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Abstract. Optimistic fair exchange (OFE) is a protocol for solving the
problem of exchanging items or services in a fair manner between two
parties, a signer and a verifier, with the help of an arbitrator which
is called in only when a dispute happens between the two parties. In
almost all the previous work on OFE, after obtaining a partial signature
from the signer, the verifier can present it to others and show that the
signer has indeed committed itself to something corresponding to the
partial signature even prior to the completion of the transaction. In some
scenarios, this capability given to the verifier may be harmful to the
signer. In this paper, we propose the notion of ambiguous optimistic fair
exchange (A-OFE), which is an OFE but also requires that the verifier
cannot convince anybody about the authorship of a partial signature
generated by the signer. We present a formal security model for A-OFE in
the multi-user setting and chosen-key model. We also propose an efficient
construction with security proven without relying on the random oracle
assumption.

1 Introduction

Optimistic Fair Exchange (OFE) allows two parties to fairly exchange
information in such a way that at the end of a protocol run, either both
parties have obtained the complete information from one another or none
of them has obtained anything from the counter party. In an OFE, there is
a third party, called Arbitrator, which only gets involved when a dispute
occurred between the two parties. OFE is a useful tool in practice, for
example, it can be used for performing contract signing, fair negotiation
and similar applications on the Internet. Since its introduction [1], there
have been many OFE schemes proposed [2,14,3,24,13,21,23,4,12,18]. For
all recently proposed schemes, an OFE protocol for signature typically
consists of three message flows. The initiator of OFE, Alice, first sends
a message σP , called partial signature, to the responder, Bob. The par-
tial signature σP acts as Alice’s partial commitment to her full signature
which is to be sent to Bob. But Bob needs to send his full signature to
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Alice first in the second message flow. After receiving Bob’s full signa-
ture, Alice sends her full signature to Bob in the third message flow. If
in the second message flow that Bob refuses to send his full signature
back to Alice, Alice’s partial signature σP should have no use to Bob,
so that Alice has no concern about giving away σP . However, after Bob
has sent his full signature to Alice while Alice refuses to send her full
signature in the third message flow, then Bob can ask the Arbitrator to
retrieve Alice’s full signature from σP after sending both σP and Bob’s
full signature to the Arbitrator. To the best of our knowledge, among
almost all the known OFE schemes, there is one common property about
Alice’s partial signature σP which has neither been captured in any of the
security models for OFE nor been considered as a requirement for OFE.
The property is that once σP is given out, at least one of the following
statements is true.

1. Everyone can verify that σP must be generated by Alice because σP ,
similar to a standard digital signature, has the non-repudiation prop-
erty with respect to Alice’s public key;

2. Bob can show to anybody that Alice is the signer of σP .

For example, in the schemes proposed in [12,18], the partial signature of
Alice is a standard signature, which can only be generated by Alice. In
many OFE schemes in the literature, Alice’s signature is encrypted under
the arbitrator’s public key, and then a non-interactive proof is generated
to show that the ciphertext indeed contains a signature of Alice. This is
known as verifiably encrypted signature. However, this raises the question
of whether a non-interactive proof that a signature is encrypted is really
any different from a signature itself, since it alone is sufficient to prove to
any third party that the signer has committed to the message [10].

This property may cause no concern in some applications, for example,
in those where only the full signature is deemed to have some actual
value to the receiving party. However, it may be undesirable in some
other applications. Since σP is publicly verifiable and non-repudiative,
in practice, σP may not be completely useless to Bob. Instead, σP has
evidently shown Alice’s commitment to the corresponding message. This
may incur some unfair situation, to the advantage of Bob, if Bob does not
send out his full signature. In contract signing applications, this could be
undesirable because σP can already be considered as Alice’s undeniable
commitment to a contract in court while there is no evidence showing
that Bob has committed to anything.

In another application, fair negotiation, the property above may also
be undesirable. Suppose after obtaining σP from Alice on her offer, Bob
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may show it to Charlie, who is Alice’s competitor, and ask Charlie for
making a better offer. If Charlie’s offer is better, then Bob may stop the
OFE protocol run with Alice indicating that Bob is unwilling to conclude
the negotiation with Alice, and instead carrying out a new OFE protocol
run with Charlie. Bob can play the same game iteratively until that no
one can give an even better offer. Then Bob can resolve the negotiation
by sending his service (i.e. his full signature as the commitment to his
service) to the highest bidder.

