Efficient Chosen Ciphertext Secure Public Key
Encryption under the Computational
Diffie-Hellman Assumption

Goichiro Hanaoka! and Kaoru Kurosawa?
! RCIS, AIST
2 TIbaraki University

Abstract. Recently Cash, Kiltz, and Shoup [13] showed a variant of the
Cramer-Shoup (CS) scheme [14] whose chosen-ciphertext (CCA) security
relies on the computational Diffie-Hellman (CDH) assumption. The cost
for this high security is that the size of ciphertexts is much longer than the
CS scheme (which is based on the decisional Diffie-Hellman assumption).
In this paper, we show how to achieve CCA-security under the CDH
assumption without increasing the size of ciphertexts. We also show a
more efficient scheme under the hashed Diffie-Hellman assumption.
Both of our schemes are based on a certain broadcast encryption (BE)
scheme while the Cash-Kiltz-Shoup scheme is based on the Twin DH
problem. Of independent interest, we also show a generic method of
constructing CCA-secure PKE schemes from BE schemes.

1 Introduction

1.1 Background

Chosen-ciphertext security (CCA-security, for short) [35, 16] is considered as a
standard notion of security for public key encryption (PKE) in practice. Further-
more, this security also implies universally composable security [11]. So far, many
CCA-secure PKE schemes have been proposed, both theoretical ones [31, 16, 36]
and practical ones [14, 38,12, 26, 10, 1, 25,22], and their security are proven un-
der existence of enhanced trapdoor permutations (for theoretical schemes) or
under various number theoretic assumptions (for practical schemes). Theoreti-
cal schemes pursue weaker assumptions and practical schemes pursue efficiency.

One of the most important research topics in this field is to design CCA-
secure PKE schemes with weaker assumptions and better efliciency. Cramer
and Shoup showed the first practical PKE scheme under the decisional Diffie-
Hellman (DDH) assumption. Kurosawa and Desmedt showed a more efficient
scheme under the DDH assumption [26].

However, there has been no (even theoretical) CCA-secure PKE scheme un-
der the computational Diffie-Hellman (CDH) assumption except for a recent
work by Cash, Kiltz, and Shoup [13].3

3 We started our work independently of [13]. In fact, the authors of [13] kindly cited
an earlier version of our paper as an independent work.



1.2 Owur Contribution

In this paper, we present a practical CCA-secure PKE scheme under the CDH
assumption such that the size of a ciphertext is much smaller than that of the
Cash-Kiltz-Shoup (CKS) scheme. Indeed, the ciphertext length of our scheme
is the same as that of the Cramer-Shoup (CS) scheme (which is based on the
DDH assumption). Specifically, ciphertext overhead of our CDH-based scheme is
only three group elements for arbitrary plaintext length, while that of the CKS
scheme is k/log k 4+ 2 group elements where k is the security parameter.

We also present a more efficient CCA-secure PKE scheme under the hashed
Diffie-Hellman (HDH) assumption. This scheme is as efficient as the Kurosawa-
Desmedt (KD) scheme [26] in terms of both computational costs and data sizes
while the HDH assumption is weaker than the DDH assumption.*

Both of our schemes are based on the Naor-Pinkas broadcast encryption
(BE) scheme while the CKS scheme is based on the Twin DH problem. Of in-
dependent interest, we show a generic method of transforming any selectively
chosen-plaintext (CPA) secure verifiable BE scheme into a CCA-secure key en-
capsulation mechanism (KEM) with almost no cost, where we say that a BE
scheme is verifiable if any receiver can tell whether all receivers decrypt a given
ciphertext to the identical result or not.

Further, we show that almost all existing methods for achieving CCA-security,
e.g. [16,14, 12], can be explained by using verifiable BE schemes. It is also possi-
ble to construct a new PKE scheme based on this paradigm, for example, from
the Boneh-Gentry-Waters (BGW) BE scheme [6]. Moreover, we can generically
convert any CPA-secure verifiable BE into a CCA-secure BE with almost no cost.
Our results imply that verifiable BE is a powerful tool to obtain CCA-security.

1.3 Related Works

Under Stronger Assumptions than CDH. After the KD scheme, several
CCA-secure encryption schemes were constructed under stronger assumptions
than the CDH assumption. The scheme of Boyen, Mei, and Waters [10] is based
on the bilinear Diffie-Hellman (BDH) assumption. The scheme of Kiltz [25] is
based on the gap hashed Diffie-Hellman (GHDH) assumption. The scheme of
Hotheinz and Kiltz [22] is based on the n-linear DDH assumption.

KEM/DEM Framework. The KEM/DEM framework was formalized by
Shoup [38] for the design of hybrid encryption schemes, and the CS hybrid en-
cryption scheme was constructed. However, the KD scheme does not fit into this
framework. To explain the KD scheme in a general framework, Abe, Gennaro,
Kurosawa, and Shoup [1] established the Tag-KEM/DEM framework. Hofheinz
and Kiltz [22] introduced the notion of Constrained CCA (CCCA) security of
KEM.

4 After an earlier version of this paper [21], in the latest full-version of [13], Cash,
Kiltz, and Shoup pointed out that the Hofheinz-Kiltz scheme in [22] can be also
proved to be secure under the HDH assumption.



How to Achieve CCA Security. Naor and Yung showed that a non-adaptively
CCA-secure encryption scheme can be constructed from any semantically se-
cure encryption [19] and non-interactive zero knowledge (NIZK) proof [4]. Dolev,
Dwork, and Naor [16] and Sahai [36] improved this idea and presented adaptively
CCA-secure constructions. However, it is not known if an NIZK proof can be
constructed from any semantically secure encryption scheme. (A partial answer
to this question is given in [32].)

