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Abstract. Adaptive oblivious transfer (OT) is a two-party protocol
which simulates an ideal world such that the sender sends M1, · · · , Mn

to the trusted third party (TTP), and the receiver receives Mσi from
TTP adaptively for i = 1, 2, · · · k. This paper shows the first pairing-free
fully simulatable adaptive OT. It is also the first fully simulatable scheme
which does not rely on dynamic assumptions. Indeed our scheme holds
under the DDH assumption.
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1 Introduction

In a non-adaptive (k, n) oblivious transfer (OT) scheme which is denoted by
OTn

k [6, 1, 14], a sender has n secret strings M1, · · · ,Mn, and a receiver has k
secret choice indices σ1, · · · , σk ∈ {1, · · · , n}. At the end of the protocol, the re-
ceiver learns Mσ1 , · · · ,Mσk

(only), and the sender learns nothing on σ1, · · · , σk.
Efficient OT schemes are important because OT 4

1 is a key building block for
secure multi-party computation [20, 7, 12].

In an adaptive (k, n) oblivious transfer protocol which is denoted by OTn
k×1,

the receiver chooses σi adaptively depending on Mσ1 , · · · ,Mσi−1 [15]. In other
words, OTn

k×1 is a two-party protocol (S, R) which simulates an ideal world
protocol (S′, R′) such that

1. the sender S′ sends M1, · · · , Mn to the trusted third party (TTP), and
2. the receiver R′ receives Mσi from TTP adaptively for i = 1, 2, · · · k, where

the receiver chooses σi based on Mσ1 , · · · ,Mσi−1 .

Adaptive OT has wide applications such as oblivious database searches, secure
multiparty computation and etc, too.

As a security notion of OT (for both non-adaptive and adaptive), half simu-
latability was considered until recently [15, 16, 11, 18]. This definition requires

– (Sender’s privacy.) For any receiver R in the real world, there exists a receiver
R̂ in the ideal world such that the outputs of R and R̂ are indistinguishable.

– (Receiver’s privacy.) For any input to the receiver, the view of the sender
must be indistinguishable. (Note that the honest sender outputs nothing.)



However, Naor and Pinkas noticed that there can be a practical attack on a half
simulatable adaptive OT [15].

To solve this problem, Camenisch, Neven and shelat formalized a notion
of full simulatability [2]. In this definition, we consider a pair of outputs of the
sender and the receiver. Although the honest sender outputs nothing, a malicious
sender may output its view in the execution of the protocol. Full simulatability
now requires that

– (Sender’s privacy) For any receiver R̂ in the real world, there exists a re-
ceiver R̂′ in the ideal world such that (S′out, R̂

′
out) is indistinguishable from

(Sout, R̂out), where Aout denotes the output of A.
– (Receiver’s privacy) For any sender Ŝ in the real world, there exists a sender

Ŝ′ in the ideal world such that (Ŝ′out, R
′
out) is indistinguishable from (Ŝ′out, Rout).

They then showed a fully simulatable adaptive OT in the random oracle model,
and one in the standard model, respectively [2].

We focus on the standard model in this paper. 3 Then all fully simulat-
able adaptive OT known so far have been constructed based on pairing, and
they rely on dynamic assumptions such as q-strong DH assumption. For exam-
ple, Camenisch et al.’s OTn

k×1 relies on q-strong DH assumption and q-PDDH
assumption. Green and Hohenberger’s OTn

k×1 relies on q-hidden LRSW assump-
tion [9]. (This scheme achieves UC security.) Jarecki and Liu’s OTn

k×1 relies on
the decisional q-DHI assumption [10].

This paper shows the first pairing-free fully simulatable adaptive OT. It is
also the first fully simulatable scheme which does not rely on dynamic assump-
tions. Indeed our scheme holds under the DDH assumption. While the previous
schemes use a signature scheme as a building block, 4 our scheme utilizes ElGa-
mal encryption scheme. (Hence we do not need a pairing.)

Our scheme is conceptually very simple and efficient. The initialization phase
and each transfer phase are constant round protocols. Thus the total round
complexity is proportional to k.