For making OFE be applicable to more applications and practical sce-
narios, in this paper, we propose to enhance the security requirements of
OFE and construct a new OFE scheme which does not have the problems
mentioned above. One may also think of this as an effort to make OFE
more admissible as a viable fair exchange tool for real applications. We
will build an OFE scheme which not only satisfies all the existing secu-
rity requirements of OFE (with respect to the strongest security model
available [18]), but in addition to that, will also have σP be not self-
authenticating and unable for Bob to demonstrate to others that Alice
has committed herself to something. We call this enhanced notion of OFE
as Ambiguous Optimistic Fair Exchange (A-OFE). It inherits all the for-
malized properties of OFE [12,18] and has a new property introduced:
signer ambiguity. It requires that a partial signature σP generated by Al-
ice or Bob should look alike and be indistinguishable even to Alice and
Bob.
(Related Work): There have been many OFE schemes proposed in the
past [2,3,24,13,21,23,4,12,18]. In the following, we review some recent ones
by starting from 2003 when Park, Chong and Siegel [24] proposed an OFE
based on sequential two-party multi-signature. It was later broken and
repaired by Dodis and Reyzin [13]. The scheme is setup-driven [25,26],
which requires all users to register their keys with the arbitrator prior to
any transaction. In [23], Micali proposed another scheme based on a CCA2
secure public key encryption with the property of recoverable randomness
(i.e., both plaintext and randomness used for generating the ciphertext
can be retrieved during decryption). Later, Bao et al. [4] showed that
the scheme is not fair, where a dishonest party, Bob, can obtain the
full commitment of another party, Alice, without letting Alice get his
obligation. They also proposed a fix to defend against the attack.

In PKC 2007, Dodis, Lee and Yum [12] considered OFE in a multi-
user setting. Prior to their work, almost all previous results considered
the single-user setting only which consists of a single signer and a single
verifier (along with an arbitrator). The more practical multi-user setting
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considers a system to have multiple signers and verifiers (along with the
arbitrator), so that a dishonest party can collude with other parties in an
attempt of cheating. Dodis et al. [12] showed that security of OFE in the
single-user setting does not necessarily imply the security in the multi-user
setting. They also proposed a formal definition of OFE in the multi-user
setting, and proposed a generic construction, which is setup-free (i.e. no
key registration is required between users and the arbitrator) and can be
built in the random oracle model [5] if there exist one-way functions, or
in the standard model if there exist trapdoor one-way permutations.

In CT-RSA 2008, Huang, Yang, Wong and Susilo [18] considered OFE
in the multi-user setting and chosen-key model, in which the adversary is
allowed to choose public keys arbitrarily without showing its knowledge
of the corresponding private keys. Prior to their work, the security of all
previous OFE schemes (including the one in [12]) are proven in a more
restricted model, called certified-key (or registered-key) model, which re-
quires the adversary to prove its knowledge of the corresponding private
key before using a public key. In [18], Huang et al. gave a formal security
model for OFE in the multi-user setting and chosen-key model, and pro-
posed an efficient OFE scheme based on ring signature. In their scheme,
a partial signature is a conventional signature and a full signature is a
two-member ring signature in additional to the conventional signature.
The security of their scheme was proven without random oracles.

Liskov and Micali [22] proposed an online-untransferable signature
scheme, which in essence is an enhanced version of designated confirmer
signature, with the extra property that a dishonest recipient, who is in-
teracting with a signer, cannot convince a third party that the signature
is generated by the signer. Their scheme is fairly complex and the signing
process requires several rounds of interaction with the recipient. Besides,
their scheme works in the certified-key model, and is not setup-free, i.e.
there is a setup stage between each signer and the confirmer, and the
confirmer needs to store a public/secret key pair for each signer, thus a
large storage is required for the confirmer.

In [14], Garay, Jakobsson and MacKenzie introduced a similar notion
for optimistic contract signing, named abuse-freeness. It requires that
no party can ever prove to a third party that he is capable of choosing
whether to validate or invalidate a contract. They also proposed a con-
struction of abuse-free optimistic contract signing protocol. The security
of their scheme is based on DDH assumption under the random oracle
model. Besides they did not consider the multi-user setting for their con-
tract signing protocol.
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(Our Contributions): In this paper we make the following contribu-
tions.

1. We propose the notion of Ambiguous Optimistic Fair Exchange (Am-
biguous OFE or A-OFE in short) which allows a signer Alice to gen-
erate a partial signature in such a way that a verifier Bob cannot
convince anybody about the authorship of this partial signature, and
thus cannot prove to anybody that Alice committed herself to any-
thing prematurely. Realizing the notion needs to make the partial
signature ambiguous with respect to Alice and Bob. We will see that
this requires us to include both Alice and Bob’s public keys into the
signing and verification algorithms of A-OFE.