Canetti, Halevi, and Katz [12] proposed another generic method such that
a CCA-secure PKE scheme can be obtained from a selectively secure identity-
based encryption (IBE) scheme [37,5]. Boneh and Katz [7] improved its effi-
ciency. Kiltz [24] discussed a more relaxed condition for achieving CCA-security.

Broadcast Encryption. In the model of broadcast encryption (BE) schemes,
there are multiple receivers. The sender broadcasts a ciphertext such that only
privileged receivers can decrypt. Fiat and Naor [17] proposed the first non-trivial
construction of BE. Naor, Naor, and Lotspiech [29] presented a significantly more
efficient scheme. Naor and Pinkas [30] proposed a public key BE scheme by using
ElGamal-like construction, and Dodis and Fazio [15] improved it to be secure
against adaptive adversaries as well as chosen-ciphertext adversaries. Boneh,
Gentry, and Waters [6] proposed the first fully collusion resistant (public key)
BE scheme whose ciphertext and user decryption keys are of constant size.

1.4 Organization

Definitions are given in Sec. 2. Our main idea is described in Sec. 3. The proposed
scheme under the CDH assumption is shown in Sec. 4. A more efficient scheme
under the HDH assumption is presented in Sec. 5. A comparison with other
PKE schemes is given in Sec. 6. Finally, we show a generic method to construct
CCA-secure PKE schemes from verifiable BE in Sec. 7.

2 Definitions

2.1 Key Encapsulation Mechanisms

It is well-known that by combining a CCA-secure KEM and a CCA-secure data
encryption mechanism (DEM), a CCA-secure PKE scheme is generically ob-
tained [38], and furthermore, there exist some other flexible methods for hybrid
encryption as well [1,22]. It is also known that a CCA-secure DEM can be
generically constructed from any pseudorandom functions without redundancy
[27,33].

A KEM consists of the following three algorithms: Setup(1*) takes as input
the security parameter 1¥ and outputs a decryption key dk and a public key PK.
Encrypt(PK) takes as input a public key PK and outputs a pair (¢, K') where ¢
is a ciphertext and K € K is a data encryption key. Decrypt(dk, ¢, PK) takes as
input the decryption key dk, a ciphertext ¥, and the public key PK, and outputs



K € K which will be used for decrypting the DEM part of hybrid encryption.
We require that if (dk, PK) & Setup(1*) and (¢, K) & Encrypt(PK) then
Decrypt(dk, v, PK) = K.

CCA-security of a KEM is defined using the following game between an
attack algorithm A and a challenger. Both the challenger and A are given 1* as
input.

Setup. The challenger runs Setup(1*) to obtain a decryption key dk and a
public key PK. The challenger also runs algorithm Encrypt to obtain

(v*, K*) & Encrypt(PK) where K* € K. Next, the challenger picks a
random b € {0,1}. It sets Ky = K* and picks a random K; € K. It then
gives the public key PK and the challenge ciphertext (*, Kj) to algorithm
A.

Query. Algorithm A adaptively issues decryption queries 1, ..., 94, . For query
;(# ¥*), the challenger responds with Decrypt(dk, i;, PK).

Guess. Algorithm A outputs its guess b’ € {0,1} for b and wins the game if
b=1"V.

Let AdvKEM, denote the probability that A wins the game.

Definition 1 We say that a KEM is (7,¢,qp) CCA-secure if for all 7-time algo-
rithms A who make a total of ¢p decryption queries, we have that |[AdvKEMa —
1/2| <e.

2.2 Number Theoretic Assumptions

The CDH, HDH, and DDH Assumptions. Let G be a multiplicative group with
prime order p. Then, the CDH problem on G is stated as follows. Let A be an
algorithm, and we say that A has advantage € in solving the CDH problem on
G if Pr[A(g, g%, 9%) = g*?] > ¢, where the probability is over the random choice
of generator ¢ in G, the random choice of o and 3 in Z,, and the random bits
consumed by A.

Definition 2 We say that the (1,€)-CDH assumption holds in G if no T-time
algorithm has advantage € in solving the CDH problem on G.

The hashed Diffie-Hellman (HDH) problem on G and function A : G — D is
stated as follows. Let A be an algorithm, and we say that A has advantage € in
solving the HDH problem on G and h if

1/2 - | Pr[A(g, 9%, ¢°, h(g*")) = 0] — Pr[A(g,9%,9°,T) = 0]| >,

where the probability is over the random choice of generator g in G, the random
choice of o and 3 in Z,, the random choice of T" € D, and the random bits
consumed by A.

Definition 3 We say that the (1,¢)-HDH assumption holds in G and h if no
T-time algorithm has advantage € in solving the HDH problem on G and h.
Especially, we say that the (1,€)-DDH assumption holds in G if (7,€)-HDH as-
sumption holds in G and h, where h is the identity function.



Important Implications. It is important to note that the HDH assumption is
strictly weaker than the DDH assumption for appropriately chosen h. If h is a
key derivation function [38], then the DDH assumption immediately implies the
HDH assumption (but not vice versa). Furthermore, if h is a hardcore bit for
the Diffie-Hellman key [18,9, 8,23], then the CDH assumption is equivalent to
the HDH assumption. Obviously, the CDH assumption is weaker than both the
HDH and DDH assumptions.

Hardcore Bits for the Diffie-Hellman Key. Let A be a 7-time algorithm which
has advantage € in solving the HDH problem on G and h : G — {0,1}.