Finally we extend our scheme to a fully simulatable non-adaptive OT which
requires constant rounds. Green and Hohenberger showed a fully simulatable
non-adaptive OTn

k based on pairing under the decisional BDH assumption [8].
On the other hand, our OTn

k is pairing-free and relies on the DDH assumption.
Lindell showed a fully simulatable OT 2

1 under DDH, Paillier’s decisional Nth
residuosity, and quadratic residuosity assumptions as well as under the assump-
tion that homomorphic encryption exists [13]. (He claimed that they can be
extended to OTn

k .) Under the DDH assumption, our OT 2
1 is more efficient than

the Lindell’s scheme [13].
3 In the random oracle model, Ogata and Kurosawa showed an adaptive OT based on

Chaum’s blind signature scheme [18]. Camenisch, Neven and shelat [2] proved that
it is fully simulatable as well as they corrected a flaw of [18]. Green and Hohenberger
showed a scheme under the decisional BDH assumption [8].

4 Maybe because an adaptive OT shown by Ogata and Kurosawa [18] utilizes Chaum’s
blind signature scheme.



Table 1. Fully simulatable Adaptive OT without RO

scheme pairing dynamic assumption assumption

Camenisch et al. [2] yes yes q-strong DH and q-PDDH

Green and Hohenberger [9] yes yes q-hidden LRSW (UC secure)

Jarecki and Liu [10] yes yes q-DHI

Proposed no no DDH

2 Preliminaries

2.1 Notations

In this paper, we denote a security parameter by τ ∈ N. All the algorithms take
τ as the first input and run in (expected) polynomial-time in τ . We denote prob-
abilistic polynomial-time by ppt for short. We often do not write the security
parameter explicitly.

2.2 Proof Systems

To design our scheme, we use several proof systems. We follow the definitions
described in [4, 5, 2].

Let R = {(α, β)} ⊆ {0, 1}∗ × {0, 1}∗ be a binary relation R such that |β| ≤
poly(α) for all (α, β) ∈ R, where poly is some polynomial. We only consider the
relation R such that (α, β) ∈ R can be decided in polynomial in |α| for all (α, β).
We define LR = {α | ∃β such that (α, β) ∈ R}.

Proof of Membership (PoM): A pair of interacting algorithms (P, V), called
a prover and a verifier, is a proof of membership (PoM) for a relation R if the
completeness and soundness are satisfied. Here, we say that (P, V) satisfies the
completeness if for all (α, β) ∈ R, the probability of V(α) accepting a conversa-
tion with P(α, β) is 1. Also we say that (P, V) satisfies the soundness if for all
α 6∈ LR and all P∗(α) (including cheating provers), the probability of V(α) ac-
cepting the conversation with P∗ is negligible in |α|. We say that this probability
as soundness error of the proof system.

Proof of Knowledge (PoK): We say a pair of interacting algorithms (P, V) is
PoK for a relation R with knowledge error κ ∈ [0, 1] if it satisfies completeness
described above and has an expected polynomial-time algorithm, called knowl-
edge extractor, E. Here, the algorithm E is a knowledge extractor for a relation
R if possibly cheating P̂ has probability ε of convincing V to accept α, then E,
when given black-box access to P̂, outputs a witness β for α with probability
ε− κ.

Witness Indistinguishability (WI): A proof system (P, V) is perfect WI if
for every (α, β1), (α, β2) ∈ R, and any ppt cheating verifier, the output of V̂(α)



(including cheating verifier) after interacting with P(β1) and that of V̂(α) after
interacting with P(β2) are identically distributed.

Zero Knowledge (ZK): We say that a proof system (P,V) is perfect ZK if there
exists an expected polynomial-time algorithm Sim, called a simulator, such that
for any ppt cheating verifier V̂ and any (α, β) ∈ R, the outputs of V̂(α) after
interacting with P(β) and that of Sim

bV(α)(α) are identically distributed.

3 k-out-of-n Oblivious Transfer

In this section, we present a UC-like definition of fully simulatable non-adaptive
OT. Similarly, we present a UC-like definition of fully simulatable adaptive OT.

We consider a weak model of UC framework as follows.

– At the beginning of the game, an adversary A can corrupt either a sender S
or a receiver R, but not both.

– A can send a message (which will be denoted by Aout) to an environment
Z after the end of the protocol. (A cannot communicate with Z during the
protocol execution.)

The ideal functionalities of OTn
k and OTn

k×1 will be shown below. For a protcol
π = (S,R), define Adv(Z) as

Adv(Z) = |Pr(Z = 1 in the real world)− Pr(Z = 1 in the ideal world)|

3.1 Non-Adaptive k-out-of-n Oblivious Transfer

In the ideal world of OTn
k , the ideal functionality Fnon, an ideal world adversary

A′ and an environment Z behave as follows.

