m = m1 + m2. The
algorithm succeeds with probability ≥ 1 − p over a1, where p = (1 − ∏

i≤t(1 −
q− deg fi))σ. When it does, it returns a =

(
a1

a2

)
∈ (Zq[x]/f)m and a basis S of

the lattice rotf (a)⊥, such that:
1. The distance to uniformity of a is at most p + m2∆.
2. The quality of S is as follows:

� If m1 ≥ max{σ, κ, r} and m2 ≥ κ, then ‖S‖ ≤ EF(f, 2) · √2κr1/2n3/2.
Additionally, ‖S‖ ≤ EF(f, 2)

√
3aκr·n with probability 1−2−a+O(log nm1r)

for a super-logarithmic function a = a(n) = ω(log n).
� If m1 ≥ max{σ, κ, r} and m2 ≥ κm1, then ‖S‖ ≤ EF(f, 2)(4

√
nr + 3).

3. In particular, for f = x2k

+ 1 with k ≥ 2 and a prime q with q ≡ 3 mod 8,
the following holds:
� We can set σ = 1 and r = d1 + log3 qe. Then, the error probability is

p = q−Ω(n) and the parameter ∆ is 2−Ω(n).
� If m1,m2 ≥ κ, then ‖S‖ ≤ √

6aκr · n = O(
√

an log q) with probability
1−2−a+O(log nm1r) for a super-logarithmic function a = a(n) = ω(log n).



� If m1 ≥ κ and m2 ≥ κm1, then ‖S‖ ≤
√

2(4
√

nr + 3) = O(
√

n log q).

In the rest of this section, we only describe the analog of the second con-
struction of Alwen and Peikert, i.e., the case m2 ≥ κm1, due to lack of space.

3.1 A trapdoor for Ideal-SIS

We now construct the trapdoor for Ideal-SIS. More precisely, we want to simul-
taneously construct a uniform a ∈ Rm with R = Zq[x]/f , and a small basis S
of the lattice A⊥ where A = rotf (a). For this, it su�ces to �nd a basis of the
module M⊥(a) = {y ∈ Rm

0 | 〈y, a〉 ≡ 0 mod q}, with R0 = Z[x]/f .

The principle of the design. In the following, for two matrices X and Y ,
[X|Y ] denotes the concatenation of the columns of X followed by Y and [X; Y ]
denotes the concatenation of the rows of X and the rows of Y .

We mainly follow the Alwen-Peikert construction. Let m1 ≥ σ, r. Let us
assume that we generate random polynomials A1 = [a1, . . . , am1 ]

T ∈ Rm1×1.
We will construct a random matrix A2 ∈ Rm2×1 with a structured matrix S ∈
Rm×m

0 such that SA = 0 and S is a basis of the module M⊥(a), where A =
[A1; A2]. We �rst construct an HNF-like basis F of the module M⊥(a) with A.
Next, we construct a unimodular matrix Q such that S = QF is a short basis of
the module. More precisely, S has the following form:

S =
[
V P
D B

]
=

[−Im1 P
0 B

]

︸ ︷︷ ︸
Q

·
[
H 0
U Im2

]

︸ ︷︷ ︸
F

.

Note that, by setting B lower triangular with diagonal coe�cients equal to 1,
the matrix Q is unimodular.

In this design principle, we want FA = 0. Hence, we should set

HA1 = 0 and A2 = −UA1.

Notice that, in order to prove that F is a basis of A⊥, it su�ces to show that
H is a basis of A⊥1 . The �rst equation is satis�ed by setting H be an HNF-
like matrix (see below). By setting U = G + R, with G to be de�ned later on
and R a random matrix, we have that A2 is almost uniformly random in R by
Micciancio's regularity lemma (Lemma 6). More precisely, the i-th row of R is
chosen from ({−1, 0, 1}n)r × ({0}n)m1−r.