Definition 4 We say that function h : G — {0,1} is a (p1,p2) hardcore bit
function in G if there exists a p1(7)-time algorithm B which for any given A,
can solve the CDH problem with advantage pa(€) for some polynomials p; and

D2-

2.3 Public Key Broadcast Encryption Schemes

Model. Here, we review definitions for public key BE schemes. For simplicity,
we define encryption schemes as key encapsulation mechanisms, and borrow the
same notations as [6] with some slight modifications. A BE scheme consists
of the following three algorithms: Setup(1*,n,t) takes as input the security
parameter 1%, the number of receivers n, and the maximum number of revoked
users t (t < n). It outputs n decryption keys dj,...,d,, and a public key PK.
Encrypt(S, PK) takes as input a subset S C {1,...,n} with |S| > n —¢, and a
public key PK. It outputs a pair (1, K) where v is called the header and K € K
is a message encryption key. Let M be a message to be broadcast to the set &
and let C'y; be the encryption of M under the symmetric key K. The broadcast
to users in S consists of (S,, Cyr). The pair (S, ) is often called the full header
and Cjy is often called the broadcast body. Decrypt(S,i,d;, ), PK) takes as
input a subset S C {1,...,n}, a user index i € {1,...,n} and the decryption key
d; for user i, a header v, and the public key PK. If i € S and |S| > n — t, then
the algorithm outputs the message encryption key K € K. The key K can then
be used to decrypt the broadcast body Cj; and obtain the message body M.

As usual, we require that the scheme be correct, namely that for all S
{1,...,n} and all ¢ € S, if ((dy,...,d,), PK) hid Setup(1*,n,t) and (3, K)
Encrypt(S, PK) then Decrypt(S,i,d;,v, PK) = K.

-
R
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CCA Security. We define CCA-security of a BE scheme against a static adver-
sary. Security is defined using the following game between an attack algorithm A
and a challenger. Both the challenger and A are given 1¥, n and ¢, the total num-
ber of potential users and the maximum number of revoked users, respectively,
as inputs.

Init. Algorithm A begins by outputting a set S* C {1, ...,n} of receivers that A
wants to attack, where |S*| > n —t.



Setup. The challenger runs Setup(1¥,n,t) to obtain decryption keys dy, ..., d,
and a public key PK. The challenger also runs algorithm Encrypt to obtain

(*, K*) E Encrypt(S*, PK) where K* € K. Next, the challenger picks a
random b € {0,1}. It sets Ky = K* and picks a random K; € K. It then
gives (*, Kp) to algorithm A.

Query. Algorithm A adaptively issues decryption queries ¢, ..., ¢p where a de-
cryption query consists of the triple (u,S,) where ¢ # ¢¥*, § C §* and
u € S. The challenger responds with K (or L) = Decrypt(S, u,d,, v, PK).

Guess. Algorithm A outputs its guess b’ for b and wins the game if b = ¥'.

Let AdvBra ,, ; denote the probability that A wins the game when the challenger
is given n and t.

Definition 5 We say that a broadcast encryption scheme is (7, €,n,t,qp) CCA-
secure if for all 7-time algorithms A who make a total of ¢p decryption queries, we
have that |AdvBra , . —1/2| < e. Especially, we say that a broadcast encryption
scheme is (7, €,n,t) semantically secure if it is (7, ¢,n,t,0) CCA-secure.

Verifiability. For achieving CCA-security, we need an important property for
underlying BE, which we call verifiability. Roughly speaking, we say that a BE
scheme has verifiability if a valid receiver of a broadcasted message can verify if
his decryption result is the same as that for any other receiver. We can define two
flavors of verifiability: public verifiability and private verifiability. Their difference
is that in a publicly verifiable BE scheme, a receiver can verify equality of keys
without using his decryption key, and on the other hand, it is necessary in a
privately verifiable scheme.
For public verifiability, we define adversary A’s advantage AdvVfy, ,, ; as

AdefyAm,t
=Pr[3i,j € §*, Decrypt(S*,i,d;, ", PK) # Decrypt(S*, j, d;,¢v*, PK)|
((dr, ey dn), PK) & Setup(1*,n, 1); (8*,4%) & A((dy, ... dn), PK)].
Definition 6 We say that a broadcast encryption scheme is (7,¢,n,t) publicly
verifiable if for all 7-time algorithms A, we have that AdvVfy, ,, <e.

We can also define private verifiability in a similar manner, and its formal defi-
nition is given in the full version of this paper [21].

2.4 Other Cryptographic Tools

Target Collision Resistant Hash Functions. Let TCR : X — ) be a hash function
(we individually define the range and domain of TCR for each scheme), A be an
algorithm, and A’s advantage AdvTCRa be AdvTCRA = Pr[TCR(2’) = TCR(x) €

y/\x’#a:|x£X; x’ﬁA(x)].

Definition 7 We say that TCR is a (7, €) target collision resistant hash function
if for all 7-time algorithms A, we have that AdvTCRa < e.



One-Time Signatures. A signature scheme consists of the following three al-
gorithms: Gen(1*) takes as input the security parameter 1¥, and outputs a
verification key vk and a signing key sk. Sign(sk,m) takes as input a signing
key sk and a message m, and outputs a signature o. Verify(vk,m, o) takes as
input a verification key vk, a message m, and a signature o, and outputs a bit
b € {0,1}. We require that for all sk, all m in the message space, and all o
output by Sign(sk, m), we have Verify(vk, m,o) = 1.

Security is defined using the following game between an attack algorithm A
and a challenger. Both the challenger and A are given 1* as input.

Setup. The challenger runs Gen(1*) to obtain vk and sk. It gives A the verifi-
cation key vk.