(Initialization phase:)

1. An environment Z sends (M1, · · · ,Mn) to the dummy sender S′.
2. S′ sends (M∗

1 , · · · ,M∗
n) to Fnon, where (M∗

1 , · · · ,M∗
n) = (M1, · · · ,Mn) if S′

is not corrupted.

(Transfer phase:)

1. Z sends (σ1, · · · , σk) to the dummy receiver R′, where 1 ≤ σi ≤ n.
2. R′ sends (σ∗1 , · · · , σ∗k) to Fnon, where (σ∗1 , · · · , σ∗k) = (σ1, · · · , σk) if R′ is not

corrupted.
3. Fnon sends received to an ideal process adversary A′.
4. A′ sends b = 1 or 0 to Fnon, where b = 1 if S′ is not corrupted.
5. Fnon sends Y to R′, where

Y =
{

(M∗
σ1

, · · · , M∗
σk

) if b = 1
⊥ if b = 0



6. R′ sends Y to Z.

After the end of the protocol, A′ sends a message A′out to Z. Finally Z outputs
1 or 0.

In the real world, a protocol (S,R) is executed without Fnon, where the
environment Z and a real world adversary A behave in the same way as above.

Definition 1. We say that (S, R) is secure against the sender (receiver) corrup-
tion if for any real world adversary A who corrupts the sender S (the receiver
R), there exists an ideal world adversary A′ who corrupts the dummy sender S′

(the dummy receiver R′) such that for any environment Z, Adv(Z) is negligible.

Definition 2. We say that (S, R) is a fully simulatable OTn
k if it is secure

against the sender corruption and the receiver corruption.

3.2 Adaptive k-out-of-n Oblivious Transfer

In the ideal world of OTn
k×1, the ideal functionality Fadapt, an ideal world ad-

versary A′ and an environment Z behave as follows.

(Initialization phase:)

1. An environment Z sends (M1, · · · ,Mn) to the dummy sender S′.
2. S′ sends (M∗

1 , · · · ,M∗
n) to Fadapt, where (M∗

1 , · · · , M∗
n) = (M1, · · · ,Mn) if

S′ is not corrupted.

(Transfer phase:) For i = 1, · · · , k,

1. Z sends σi to the dummy receiver R′, where 1 ≤ σi ≤ n.
2. R′ sends σ∗i to Fadapt, where σ∗i = σi if R′ is not corrupted.
3. Fadapt sends received to an ideal process adversary A′.
4. A′ sends b = 1 or 0 to Fadapt, where b = 1 if S′ is not corrupted.
5. Fadapt sends Yi to R′, where

Yi =
{

M∗
σi

if b = 1
⊥ if b = 0

6. R′ sends Yi to Z.

After the end of the protocol, A′ sends a message A′out to Z. Finally Z outputs
1 or 0.

In the real world, a protocol (S, R) is executed without Fadapt, where the
environment Z and a real world adversary A behave in the same way as above.

Definition 3. We say that (S, R) is secure against the sender (receiver) corrup-
tion if for any real world adversary A who corrupts the sender S (the receiver
R), there exists an ideal world adversary A′ who corrupts the dummy sender S′

(the dummy receiver R′) such that for any environment Z, Adv(Z) is negligible.

Definition 4. We say that (S,R) is a fully simulatable OTn
k×1 if it is secure

against the sender corruption and the receiver corruption.



3.3 Remarks

Our definition of fully simulatable adaptive OT is weaker than the UC security
because our adversaries A cannot communicate with Z during the protocol exe-
cution. On the other hand, it is stronger than that of [2] which is not UC-like. In
our definition, Z chooses σi. Hence σi can depend on all of (M1, · · · ,Mn). In the
definition of [2], receiver chooses σi. Hence σi can depend on (Mσ1 , · · · ,Mσi−1)
only.

4 Our Fully Simulatable Adaptive OT

In this section, we show an adaptive OTn
k×1 based on ElGamal encryption

scheme, and prove its full simulatability under the DDH assumption.
Let G be a multiplicative group of prime order q. Then the DDH assumption

states that, for every ppt distinguisher D,

εDDH(D) = |Pr(D(g, gα, gβ , gαβ) = 1)− Pr(D(g, gα, gβ , gγ) = 1)|

is negligible, where the probability is taken over the random bits of D, the random
choice of the generator g, and the random choice of α, β, γ ∈ Zq. We denote

εDDH = max{εDDH(D)},

where the maximum is taken over all ppt distinguishers D.
The initialization phase and each transfer phase are constant round protocols.