Lemma 6 (Adapted from [20, Th. 4.2]). Let F be a �nite �eld and f ∈
F[x] be monic and of degree n > 0. Let R be the ring F[x]/f . Let D ⊆ F
and r > 0. For a1, . . . , ar ∈ R, we denote by H(a1, . . . , ar) the random vari-
able

∑
i≤r biai ∈ R where the bi's are degree < n polynomials with coe�-

cients chosen independently and uniformly in D. If U1, . . . , Ur are indepen-
dent uniform random variables in R, then the statistical distance to uniformity



of (U1, . . . , Ur,H(U1, . . . , Ur)) is below:

1
2

√√√√∏

i≤t

(
1 +

( |F|
|D|r

)deg fi
)
− 1,

where f =
∏

i≤t fi is the factorization of f over F.

We show below how to choose P and G such that PG = H − Im1 . With this
relation, the design principle form of S therefore implies that V = −H + P (G +
R) = PR − Im1 , and D = B(G + R). Our constructions for P,G, B also ensure
that P , B and BG have `small' entries so that S has `small' entries.

A construction of H without HNF. We start with how to construct H for
A1 = [a1, . . . , am1 ]

T ∈ Rm1×1. Since m1 ≥ max{σ, κ, r}, we have ai∗ ∈ R∗
for some index i∗ with probability at least 1 − p, where R∗ denotes the set of
invertible elements of R. For now, we set i∗ = 1 for simplicity. Using this ai∗ ,
we can construct an HNF-like matrix H: the �rst row is qe1 and the i-th row is
hie1 + ei for i = 2, . . . ,m1, where ei is a row vector in Rm1

0 such that the i-the
element is 1 and others are 0, and hi = −ai · a−1

1 mod q such that hi ∈ [0, q)n.
Let hi denote the i-th row of H. By the de�nition of H, H ·A1 ≡ 0 mod q. Thus,
each row vector hi is in M⊥(a1), where a1 = A1. It is obvious that h1, . . . , hm1

are linearly independent over R0. Hence, we need to only show that H is indeed
the basis of M⊥(a1), but this is a routine work.

Next, we consider the case where i∗ 6= 1. In this case, we swap rows 1 and i∗

of A1 so that a1 ∈ R∗, and call it A′1. Applying the method above, we get a
basis H ′ of Λ⊥(A′1). By swapping columns 1 and i∗ and rows 1 and i∗ of H ′,
we get a basis H of Λ⊥(A1). In the following, we denote by i∗ the index i such
that ai ∈ R∗ and hi,i = q. Note that our strategy fails if there is no index i such
that ai ∈ R∗: this is not an issue, as this occurs only with small probability.

Preliminaries of the construction. Hereafter, we set W = BG. We often use
the matrix Tκ = (ti,j) ∈ Rκ×κ

0 , where ti,i = 1, ti+1,i = −2, and all other ti,j 's
are 0. Notice that the i-th row of T−1

κ is (2i−1, 2i−2, . . . , 1, 0, . . . , 0) ∈ Rκ
0 .

3.2 An analogue to the second Alwen-Peikert construction

The idea of the second construction in [5] is to have G contain the rows of H−Im1 .
This helps decrease the norms of the rows of P and V . To do so, we de�ne
B = diag(Tκ, . . . , Tκ, Im2−m1κ). Note that B−1 = diag(T−1

κ , . . . , T−1
κ , Im2−m1κ).

Let h′j denote the j-th row of H − Im1 . Let W = [W1;W2; . . . ; Wm1 ; 0],
where Wj = [wj,κ; . . . ; wj,1] ∈ Rκ×m1

0 . We compute the wj,k's such that h′j =∑
k 2k−1 ·wj,k and the components of all wj,k's are polynomials with coe�cients

in {0, 1}. By this construction, T−1
κ · Wj contains h′j in the last row. Then,

G = B−1 ·W contains rows h′j for j = 1, . . . ,m1. The matrix P = [p1; . . . ;pm1 ]
picks all rows h′1, . . . , h

′
m1

in G by setting pj = eκj ∈ Rm2
0 .



The norm of S is max{‖S1‖, ‖S2‖}, where S1 = [V |P ] and S2 = [D|B]. For
simplicity, we only consider the case where f = xn + 1. In the general case, the
bound on ‖S‖ involves an extra EF(f, 2) factor.