Query. Algorithm A may issue at most one query m. The challenger responds
with o & Sign(sk, m).

Forge. Algorithm A outputs (m*,c*) such that (m*,o*) # (m, o).

Let AdvOTSp denote the probability that Verify (vk, m*,0*) = 1.

Definition 8 We say that a signature scheme is (7, €) strongly unforgeable if for
all 7-time algorithms A, we have that AdvOTSp < e.

3 Toward Efficient CCA-Secure Scheme under CDH

The Naor-Pinkas BE scheme [30] is one-way under the CDH assumption. In this
section, we construct a verifiable BE scheme from the Naor-Pinkas BE scheme,
where we say that a BE scheme is verifiable if any receiver can tell whether
all receivers decrypt a given ciphertext to the identical result or not. The main
difficulty in this paper is how to add verifiability to the Naor-Pinkas scheme.

Our CCA-secure PKE scheme under the CDH assumption is obtained from
this variant of the Naor-Pinkas BE scheme. See Sec. 7 for details on this obser-
vation.

3.1 The Naor-Pinkas Broadcast Encryption Scheme

The Naor-Pinkas scheme [30], which was constructed based on [2], is as follows.
Let G be a multiplicative group with prime order p, and g € G be a generator.
Suppose that there are at most ¢ potential revoked users.

In the setup phase, the center chooses a polynomial f(z) = >, a2’
over GF(p) randomly, and computes y; = g% for 0 < ¢ < t. The public key
is PK = (G, g,v0,-..,yt). The center keeps f(x) as the master key, and gives
d; = f(4) to each user i = 1,...,p — 1 as his decryption key.

To revoke users i1, ...,%; € Zp, the sender generates a ciphertext

Y = (g7, (g7 . (g7 and a key K = y where r & Z,. Notice that
g/ can be computed as Hogjgt y;J for any i € {1,...,p — 1}. On receiving
¥ = (Co,...,Ct), user u & {i1,...,4+} computes C,, = C’g“ and recovers the key



as K = C;™ [licj<t C’;\(ij) where A(z) is the Lagrange coefficient such that
Az) = Hi’e{i,il,...,it}\{w} il (1 — 17)71 over Zy.

3.2 Verifiability

As we mentioned, the main difficulty in this paper is how to add verifiability
to the Naor-Pinkas scheme. Here we give a solution. Consider a modification
of the Naor-Pinkas scheme such that user ¢ is given (f(i), f(rnd),rnd) as his

decryption key, where rnd £ Z,. We note that a legitimate user ¢ can decrypt
a ciphertext in two different ways according to two different keys, i.e. f(i) and
f(rnd). If these decryption results are not identical, then the user can detect
that the ciphertext is in an invalid form. Notice that since rnd is random and
not known to other users, it is difficult to generate an invalid ciphertext whose
decryption results under f(7) and f(rnd) are identical.

Unfortunately, the above idea is faulty. Namely, even if user i is revoked
and f(i) does not work for decryption, he still has f(rnd) and can decrypt
a ciphertext by using it. Hence, the modified scheme is not secure any more.
Therefore, we further modify the Naor-Pinkas scheme as follows: For at most
t revoked users, in the setup phase, a polynomial f(z) = > ;c0iiq a;zt is
generated in the same manner as the original Naor-Pinkas scheme except that
its degree is changed to be 2t + 1. The public key is PK = (G, g,yo, ---, Y2t+1)-
We assume that a user ¢ has two unique identities i and i, where we denote
i = (i,i) € {1,...,p—1}2. The center keeps f(z) as the master key, and for user i =
(i,i) € {1,...,p — 1}? he publishes d; = (f(i), f(i), f(rnd),rnd) as i’s decryption
key, where rnd & Z,. Assuming that users i1(= (i1,i1)), ..., it (= (i, 1)) are
revoked, the sender generates ¢ = (g, (g7 )7, ..., (g7 G (g 0)r . (gfG)r)

and K =y, where r & L.

On receiving ¢ = (Cy, ..., Cay), a user i = (i,1)(& {41, ...,49:}) computes C; =
C’g(i), Ci = C’(J;('), and Cppg = Cg(md). We notice that ¥ can be decrypted by us-
ing any two of Cj, C;, and C,.,q with the Lagrange interpolation (for example, by

using (Cj, Ci), the session key is recovered as K = C’?(i)Ci)‘(') H1<j<t(C;\(lj)C;\_$Z))

where \(z) is the Lagrange coefficient such that M) = [Tc i i i\ gy
(' — x)~! over Z,). Then, user i carries out decryption in three different ways

according to the three different choices of (Cj, Ci), (Ci, Crpna), and (Ci, Crpa).

Then, user ¢ can be convinced of the equality of decryption results for all le-

gitimate subscribers if i’s three decryption results are identical. Furthermore,

when ¢ is revoked, he cannot decrypt a ciphertext at all even though he still has

f(rnd). Now, we obtain a new verifiable BE scheme from Naor-Pinkas BE, and

are ready to convert it into a CCA-secure PKE scheme.