Hence the total round complexity is proportional to k.

Initialization Phase

1. The sender chooses G, g and (x1, · · · , xn, r) ∈ (Zq)n+1 randomly, and com-
putes h = gr.

2. For i = 1, · · · , n, the sender computes

Ci = (Ai, Bi) = (gxi ,Mi · hxi),

where M1, · · · ,Mn ∈ G.
3. The sender sends (G, h, C1, · · · , Cn).
4. The sender proves by ZK-PoK that he knows r.

The protocol stops if the receiver rejects.

The jth Transfer Phase

1. The receiver chooses a choice index 1 ≤ σj ≤ n based on Mσ1 , · · · ,Mσj−1 .
2. The receiver chooses u ∈ Zq randomly and computes U = (Aσj )

u.
He then sends U .



3. The receiver proves in WI-PoK that he knows u such that

U = Au
1 ∨ · · · ∨ U = Au

n.

The protocol stops if the sender rejects.
4. The sender computes V = Ur and sends V .
5. The sender proves that (g, h, U, V ) in ZK-PoM that it is a DDH-tuple.

The protocol stops if the receiver rejects.
6. The receiver obtains Mσj

by computing Bσj
/V 1/u.

Three ZK or WI proof systems in the scheme are constructed efficiently as fol-
lows.

– An efficient 4-round ZK-PoK exists which can be used in the initialization
phase. It is obtained by applying the technique of [4] to Schnorr’s identifica-
tion scheme [19].

– An efficient 3-round WI-PoK exists which can be used in the transfer phase.
It is implemented by applying the or-composition technique [5] to [19].

– An efficient 4-round ZK-PoM exists which can be used in the transfer phase.
It comes from the confirmation protocol of Chaum’s undeniable signature
scheme (which is a ZK-PoM for the DDH-tuple [3]).

Theorem 1. The above protocol is a fully-simulatable adaptive OTn
k×1 under

the DDH assumption.

The proof is given in Section 6.

5 Extension to Fully Simulatable Non-Adaptive OT

In this section, we extend our adaptive OT to a fully simulatable non-adaptive
OT which requires constant rounds.

5.1 How to Prove Many DDH-tuples

We show a 4-round ZK-PoM which proves that (g, h, U1, V1), · · · , (g, h, Uk, Vk)
are all DDH-tuples.

1. The receiver sends random (a1, · · · , ak).
2. The sender proves that (g, h,

∏k
i=1 Uai

i ,
∏k

i=1 V ai
i ) is a DDH-tuple by using

the confirmation protocol of [3].

The confirmation protocol of [3] is a 4-round ZK-PoM on a DDH-tuple. Hence
the above protocol runs in 4-round. (Step 1 and the 1st round of the confirmation
protocol are merged.)

Lemma 1. Suppose that some (g, h, Ui, Vi) is not a DDH-tuples. Then
(g, h,

∏k
i=1 Uai

i ,
∏k

i=1 V ai
i ) is a DDH-tuples with negligible probability.



Proof. Assume that Ui = gxi and Vi = hyi for i = 1, · · · , k. Then

k∏

i=1

Uai
i = g

Pk
i=1 aixi

k∏

i=1

V ai
i = h

Pk
i=1 aiyi

Suppose that (g, h, U1, V1) is not a DDH-tuples. That is, x1 6= y1. Then for any
values of a2, · · · , ak, there exists a unique a1 such that

k∑

i=1

ai(xi − yi) = 0 mod q. (1)

Hence the numbers of (a1, · · · , ak) which satisfies eq.(1) is equal to qk−1. There-
fore

Pr(eq.(1) holds) = qk−1/qk = 1/q.

This means that (g, h,
∏k

i=1 Uai
i ,

∏k
i=1 V ai

i ) is a DDH-tuples with negligible prob-
ability. ut

Theorem 2. The above protocol is a ZK-PoM on many DDH-tuples.

Proof. The completeness is clear. The zero-knowledgeness follows from that of
the confirmation protocol of [3]. The soundness follows from Lemma 1 and that
of the confirmation protocol of [3]. ut

5.2 Constant Round OTn
k

In this section, we modify our OTn
k×1 to obtain a constant round OTn

k as follows.