We have that ‖BG‖2 = ‖W‖2 ≤ n, since the entries of h′j are all 0 except
one which is either hi∗,j or q − 1. Hence, we obtain that

‖S2‖2 ≤ ‖D‖2 + ‖B‖2 ≤ (3
√

nr +
√

n)2 + 5 ≤ (4
√

nr + 3)2.

It is obvious that ‖P‖ ≤ 1. Additionally, we have that ‖PR‖2 ≤ nr. Therefore:

‖S1‖2 ≤ ‖V ‖2 + ‖P‖2 ≤ (
√

nr + 1)2 + 1 ≤ (
√

nr + 2)2,

which completes the proof of Theorem 2. ut

4 From LWE to SIS

We show that any e�cient algorithm solving LWE with some non-negligible
probability may be used by a quantum machine to e�ciently solve SIS with
non-negligible probability. A crucial property of the reduction is that the matrix
underlying the SIS and LWE instances is preserved. This allows the reduction
to remain valid while working on Ideal-SIS and Ideal-LWE.

Theorem 3. Let q, m, n be integers, and α ∈ (0, 1) with n ≥ 32, Poly(n) ≥
m ≥ 5n log q and α < min

(
1

10
√

ln(10m)
, 0.006

)
. Suppose that there exists an algo-

rithm that solves LWEm,q;Ψαq in time T and with probability ε ≥ 4m exp
(− π

4α2

)
.

Then there exists a quantum algorithm that solves SIS
m,q;

√
m

2α

in time Poly(T, n)

and with probability ε3

64 − O(ε5) − 2−Ω(n). The result still holds when replac-
ing LWE by Ideal-LWEf and SIS by Ideal-SISf , for f = xn+1 with n = 2k ≥ 32,
m ≥ 41 log q and q ≡ 3 mod 8.

When α = O(1/
√

n), the reduction applies even to a subexponential al-
gorithm for LWE (with success probability ε = 2−o(n)), transforming it into a
subexponential quantum algorithm for SIS (with success probability ε = 2−o(n)).
The reduction works also for larger α = O(1/

√
log n), but in this case only applies

to polynomial algorithms for LWE (with success probability ε = Ω(1/Poly(n))).
The reduction is made of two components. First, we argue that an algorithm

solving LWE provides an algorithm that solves a certain bounded distance de-
coding problem, where the error vector is normally distributed. In a second step,
we show that Regev's quantum algorithm [32, Lemma 3.14] can use such an al-
gorithm to construct small solutions to SIS.

4.1 From LWE to BDD

An algorithm solving LWE allows us to solve, for certain lattices, a variation of
the Bounded Distance Decoding problem. In that variation of BDD, the error
vector is sampled according to a speci�ed distribution.



De�nition 3. The problem BDDχ with parameter distribution χ(·) is as follows:
Given an n-dimensional lattice L and a vector t = b + e where b ∈ L and e is
distributed according to χ(n), the goal is to �nd b. We say that a randomized
algorithm A solves BDDχ for a lattice L with success probability ≥ ε if, for
every b ∈ L, on input t = b+e, algorithm A returns b with probability ≥ ε over
the choice of e and the randomness of A.

For technical reasons, our reduction will require a randomized BDDχ algo-
rithm whose behaviour is independent of the solution vector b, even when the
error vector is �xed. This is made precise below.

De�nition 4. A randomized algorithm A solving BDDχ for lattice L is said
to be strongly solution-independent (SSI) if, for every �xed error vector e, the
probability (over the randomness of A) that, given input t = b + e with b ∈ L,
algorithm A returns b is independent of b.

We show that if we have an algorithm that solves LWEm,q;Ψαq , then we
can construct an algorithm solving BDDναq

for some lattices. Moreover, the
constructed BDD algorithm is SSI.

Lemma 7. Let q,m, n be integers and α ∈ (0, 1), with m, log q = Poly(n).
Suppose that there exists an algorithm A that solves LWEm,q;Ψαq in time T and
with probability ε ≥ 4m exp

(− π
4α2

)
. Then there exists S ⊆ Zm×n

q of proportion ≥
ε/2 and an SSI algorithm A′ such that if G ∈ S, algorithm A′ solves BDDναq

for L(G) in time T + Poly(n) and with probability ≥ ε/4.