4 Efficient CCA-Secure KEM from CDH

In this section, we show an efficient CCA-secure KEM under the CDH assump-
tion such that the size of ciphertexts is the same as that of the CS scheme. Our



KEM is obtained from a verifiable BE scheme which was shown in Sec. 3. Let G
be a multiplicative group with prime order p, and g € G be a generator. Then,
the construction of the scheme is as follows:

Setup(1¥): Generate a random polynomial f(z) = ag + a1@ + -+ + agy22*+?

over Zp, and compute y; = g% for 0 < ¢ < k + 2. The decryption key
is f(z), and the public key is PK = (G, g,y0,¥1,---, Yk+2, TCRo, TCRy, h),
where TCRy : G — Sp (b =0, 1) are target collision resistant hash functions
such that So US1 C Zy, SoNS1 =0, and h : G — {0, 1} is a hardcore bit
function for the Diffie-Hellman key in G.°

Encrypt(PK): Pick a random r ¥i3 Z,, and compute

b =(9"9" TV, g D), K = (hyg)l Ay |h(yh—1))

where i = TCRy(g") and i = TCR;(g"). The final output is (¢, K). (Notice
that one can easily compute g/*) as g/} = [T, o7 )

Decrypt(dk, ¢, PK): For aciphertext 1) = (Co, C1, C2), check whether (C1, C2)
(CID cIDy where i = TCRy(Cp) and i = TCRy(Cp). If not, output L. Oth-
erwise, output K = (h(C§°)||h(C§Y)]|...]|h(Cy* ™).

?

Theorem 1 Let G be a multiplicative group with prime order p, TCRqy and
TCR;y be (7,¢€ter) target collision resistant hash functions, and h be a (p1,p2)
hardcore bit function for the Diffie-Hellman key in G. Then, the above scheme
is (' (m) —o(py (7)), k- p3 ' (€can) +2€uer +ap(2k/(p—3) +1/(p — k —2)),qp)
CCA-secure under the (7, €cqn) CDH assumption on G.

Proof. Assume that for challenge ciphertext (g°, gﬁ'f(i*),gﬂ'f(i*)) such that i* =
TCRo(g?) and i* = TCRy(g”), there exists an adversary A’ which distinguishes
(h(yg)Hh(yf)HHh(yf_l)) from a random k-bit string. Then, by a standard hy-
brid argument, there also exists another adversary A which for some j such that
0 < j <k —1 distinguishes

(h(yo) 1RO 1h(y;)llrandomy—; 1)

from

(hCy) 1ROy, )llrandomy.—;)

where random, denotes an ¢-bit random string.

Now, assume we are given such an adversary A which distinguishes these two
values with running time 7, advantage €, and qp decryption queries. We use A
to construct another adversary B which for given (g, g%, ¢%) distinguishes h(g*?)
from a random bit. Define adversary B as follows:

® h is a random string R if it is the Goldreich-Levin (GL) bit [18], where the size of
R is equal to that of a group element. See also Appendix of [9] for the GL bit of the
Diffie-Hellman keys.



1. For given (g, g%, ¢”), B picks target collision resistant hash functions TCR,
and TCRy, and computes i* = TCRy(g”) and i* = TCR;(g?).

2. B sets y; = g%, and picks distinct randoms rndj, ..., rndy ;1 from Zy\{i*,i*}.
B also picks randoms u;«, uix, ao, ..., aj—1, and u;, ..., up—1 from Z,.

3. B calculates y; = g* for 0 <1 <j—1.

4. Let f(z) = "2 a;z' be a polynomial over Z, such that a; = a, f(i*) =
Ui, f(i*) = uix, and f(rnd;) = uj, ..., f(rndg—1) = uk—1. Then, by using
the Lagrange interpolation, B calculates y;i1,...,yx+2 such that gf®) =
[To<i<kiz y}“. Notice that y; = g* holds for 0 <1 < k + 2.

5. B inputs public key PK = (G, g,%0,Y1,---, Yk+2, T CRo, TCRy, k) and chal-
lenge ciphertext ¢* = (¢, (¢°)%*, (¢°)“*) and

K* = (h((g") ) 1h((g") |-~ ((g”) ) Irandomi—;—1)

to A where 7 is h(g®?) or a random bit.
6. When A makes decryption query ¢ = (Cy, C1,C2), B proceeds as follows:

(a) If Cyp = g°, then B responds L.

(b) If Cy # ¢° and TCRy(Cy) € {i*,i*,rnd;, ...,rndy_2,rndj_; } for b =0 or
1, then B aborts and outputs a random bit.

(c) If Co # g° and TCRy(Cy) & {i*,i*,rnd;,...,rndi_a,7ndx_1} for both
b = 0 and 1, B computes Cyi*, Cy"*,Cp7,...,Cy* 2, and Cy*'. Let
TCRy(Cy) =1iand TCRy(Cy) =i, and f1, f2, and f3 be polynomials over
Z,, with degree k + 2 whose coefficient for z! term is a; for 0 <1< j—1,
such that

(f1 (1), f1(), f1(0%), F1(7), fr(rndjsa), -y f1(rndi—1))

= (loge, C1,10g¢, Co, Use s Ui, Uj 1, ooy Up—1)
(f2(1), f2(0), f2(i%), f2(rnd;), ..., f2(rndk—1))

= (log¢, C1,1ogc, Ca, uie, Uj, .oy Up—1)
(f3(1), f3(i), f3(i*), fa(rndy), ..., f3(rndp—1))

= (IOgCO Cl,logco 02, Ui, Uy ...,uk_l).

Then, B calculates Cy®tt, Cy**t, Cy*®! by using the Lagrange interpola-
tion where a1, az, and a3; denote the coefficients of z! term of fi, fo,
and f3 for j <[ < k — 1, respectively, and responds

K= (h(CgO)H|‘h(Cg’71)Hh(CglJ)||||h(Cglk71))

if Cp® = Cg*7 = Cy*®7, or “L” otherwise.
7. Finally, A outputs a bit b as his guess, and B outputs the same bit b as his
own guess for h(g®?).