– At step 4 of the initialization phase, the sender sends (G, h, A1, · · · , An).
– At the end of the transfer phase, the sender sends (B1, · · · , Bn).
– In the transfer phase, run step 3 in parallel (still it is a WI protocol).

At step 5, the sender proves that (g, h, U1, V1), · · · , (g, h, Uk, Vk) are all DDH-
tuples by using the ZK-PoM of Sec.5.1.

Theorem 3. The proposed OTn
k is a constant round fully-simulatable OTn

k un-
der the DDH assumption.

The proof is similar to that of Theorem 1.

6 Proof of Theorem 1

We first prove that the proposed scheme is secure against sender corruption. We
next prove that it is secure against receiver corruption.



6.1 Security Against Sender Corruption

Lemma 2. The proposed scheme is secure against sender corruption.

Proof. For every real-world adversary A who corrupts the sender, we construct
an ideal-world adversary A′ such that Adv(Z) is negligible.

We will consider a sequence of games Game0, Game1, · · · , Game4, where Game0 is
the real world experiment of Sec.3, and and Game4 is the ideal world experiment,
respectively. Let

Pr(Gamei) = Pr(Z = 1 in Gamei).

Game0: This is the real world experiment such that the sender is controlled by
an adversary A. Hence

Pr(Game0) = Pr(Z = 1 in the real world).

Game1: This is the same as the previous game except for the following. In the
initialization phase, if the receiver accepts the ZK-PoK, then he extracts r from
A by running the knowledge extractor E1 which is allowed to rewind A. This
game outputs ⊥ if the extractor E1 fails in extracting r. Unless this happens,
these two games are identical. Therefore,

|Pr(Game0)− Pr(Game1)| ≤ κ1,

where κ1 be the knowledge error of the extractor.

Game2: This is the same as the previous game except for the following. In each
transfer phase, if the receiver accepts the ZK-PoM which proves that (g, h, U, V )
is a DDH-tuple, then he obtains Mσi by computing Bσi/A

r
σi

. These two games
are identical unless the above Mσi is different from Bσj /V 1/u. This happens if
the receiver accepts the ZK-PoM even though (g, h, U, V ) is not a DDH-tuple.
Hence

|Pr(Game1)− Pr(Game2)| ≤ kκ3,

where κ3 is the soundness error probability of ZK-PoM.

Game3: This is the same as the previous game except for the following. In each
transfer phase, the receiver computes U as U = Au

1 . (The receiver can still obtain
Mσi as can be seen from Game2.) Since our WI-PoK is perfect,

Pr(Game2) = Pr(Game3).

Game4: This game is the ideal world experiment in which an ideal-world adversary
A′ plays the role of the receiver of Game3 and uses A as a blackbox. A′ can do
this because the receiver does not use σ1, · · · , σk in Game3.



Finally A′ outputs what A outputs. It is easy to see that Game3 and Game4

are identical from a view point of Z. Hence

Pr(Game3) = Pr(Game4).

Further
Pr(Game4) = Pr(Z = 1 in the ideal world).

Now, we can summarize this lemma as follows:

Adv(Z) = |Pr(Game4)− Pr(Game0)|

≤
3∑

i=0

|Pr(Gamei+1)− Pr(Gamei)|

≤ κ1 + kκ3.

ut

6.2 Security Against Receiver Corruption

Lemma 3. The proposed scheme is secure against receiver corruption under the
DDH assumption.

Proof. For every real-world adversary A who corrupts the receiver, we construct
an ideal-world adversary A′ such that Adv(Z) is negligible.

We will consider a sequence of games Game0, Game1, · · · , Game5, where Game0

is the real world experiment of Sec.3, and Game5 is the ideal world experiment.

Game0: This is the real world experiment such that the receiver is controlled by
an adversary A. Hence

Pr(Game0) = Pr(Z = 1 in the real world).

Game1: This is the same as the previous game except for the following. In each
transfer phase, instead of running the ZK-PoM which proves that (g, h, U, V )
is a DDH-tuple, the sender runs the zero-knowledge simulator of the ZK-PoM
which is allowed to rewind A. Since the ZK-PoM is perfect ZK, we have

Pr(Game1) = Pr(Game0).

Game2: This is the same as the previous game except for the following. In each
transfer phase, if the sender accepts the WI-PoK, then she extracts u from A
by running the knowledge extractor E2 which is allowed to rewind A. This game
outputs ⊥ if the extractor E2 fails in extracting u. Unless this happens, these
two games are identical. Therefore,

|Pr(Game2)− Pr(Game1)| ≤ kκ2,



where κ2 is the knowledge error of the extractor.