Proof. If G ∈ Zm×n
q and s ∈ Zn

q are sampled uniformly and if the coordinates
of e are sampled according to Ψαq, then A �nds s with probability ≥ ε over the
choices of G, s and e and a string w of internal random bits. This implies that
there exists a subset S of the G's of proportion ≥ ε/2 such that for any G ∈ S,
algorithm A succeeds with probability ≥ ε/2 over the choices of s, e and w. For
any G ∈ S, we have Prs,e,w[A(Gs + e, w) = s] ≥ ε/2.

On input t = b + e, algorithm A′ works as follows: it samples s uniformly
in Zn

q ; it computes t′ = t + As, which is of the form t′ = Gs′ + qk + e,
where k ∈ Zm; it calls A on t′ mod q and �nds s′ (with probability ≥ ε/2);
it then computes e′ = t′ − Gs′ mod q and returns t − e′. Suppose that A suc-
ceeds, i.e., we have s = s′. Then e′ = e mod q. Using the standard tail bound
on the continuous Gaussian and the lower bound on ε we obtain that e has a
component of magnitude ≥ q/2 with probability ≤ m exp(−π/(2α)2) ≤ ε/4. The
algorithm thus succeeds with probability ≥ ε/2− ε/4 = ε/4. ut

We now show that an algorithm solving BDDναq can be used to solve a
quantized version of it. This quantization is required for the quantum part of
our reduction. The intuition behind the proof is that the discretization grid is
so �ne (the parameter R can be chosen extremely large) that at the level of the
grid the distribution νs looks constant.



Lemma 8. Let s > 0 and L be an n-dimensional. Suppose that there exists an
SSI algorithm A that solves BDDνs for L in time T and with probability ε. Then
there exists an R, whose bit-length is polynomial in T, n, | log s| and the bit-size
of the given basis of L, and an SSI algorithm A′ that solves BDDDL/R,s

within
a time polynomial in log R and with probability ≥ ε− 2−Ω(n).

At this point, we have an R of bit-length polynomial in T, n, | log α| and an SSI
algorithm B with run-time polynomial in log R that solves BDDDL(G)/R,αq

, for
any G in a subset S ⊆ Zm×n

q of proportion≥ ε/2, with probability≥ ε/4−2−Ω(n)

over the random choices of e and the internal randomness w. In the following we
assume that on input t = b + e, algorithm B outputs e when it succeeds, rather
than b. We implement B quantumly as follows: the quantum algorithm BQ maps
the state |e〉 |b + e〉 |w〉 to the state |e− B(b + e, w)〉 |b + e〉 |w〉.

4.2 A new interpretation of Regev's quantum reduction

We �rst recall Regev's quantum reduction [32, Lemma 3.14]. It uses a random-
ized BDD oracle Bwc that �nds the closest vector in a given lattice L to a given
target vector, as long as the target is within a prescribed distance d < λ1(L)

2 of L
(as above, we assume that Bwc returns the error vector). It returns a sample from
the distribution D

L̂,
√

n√
2d

. We implement oracle Bwc as a quantum oracle Bwc
Q as

above. We assume Bwc
Q accepts random inputs of length `.

1. Set R to be a large constant and build a quantum state which
is within `2 distance 2−Ω(n) of the normalized state corresponding
to

∑
w∈{0,1}`

∑
x∈L

R ,‖x‖<d ρ d√
n
(x) |x〉 |x mod L〉 |w〉.

2. Apply the BDD oracle Bwc
Q to the above state to remove the entanglement

and obtain a state which is within `2 distance 2−Ω(n) of the normalized state
corresponding to

∑
x∈L

R ,‖x‖<d ρ d√
n
(x) |0〉 |x mod L〉 |w〉.

3. Apply the quantum Fourier transform over Zn
R to the second register to

obtain a state that is within `2 distance 2−Ω(n) of the normalized state
corresponding to

∑
x∈L̂,‖x‖< n

d
ρ√n

d

(x)
∣∣∣x mod (R · L̂)

〉
.