Let Win denote the event that A’s guess is correct in the real world, Abort denote
the event that A submits a ciphertext 1) = (Cp, Cy,Cs) such that Cy # ¢® and
TCRy(Co) € {i*,i*,rnd;,...,rndr_2,rndi_1} for b = 0 or 1, and Invalid denote
the event that A submits a ciphertext ¢ = (Cy, C1,Cs) such that B does not
abort, Co®i = Cy®9 = Cy®, but (Cy,Cy) # (CIY, Iy,



Then, B’s advantage for guessing h(g®?) is estimated as follows:

1
5 " |PrB(g,9%, 9%, h(g™")) = 0] = Pr[B(g, 9", 4", T) = 0]

> | Pr[Win|Abort A Invalid] Pr[Abort A Invalid] — %\

> | Pr[Win] — Pr[Abort] — Pr[Invalid] — %\

Now, we prove following lemmas.

Lemma 1 Pr[Abort] < 2¢;.,. + 2;%;

Proof. Assume we are given an adversary A with Pr[Abort] = p4. Then, we can

construct another adversary B’ which for given C ki3 G, finds C'(# C) € G such
that TCRy(C") = TCRy(C) for b = 0 or 1 as follows: For given C, B’ generates
decryption key f(x) and public key PK = (G, ¢, Y0, Y1, ---, Yk+2, 1 CRg, TCRy, h),
and computes challenge ciphertext ¢* = (C,C"*, C"*), where uy» = f(i*),
upe = f(i*), i* = TCRy(C), and i* = TCRy(C). B’ also picks distinct randoms
rndy, ...,rndyg—y from Zy\{i*,i*}, and gives PK and (¢*, K*) to A, where K* is
a correct key under f(z) or a random element of G with probability 1/2.

Since rndj, ...,rnd—1 are information-theoretically hidden to A, for a query
¥ = (Cy, C1,C3), TCRy(Cy) or TCR1(Cy) € {rndj,...,rndx_2, rndx_1} happens
with probability at most 2(k — j)/(p — 3). Therefore, the probability that A
submits a ciphertext ¢ = (Cy, C1,C2) (Cy # C) such that TCRy(Cy) = i* or
TCR1(Cp) = i* is at least pa — 2gp(k — 7)/(p — 3). B’ outputs such Cy as C".

By using B’ as it is, we immediately have an algorithm B” which for given
c £ G, finds C"(# C) € G such that TCRy(C"”) = TCR((C) with probability
at least pa —2qp(k—j)/(p —3) — p1, where p; is the probability that B’ outputs
C’ such that TCRy(C”) = TCRy(C). Since p1 < €1, B”’s advantage is at least
pa—2qp(k—7)/(p—3) — €ter. Hence, €ier > pa —2qp(k—7)/(p — 3) — €ter, and
therefore, we have 2¢;. + 2qp(k — 5)/(p — 3) > pa. O

Lemma 2 Pr(lnvalid] < 2.

Proof. Let fo(z) = > g<i<;1 ajz!, and f(z), f3(z), and f}(z) be polynomials
such that fi(z) = fo(z)+27 - f/(x) for I = 1,2,3. Let f’(x) be a polynomial such
that f(z) = fo(x) + 27 - f'(z). Suppose 1 = (Co,C1,Cs) is a ciphertext such
that B does not abort, Co/1(?) = €2 = 5O but (Cy, Cy) # (CIV, IOy,
Then, we notice that f] and f5 which are polynomials with degree k — j + 2 have
k — 7 + 3 intersections, and consequently they have to be identical. Similarly, we
have that f{ = f} = fi. This implies that for [Invalid = true], A has to choose C;
and Cy (without knowing rnd;, ..., rnd;_1) such that f{ (with degree k — j + 2)
satisfies

Lo (f1(0), f1(), f1(39), (%), f1(rndy), ..., fi(rndg-1))
= ((logg, C1 — fo()) i77, (logg, Ca2 — fo(i)) -i77, f'(i*)
( ’fld]), 7f(rndk 1))



2. f{# 1

Since f{ and f’ have at most k — j + 2 intersections and k — j + 1 of them
are (i*, f'(i*)), (i*, f'(i*)), (rndjt1, f'(rndjs1)), ..., (rndg—1, f'(rndg—1)), there
is only one remained intersection which must be (rnd;, f'(rnd;)). Therefore,
[Invalid = true] happens only when A correctly guesses the value of rnd; (even
if A is given rnd;q1, ...,mndi—1). Hence, for any invalid query v, the probability
that B does not respond “1” is at most 1/(p—k+j—2)(<1/(p—k—2)). O

A’s advantage is estimated as at least 1/k times A”’s advantage due to the hybrid
argument. O

5 Efficient CCCA-Secure KEM from HDH

In this section, based on the strategy in Sec. 3, we propose another KEM which
is CCCA-secure [22] under the HDH assumption. This scheme is as efficient as
the KD scheme [26] with a weaker assumption. As shown in [22], a CCA-secure
PKE scheme can be constructed by combining any CCCA-secure KEM and
authenticated symmetric key encryption [3] as a DEM. Let G be a multiplicative
group with prime order p, and g € G be a generator. Then, the construction of
our CCCA-secure KEM is as follows:

Setup(1*): Generate a random polynomial f(x) = ag + a1z + axx? over Z,,
and compute y; = g% for 0 < j < 2. The decryption key is f(x), and the
public key is PK = (G, g,%0,y1,¥2, TCR, h), where TCR : G — Z is a target
collision resistant hash function and h : G — {0,1}" is a hash function.