Game3: This is the same as the previous game except for that the sender computes
V as V = (Bσ/Mσ)u instead of V = Ur. It is clear that there is no essential
difference between two games. Therefore,

Pr(Game3) = Pr(Game2).

Game4: This is the same as the previous game except for that the sender uses
a random M ′

i to compute each Ci in the initialization phase. The difference
|Pr(Game4) − Pr(Game3)| is still negligible by the semantic security of the
ElGamal cryptosystem which is implied by the DDH assumption.

Claim. If the DDH problem is hard then |Pr(Game4)− Pr(Game3)| is negligi-
ble. More concretely,

|Pr(Game4)− Pr(Game3)| ≤ εDDH. (2)

The proof of this claim is given later.

Game5: This game is the ideal world experiment in which an ideal-world adversary
A′ plays the role of the sender of Game4, and uses A as a blackbox. A′ can do this
because the sender does not use M1, · · · ,Mn in Game4.

Finally A′ outputs what A outputs. It is easy to see that Game4 and Game5

are identical from a view point of Z. Hence

Pr(Game4) = Pr(Game5).

Further
Pr(Game5) = Pr(Z = 1 in the ideal world).

Now, we can summarize this lemma as follows:

Adv(Z) = |Pr(Game5)− Pr(Game0)|

≤
4∑

i=0

|Pr(Gamei+1)− Pr(Gamei)|

≤ kκ2 + εDDH.

ut

To complete the proof, we must provide the proof of the claim. To do so, we
need the following lemma 5 which can be thought of as an “extended” version
of the DDH assumption.
5 Naor and Reingold proved it by using the random reducibility of the DDH-tuple.



Lemma 4 (Lemma 4.2 in [17]). If there exists a probabilistic algorithm D
with running time t such that

∣∣∣∣Pr (D(g, gr, gx1 , · · · , gxn , grx1 , · · · , grxn) = 1)

− Pr(D(g, gr, gx1 , · · · , gxn , gz1 , · · · , gzn) = 1)
∣∣∣∣≥ ε

where the probability is taken over the random bits of D, the random choice of
the generator g in G, and the random choice of x1, · · · , xn, r, z1, · · · , zn ∈ Zq,
then there exists a probabilistic algorithm with running time n · poly(τ) + t that
breaks the DDH assumption with probability ≥ ε with some polynomial poly.

We now show a proof of the claim.

Proof (of the claim). Let Game′3 (Game′4) be the same as Game3 (Game4) except
for the following. In the initialization phase, instead of running the ZK-PoK in
which the sender proves that he knows r, the sender runs the zero-knowledge
simulator of the ZK-PoK which is allowed to rewind A. Since the ZK-PoK is
perfect ZK, it holds that

Pr(Game′3) = Pr(Game3),
Pr(Game′4) = Pr(Game4).

We now construct a DDH distinguisher D in the sense of Lemma 4. The input
to D is (g, h, gx1 , · · · , gxn , y1, · · · , yn), where yi = grxi or gzi , Our D simulates Z,
A and the sender of Game′3 or Game′4 faithfully except for that in the initialization
phase, D simulates the sender by using (g, h, gx1 , · · · , gxn), and hi = yi for each
i. Finally D outputs 1 iff Z outputs 1.

It is easy to see that D simulates Game′3 if yi = grxi for each i, and Game′4
otherwise. Therefore

∣∣Pr(Game′4)− Pr(Game′3)
∣∣ ≤ εDDH. (3)

Hence eq.(2) holds.
ut

7 Fully Simulatable OT 2
1

We have constructed a fully-simulatable adaptive OT under the DDH assump-
tion in the standard model. It is clear that we can obtain a fully-simulatable
(1, 2)-OT (OT 2

1 ) as a special case.
On the other hand, Lindell showed a fully simulatable OT 2

1 under DDH, Pail-
lier’s decisional Nth residuosity, and quadratic residuosity assumptions as well
as under the assumption that homomorphic encryption exists in the standard
model [13].



Let’s compare our scheme with Lindell’s OT 2
1 which is based on the DDH

assumption. His scheme builds on the OT 2
1 of [16] and uses a cut-and-choose

technique. The computational cost and the communication cost are O(`) times
larger than those of our first scheme to achieve

Adv(Z) ≤ 2−`+2.

Hence our scheme is more efficient.
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