4. Measure the latter to obtain a vector b̂ mod R·L̂. Using Babai's algorithm [6],
recover b̂ and output it. Its distribution is within statistical distance 2−Ω(n)

of D
L̂,

√
n√
2d

.

We now replace the perfect oracle Bwc
Q by an imperfect one.

Lemma 9. Suppose we are given an n-dimensional lattice L, parameters R >

22nλn(L) and s < λ1(L)

2
√

2n
, and an SSI algorithm B that solves BDDD L

R
,s for L with

run-time T and success probability ε. Then there exists a quantum algorithm R
which outputs a vector b̂ ∈ L̂ whose distribution is within distance 1 − ε2/2 +
O(ε4) + 2−Ω(n) of DL̂, 1

2s
. It �nishes in time polynomial in T + log R.



Proof. The quantum algorithm R is Regev's algorithm above with parame-
ter d =

√
2ns < λ1(L)

2 , where Bwc
Q is replaced by the quantum implementa-

tion BQ of B. We just saw that if the BDDDL/R,s oracle was succeeding with
probability 1−2−Ω(n), then the output vector b̂ would follow a distribution whose
statistical distance to DL̂, 1

2s
would be 2−Ω(n). To work around the requirement

that the oracle succeeds with overwhelming probability, we use the notion of
trace distance between two quantum states, which is an adaptation of the statis-
tical distance (see [25, Ch. 9]). The trace distance between two (pure) quantum
states |t1〉 and |t2〉 is δ(|t1〉 , |t2〉) =

√
1− | 〈t1|t2〉 |2. Its most important property

is that for any generalized measurement (POVM), if D1 (resp. D2) is the result-
ing probability distribution when starting from |t1〉 (resp. |t2〉) then ∆(D1, D2) ≤
δ(|t1〉 , |t2〉). Let |t1〉 denote the state at the end of Step 2 of Regev's algorithm
when we use Bwc, and let |t2〉 denote the state that we obtain at the end of
Step 2 when we use B. We upper bound δ(|t1〉 , |t2〉) as follows.

Since Bwc(x mod L, w) = x for ‖x‖ < d, we have that |t1〉 is within `2
distance (and hence trace distance) 2−Ω(n) of the normalized state

|t′1〉 = 2−`/2
∑

w∈{0,1}`

∑

x∈L
R

√
Dd

L/R,s(x) |0〉 |x mod L〉 |w〉 ,

where Dd
L/R,s denotes the normalized distribution obtained by truncating DL/R,s

to vectors of norm < d. On the other hand, for the imperfect oracle B, we have
that |t2〉 is within trace distance 2−Ω(n) of the normalized state

|t′2〉 = 2−`/2
∑

w∈{0,1}`

∑

x∈L
R

√
Dd

L/R,s(x) |x− B(x mod L,w)〉 |x mod L〉 |w〉 .

Let SB = {(x, w) ∈ L
R × {0, 1}` | ‖x‖ < d and B(x mod L,w) = x}.

Notice that, if (x, w) 6∈ SB, the states |x− B(x mod L, w)〉 |x mod L〉 |w〉
and |0〉 |x′ mod L〉 |w′〉 are orthogonal for all (x′, w′). Furthermore, if (x, w) ∈
SB, the states |0〉 |x mod L〉 |w〉 and |0〉 |x′ mod L〉 |w′〉 are orthogonal for
all (x′, w′) 6= (x, w) with ‖x′‖ < d, because the mapping x 7→ x mod
L is 1-1 over x of norm < d < λ1(L)/2. It follows that | 〈t′1|t′2〉 | =∑

(x,w)∈SB 2−`Dd
L/R,s(x). Hence, | 〈t′1|t′2〉 | is equal to the probability p

that B(x mod L,w) = x, over the choices of x from the distribution Dd
L/R,s

and w uniformly random in {0, 1}`. By Lemma 2, using the fact that d >
√

ns,
we have p ≥ p̂−2−Ω(n), where p̂ is the corresponding probability when x is sam-
pled from DL/R,s. Finally, we have p̂ =

∑
x DL/R,s(x) Prw[B(x mod L,w) = x].