Encrypt(PK): Pick a random r ki3 Z,, and compute 1 = (g",¢" /) and
K = h(y(), where i = TCR(g"). The final output is (¢, K). (Notice that one
can easily compute ¢g/(*) as /(@) = H0<j<2 y}’?] 2

Decrypt(dk, ¢, PK): For a ciphertext ¢ = (Cy, Cy), check whether C z Cg(i),
where ¢ = TCR(C)). If not, output L. Otherwise, output K = h(Cg°).

The above scheme can be proved to be CCCA-secure, and its security is formally
addressed in the full version of this paper [21].

6 Comparison

Table 1 shows a comparison of our schemes with other CCA-secure schemes, i.e.
Cramer-Shoup (CS) [14, 38], Kurosawa-Desmedt (KD) [26], Boyen-Mei-Waters
(BMW) [10], Kiltz [25], Cash-Kiltz-Shoup (CKS) [13], and Hofheinz-Kiltz (HK)
[22]. In the comparison, we utilize a redundancy-free CCA-secure DEM [20, 33]
for constructing a CCA-secure hybrid encryption scheme from a CCA-secure
KEM.

As seen in Table 1, our proposed scheme in Sec. 4 yields both provable security
under the CDH assumption and short ciphertext length which is comparable



Table 1. Efficiency comparison for CCA-secure PKE schemes. Some figures are
borrowed from [10,25]. For efficiency, we count the number of pairings, multi(or
sequential)-exponentiations [34], regular-exponentiations, and other group operations
(“ops” denotes group operations) used for encryption and decryption. All symmetric
operations (such as hash function/MAC/KDF) are ignored. Ciphertext overhead rep-
resents the difference between ciphertext and plaintext length, and |g| and |mac| are
the length of a group element and an authentication tag, respectively. In the table, we
let k' = k/log k where k is the security parameter, i.e. DEM-key length.

’ ‘ Security Ciphertext [ Encryption [ Decryption ]
Assumption Overhead | #pairings + #[multi,regular]-exp (+ #ops) |
CS [14] DDH 31q] 0+11,3 0+1,1
KD [26] DDH 2|g| + |mac| 0+ [1,2 0+ [1,0
BMW [10] BDH 2g] 0+ (1,2 T+0,1
Kiltz [25] GHDH 2g] 0+ (1,2 0+ (1,0
} CDH (k" + 2)|g] 0+ [k +1,k +1 0+ [1%,0
CKS [13] HDH 3791 L T . 0 +[[1, o]]
HKT [22] HDH 2|g] + |mac| 0+1[1,2] 0+[1,0]
Ours §4 CDH 39| 0+ 25,k +1] 0+ [17,0]
Ours §5 HDH 2|g] + |mac| 0+ [1,2] 0+ [1,0]
Ours §7.3 || 2¢-BDHE 214 0+10,3] +7¢ 3F[0,0]+7

T A slight modification by [13] is applied.

* Relatively more expensive computation is needed for one exponentiation.

to other practical schemes. Comparing with the CDH-based CKS scheme, our
scheme in Sec. 4 is more efficient, and especially, the ciphertext overhead of our
scheme, i.e. three group elements, is much shorter than that of the CKS scheme,
i.e. k/logk + 2 group elements, since k/logk ~ 18 for 128-bit security. In the
comparison, we assume that log & hardcore bits can be extracted from a single
DH key [18]. Furthermore, the ciphertext overhead of our scheme is the same as
that of the CS scheme. Our scheme in Sec. 5 is as efficient as the KD scheme
with a weaker underlying assumption. The Hofheinz-Kiltz scheme [22] (with a
modification by [13]) has almost the same property as ours. (See also the footnote
in Sec. 1.2.)

7 CCA-Security from BE with Verifiability

In this section, we observe that it is possible to construct a CCA-secure PKE
scheme from an arbitrary verifiable BE scheme, and that security of many exist-
ing CCA-secure PKE schemes can also be explained from this viewpoint. This
observation implies that one of promising approaches for achieving CCA-security
is to concentrate on designing verifiable BE schemes. In fact, constructions of
our proposed schemes are based on this approach.

7.1 The Generic Conversion

Given a verifiable BE scheme II’ = (Setup’, Encrypt’, Decrypt’) which is
CPA-secure against selective adversaries, we construct a CCA-secure KEM [T =



(Setup, Encrypt, Decrypt). In the construction, we use a strong one-time sig-
nature scheme ¥ = (Gen, Sign, Verify) in which the verification key generated
by Gen(1%) has length k. We assume that the maximum number of potential
users in II’ is n, and a sender can revoke ¢ users where there exists an injective
mapping (or a target collision resistant hash function) INJ : {0,1}¥ — P and
P is the set of all subsets S C {1,...,n} with |S| = n — t. Notice that for exis-
tence of such an injective mapping, it is necessary that ,,C; > 2% (for example,
(n,t) = (2k, k)). The construction of II is as follows:

Setup(1¥): Choose n and t (which is a possible parameter choice for I1’) such
that ,C; > 2*. Run Setup’(1*,n,t) to obtain (dy,...,d,, PK), and pick an
injective mapping INJ : {0,1}* — P. The decryption key is dk = (dy, ..., d,,)
and the public key is PK = (PK,INJ).

Encrypt(PK): Run Gen(1%) to obtain verification key vk and signing key sk
(with |vk| = k), and compute S, = INJ(vk), (), K) « Encrypt'(Syx, PK)
and o < Sign(sk, ). The final output is ((¢, vk, o), K).

Decrypt(dk, 1, PK): For a ciphertext (1, vk, o), check whether Verify(vk, 1, o) z
1. If not, output L. Otherwise, compute S, = INJ(vk) and output K «
Decrypt’(Syk,i,d;, v, PK) where i € Syg.