By the strong solution-independence of B, we have Prw[B(x mod L, w) = x] =
Prw[B(b + x, w) = x] for any �xed b ∈ L. Therefore, p̂ is the success probabil-
ity of B in solving BDDDL/R,s

, so p̂ ≥ ε by assumption. Overall, we conclude
that δ(|t1〉 , |t2〉) ≤

√
1− ε2 + 2−Ω(n), and hence the output of R is within sta-

tistical distance 1− ε2/2 + O(ε4) + 2−Ω(n) of DL̂, 1
2s
, as claimed. ut

To prove Theorem 3, we apply Lemma 9 to the lattices L(G) for G ∈ S, with
algorithm B. For that, we need to ensure that the hypothesis αq < λ1(L(G))

2
√

2m
is



satis�ed. From Lemma 4 (resp. Lemma 5 in the case of Ideal-LWE), we know that
with probability 1−2−Ω(n) over the choice of G in Zm×n

q , we have λ∞1 (L(G)) ≥ q
4

and λ1(L(G)) ≥ 0.07
√

mq. For such `good' G's, the hypothesis αq < λ1(L(G))

2
√

2m
is

satis�ed, since α < 0.006. The set S ′ of the G's in S for which that condition is
satis�ed represents a proportion ≥ ε/2−2−Ω(n) of Zm×n

q . Suppose now that G ∈
S ′. Lemma 9 shows that we can �nd a vector s ∈ G⊥ = qL̂(G) that follows a
distribution whose distance to DG⊥, 1

2α
is ∆ = 1− ε2

32 + O(ε4) + 2−Ω(n). Thanks
to Lemmas 1 and 2 (since G ∈ S and α ≤ 1/(10

√
ln(10m)), the hypothesis

of Lemma 1 is satis�ed), we have that with probability ≥ 1 − 2−Ω(n) − ∆ =
ε2

32 − O(ε4) − 2−Ω(n), the returned s is a non-zero vector of G⊥ whose norm
is ≤

√
m

2α . Multiplying by the probability ≥ ε/2 − 2−Ω(n) that G ∈ S ′ gives the
claimed success probability and completes the proof of Theorem 4. ut

5 Cryptographic Applications
We now use the results of Sections 3 and 4 to construct e�cient cryptographic
primitives based on ideal lattices. This includes the �rst provably secure lattice-
based public-key encryption scheme with asymptotically optimal encryption and
decryption computation costs of Õ(1) bit operations per message bit.

5.1 E�cient public-key encryption scheme
Our scheme is constructed in two steps. Firstly, we use the LWE mapping
(s, e) 7→ G · s + e mod q as an injective trapdoor one-way function, with the
trapdoor being the full-dimensional set of vectors in G⊥ from Section 3, and the
one-wayness being as hard as Ideal-SIS (and hence Ideal-SVP) by Theorem 3.
This is an e�cient ideal lattice analogue of some trapdoor functions presented
in [9, 28] for arbitrary lattices. Secondly, we apply the Goldreich-Levin hardcore
function based on Toeplitz matrices [10, Sec. 2.5] to our trapdoor function, and
XOR the message with the hardcore bits to obtain a semantically secure encryp-
tion. To obtain the Õ(1) amortized bit complexity per message bit, we use Ω̃(n)
hardcore bits, which induces a subexponential loss in the security reduction.

Our trapdoor function family Id-Trap is de�ned in Figure 1. For security
parameter n = 2k, we �x f(x) = xn + 1 and q = Poly(n) a prime satisfying q ≡
3 mod 8. From Lemma 3, it follows that f splits modulo q into two irreducible
factors of degree n/2. We set σ = 1, r = 1+log3 q = Õ(1) and m = (dlog qe+1)σ+
r = Õ(1). We de�ne R = Zq[x]/f . The following lemma ensures the correctness
of the scheme (this is essentially identical to [28, Sec. 4.1]) and asserts that the
evaluation and inversion functions can be implemented e�ciently.

Lemma 10. Let q > 2
√

mnL and α = o(1/(L
√

log n)). Then for any s ∈ R
and for e sampled from Ψαq, the inversion algorithm recovers (s, e) with proba-
bility 1−n−ω(1) over the choice of e. Furthermore, the evaluation and inversion
algorithms for hg can be implemented with run-time Õ(n).



� Generating a function with trapdoor. Run the algorithm from Theorem 2, us-
ing f = xn + 1, n, q, r, σ, m as inputs. Suppose it succeeds. It returns g ∈ (Zq[x]/f)m

(function index) and a trapdoor full-rank set S of linearly independent vectors
in rotf (g)⊥ ⊆ Zmn×mn

q with ‖S‖ ≤ √
2(4
√

nr + 3) =: L (we have L = Õ(
√

n)).
� Function evaluation. Given function index g, we de�ne the trapdoor function

hg : Zn
q × Zmn

q → Zmn
q as follows. On input s uniformly random in Zn

q and e ∈ Zmn
q

sampled from Ψαq (de�ned as the rounding of Ψαq to the closest integer vector), we
compute and return: c = hg(s, e) := rotf (g) · s + e mod q.

� Function inversion. Given c = hg(s, e) and trapdoor S, compute d = ST ·c mod q
and e′ = S−T ·d (in Q). Compute u = c−e′ mod q and s′ = (rotf (g1))

−1 ·u1 mod q,
where u1 consists of the �rst n coordinates of u. Return (s′, e′).

Fig. 1. The trapdoor function family Id-Trap.

The one-wayness of Id-Trap is equivalent to the hardness of LWEm,q;Ψαq
.

Furthermore, an instance of LWEm,q;Ψαq
can be e�ciently converted by rounding

to an instance of LWEm,q;Ψαq
. This proves Lemma 11.

Lemma 11. Any attacker against the one-wayness of Id-Trap (with parame-
ters m,α, q) with run-time T and success probability ε provides an algorithm
for LWEm,q;Ψαq

with run-time T and success probability ε.

By combining our trapdoor function with the GL hardcore function [10,
Sec. 2.5] we get the encryption scheme of Figure 2.

� Key generation. For security parameter n, run the generation algorithm of Id-Trap
to get an hg and a trapdoor S. We can view the �rst component of the domain of hg

as a subset of Z`I
2 for `I = O(n log q) = Õ(n). Generate r ∈ Z`I+`M

2 uniformly and
de�ne the Toeplitz matrix MGL ∈ Z`M×`i

2 (allowing fast multiplication [26]) whose
ith row is [ri, . . . , r`I+i−1]. The public key is (g, r) and the secret key is S.

� Encryption. Given `M -bit message M with `M = n/ log n = Ω̃(n) and public
key (g, r), sample (s, e) with s ∈ Zn

q uniform and e sampled from Ψαq, and evaluate
C1 = hg(s, e). Compute C2 = M⊕(MGL ·s), where the product MGL ·s is computed
over Z2, and s is viewed as a string over Z`I

2 . Return the ciphertext (C1, C2).
� Decryption. Given ciphertext (C1, C2) and secret key (S, r), invert C1 to compute

(s, e) such that hg(s, e) = C1, and return M = C2 ⊕ (MGL · s).
Fig. 2. The semantically secure encryption scheme Id-Enc.

Theorem 4. Any IND-CPA attacker against Id-Enc with run-time T and suc-
cess probability 1/2 + ε provides an algorithm for Ideal-LWEf

m,q;Ψαq
with run-

time O(23`M n3ε−3 · T ) and success probability Ω(2−`M n−1 · ε).

Proof. The attacker can be converted to a GL hardcore function distinguisher
that, given C1 = hg(s, e), MGL, and `M bit string z, for s sampled uniformly
in Zn

q , e sampled from Ψαq, and MGL constructed as in the key generation
procedure, distinguishes whether z is uniformly random (independent of s and e)
or z = MGL ·s. It has run-time T and advantage ε. The result follows by applying
Lemma 2.5.8, Proposition 2.5.7 and Proposition 2.5.3 in [10]. Note that we do
not need to give the vector e additionally to s as input to the GL function, as e
is uniquely determined once s is given (with overwhelming probability). ut



By using Lemma 10 and Theorems 1, 3 and 4, we get our main result.