CCA-security of the above construction can be proven in a similar manner to [12].
We give an intuitive explanation for the security. Let A be an algorithm which
can break CCA-security of IT. Then, it is possible to construct another algorithm
B which can break 1’ by using A as follows: B runs (vk*, sk*) « Gen(1*), and
commits S* = INJ(vk*) as the subset of users which will be attacked. For given
public key PK of II’, B passes (PK,INJ) to A as a public key of IT. When A
submits decryption query (¢, vk, o), B responds to it by simply decrypting the
ciphertext with decryption key d; such that ¢ € INJ(vk)\S* C {1,...,n}. We
note that there always exists at least one such a decryption key unless vk = vk™*,
and vk # vk* holds with an overwhelming probability if ¢ is a valid signature.
Let (¢*, K*) be a challenge ciphertext of I’ from the challenger. Then, B gives
((w*,vk*,0*), K*) to A as a challenge ciphertext of IT where o* « Sign(sk*,¢™*).
A formal security proof is given in the full version of this paper [21].

Theorem 2 If II' is a (T, €cpa, i, t) semantically secure and (T, €ypy,n,t) pub-
licly wverifiable broadcast encryption scheme such that ,C; > 2%, and X is a
(T, €ur) strongly unforgeable one-time signature scheme, then II is a (T—o(T), €cpat+
€ofy T+ %euf, qgp) CCA-secure key encapsulation mechanism.

A similar result can also be obtained from privately verifiable BE schemes.

7.2 Remarks

We notice that the above generic conversion is identical to the Canetti-Halevi-
Katz (CHK) paradigm [12] except that the underlying primitive of CHK, i.e.
IBE, is replaced with verifiable BE in our construction. Kiltz [24] also showed
that IBE is not always necessary for CHK and a weaker primitive which is called



Table 2. Relation among broadcast encryption and public key encryption schemes.
The column “(n,t)” denotes a possible and typical parameter setting for each under-
lying broadcast encryption scheme, and poly(k) and exp(k) denote polynomial and
exponential functions for the security parameter k, respectively. For verifiability, re-
lated cryptographic tools are described, and 4/ means that the underlying broadcast
encryption has verifiability as it is.

[BE Scheme I (n,t) [ Verifiability [=] PKE Scheme |
Trivial BE (poly(k), n/2) NIZK DDN [16]
DDH a variant of CS [14]
Naor-Pinkas [30] (exp(k), 1) GHDH = Kiltz [25]
Sec. 3.2 Ours §4
IBE (exp(k),n — 1) CHK [12]
BGW [6] (poly(k), n/2) 4 Ours §7.3

tag-based encryption (TBE) [28] is sufficient, and demonstrated to construct a
concrete TBE scheme without using IBE-related techniques. There are also other
CCA-secure schemes whose security can be explained via the TBE framework,
e.g. [14,10, 25]. Our proposed method is a generic construction of TBE from BE
with verifiability.

Many existing CCA-secure PKE schemes can be explained via our obser-
vation in Sec. 7.1 with different underlying BE schemes, and relations among
existing BE and CCA-secure PKE schemes are summarized in Table 2. We give
more detailed explanations for this in the full version of this paper [21].

7.3 Another New CCA-Secure KEM from Boneh-Gentry-Waters

Based on the proposed methodology, we can construct yet another new practical
CCA-secure KEM from the BGW BE scheme [6]. This can be a further evidence
that BE with verifiability is a powerful tool for constructing CCA-secure PKE.
The proposed scheme yields tight security reduction to the 2-BDHE problem [6]
for relatively small ¢, short ciphertexts and short decryption keys. The concrete
construction of the scheme is as follows: Let G; and G2 be multiplicative cyclic
groups with prime order p, and e : G; x G; — G2 be a bilinear mapping [5].
Setup(1%*) chooses ¢ € N such that 90C; > 2*, and picks a random generator
g € G; and random o,y € Z,. It also generates g1, ..., ga¢, v, and Z where g; =
g, v =g and Z = e(gae+1,9)- The decryption key is dk = go‘wrl, and the
public key is PK = (g,91, .-, 92¢, 920425 ---, §a¢, v, Z, TCR), where TCR: G; — P
is a target collision resistant hash function and P = {S|S C {1, ..., 2¢},|S| = ¢}.
Encrypt(PK) picks a random r € Z,, sets K = Z" € Gg, computes S =
TCR(g"), and outputs (¢, K) where ¢ = (", (v - [];c5 92041-5)") € Gi. For
ciphertext ¥ = (Cyp,C1), Decrypt(dk,¢, PK) computes S = TCR(Cp), and

checks whether e(g, C1) < e(v-Iljes 92¢+1-5, Co). It outputs “L” if it is invalid,
or K = e(dk, Cy) otherwise. Security of this scheme can be proven by a straight-
forward combination of the proofs of Theorem 2 of this paper and Theorem 3.1



of [6]. Unfortunately, this scheme is not very advantageous to other schemes, but
it is still comparably efficient to other practical schemes (see Table 1).

7.4 A Generic Construction of CCA-Secure Broadcast Encryption

By using our methodology, it is also generically possible to construct a CCA-
secure BE scheme from CPA-secure one with public verifiability. The conversion
is fairly simple, and the resulting CCA-secure scheme can be practical. When
applying this to the BGW BE scheme, we can have a new CCA-secure BE scheme
with verifiability whose computational cost is slightly better than the previous
scheme [6]. More detailed explanation is given in the full version of this paper
[21].
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