Corollary 1. Any IND-CPA attacker against encryption scheme Id-Enc with
run-time 2o(n) and success probability 1/2+2−o(n) provides a quantum algorithm
for Õ(n2)-Ideal-SVP with f(x) = xn + 1 and n = 2k, with run-time 2o(n) and
overwhelming success probability. Furthermore, the scheme Id-Enc encrypts and
decrypts Ω̃(n) bits within Õ(n) bit operations, and its keys have Õ(n) bits.

5.2 Further applications

Our results have several other applications, adapting various known construc-
tions for unstructured lattices to ideal lattices, as summarised below.
CCA2-secure encryption. Peikert [28] derived a CCA2-secure encryption
scheme from the non-structured variant of the trapdoor function family Id-Trap
from Figure 1, using the framework of [31, 34] for building a CCA2-secure scheme
from a collection of injective trapdoor functions that is secure under correlated
product (i.e., one-wayness is preserved if several functions are evaluated on the
same input). The approach of [28] can be applied to Id-Trap, using the equality
between Ideal-LWEkm and the product of k instances of Ideal-LWEm, multiple
hardcore bits as in Id-Enc, and instantiating the required strongly unforgeable
signature with the Ideal-SVP-based scheme of [18]. By choosing k = Õ(n) (the
bit-length of the veri�cation key in [18]) and α = Õ(n−3/2), we obtain a CCA2-
secure scheme that encrypts Ω̃(n) bits within Õ(n2) bit operations and whose
security relies on the exponential quantum hardness of Õ(n4)-Ideal-SVP.
Trapdoor signatures. Gentry et al. [9] give a construction of a trapdoor
signature (in the random oracle model) from any family of collision-resistant
preimage sampleable functions (PSFs). They show how to sample preimages
of fG(x) = xT G, where G ∈ Zm×n

q , using a full-dimensional set of short vec-
tors in G⊥. By applying this to G = rotf (g) and using the trapdoor genera-
tion algorithm from Section 3, we obtain a PSF whose collision resistance relies
on Ideal-SIS, and hence Ideal-SVP, and thus a structured variant of the trapdoor
signature scheme of [9], with Õ(n) veri�cation time and signature length.
ID-based identi�cation. From lattice-based signatures, we derive ID-based
identi�cation (IBI) and ID-based signature (IBS). Applying the standard strat-
egy, we construct lattice-based IBI schemes as follows: The master generates a
key pair of a lattice-based signature scheme, say (G, S); Each user obtains from
the master a short vector e such that eT G = H(id), where H is a random oracle;
The prover proves to the veri�er that he/she has a short vector e through the
Micciancio-Vadhan protocol [24]. This combination yields concurrently secure
IBI schemes based on Õ(n2)-SVP and Õ(n2)-Ideal-SVP in the random oracle
model. As the MV protocol is witness indistinguishable, we can use the Fiat-
Shamir heuristic [8] and derive lattice-based IBS schemes.
ID-based encryption (IBE). It is shown in [9] that the unstructured variant
of the above trapdoor signature can be used as the identity key extraction for
an IBE scheme. This requires a `dual' version of Id-Enc, in which the public key



is of the form (g, u), where u = H(id) is the hashed identity, and the secret
key is the signature of id, i.e., a short preimage of u under fg(x) = xT rotf (g).
We construct the `dual' encryption as (C1, C2) where C1 = hg(s, e) and C2 =
T`(rotf (u)·s)+M , where M ∈ Z`

q contains the message and T`(rotf (u)·s) denotes
the �rst ` coordinates of rotf (u) · s mod q. By adapting the results of [13], we
show that T`(rotf (u) ·s) is an exponentially-secure generic hardcore function for
uniform u ∈ Zn

q , when ` = o(n). This allows us to prove the IND-CPA security
of the resulting IBE scheme based on the hardness of Ideal-SVP.
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