2. For formalizing A-OFE, we propose a strong security model in the
multi-user setting and chosen-key model. Besides the existing security
requirements for OFE, that is, resolution ambiguity3, security against
signers, security against verifiers and security against the arbitrator,
A-OFE has an additional requirement: signer ambiguity. It requires
that the verifier can generate partial signatures whose distribution
is (computationally) indistinguishable from that of partial signatures
generated by the signer. We also evaluate the relations among the
security requirements and show that if a scheme has security against
the arbitrator and (a weaker variant of) signer ambiguity, then it
already has (a weaker variant of) security against verifiers.

3. We propose the first efficient A-OFE scheme and prove its security in
the multi-user setting and chosen-key model without random oracle. It
is based on Groth and Sahai’s idea of constructing a fully anonymous
group signature scheme [15,16] and the security relies on the decision
linear assumption and strong Diffie-Hellman assumption.

(Paper Organization): In the next section, we define A-OFE and pro-
pose a security model for it. We also show some relation among the for-
malized security requirements of A-OFE. In Sec. 3, we introduce some
preliminaries which are used in our construction, which is described in
Sec. 4. In Sec. 5, we prove the security of our scheme in the standard
model, and compare our scheme with other two related work.

2 Ambiguous Optimistic Fair Exchange

In an A-OFE scheme, we require that after receiving a partial signature
σP from Alice (the signer), Bob (the verifier) cannot convince others but
3 Resolution ambiguity is just another name for the ambiguity considered in [12,18].



6 Q. Huang, G. Yang, D. S. Wong and W. Susilo

himself that Alice has committed herself to σP . This property is closely
related to the non-transferability of designated verifier signature [19] and
the ambiguity of concurrent signature [11]. Similarly, we require that the
verification algorithm in A-OFE should also take as the public keys of
both signer and (designated) verifier as inputs, in contrast to that in the
traditional definition of OFE [1,2,12,18].

Definition 1 (Ambiguous Optimistic Fair Exchange). An ambigu-
ous optimistic fair exchange (A-OFE in short) scheme involves two users
(a signer and a verifier) and an arbitrator, and consists of the following
(probabilistic) polynomial-time algorithms:

– PMGen: On input 1k where k is a security parameter, it outputs a
system parameter PM.

– SetupTTP: On input PM, the algorithm generates a public arbitration
key APK and a secret arbitration key ASK.

– SetupUser: On input PM and (optionally) APK, the algorithm outputs
a public/secret key pair (PK, SK). For user Ui, we use (PKi, SKi)
to denote its key pair.

– Sig and Ver: Sig(M,SKi, PKi, PKj , APK) outputs a (full) signature
σF on M of user Ui with the designated verifier Uj, where message M
is chosen by user Ui from the message space M defined under PKi,
while Ver(M,σF , PKi, PKj , APK) outputs accept or reject, indicat-
ing σF is Ui’s valid full signature on M with designated verifier Uj or
not.

– PSig and PVer: They are partial signing and verification algorithms
respectively. PSig(M,SKi, PKi, PKj , APK) outputs a partial signa-
ture σP , while PVer(M,σP ,PK, APK) outputs accept or reject, where
PK = {PKi, PKj}.

– Res: This is the resolution algorithm. Res(M,σP , ASK,PK), where
PK = {PKi, PKj}, outputs a full signature σF , or ⊥ indicating the
failure of resolving a partial signature.

Note that we implicitly require that there is an efficient algorithm which
given a a pair of (SK, PK), verifies if SK matches PK, i.e. (SK, PK)
is an output of algorithm SetupUser. As in [12], PSig together with Res
should be functionally equivalent to Sig.

For the correctness, we require that for any k ∈ N, PM← PMGen(1k),
(APK, ASK) ← SetupTTP (PM), (PKi, SKi) ← SetupUser(PM, APK),
(PKj , SKj) ← SetupUser(PM, APK), and M ∈ M(PKi), let PK =



Ambiguous Optimistic Fair Exchange 7

{PKi, PKj}, we have the following

PVer(M, PSig(M, SKi, PKi, PKj , APK),PK, APK) = accept,

Ver(M, Sig(M, SKi, PKi, PKj , APK), PKi, PKj , APK) = accept, and

Ver(M, Res(M, PSig(M, SKi, PKi, PKj , APK), ASK,PK), PKi, PKj , APK) = accept.

2.1 Security Properties

(Resolution Ambiguity): The resolution ambiguity property requires
that any ‘resolved signature’ Res(M,PSig(M , SKi, PKi, PKj , APK),
ASK, {PKi, PKj}) is computationally indistinguishable from an ‘actual
signature’ generated by the signer, Sig(M,SKi, PKi, PKj , APK). It is
identical to ‘ambiguity’ defined in [12,18]. Here we just use another name,
in order to avoid any confusion, as we will define another kind of ambiguity
next.

(Signer Ambiguity): Informally, signer ambiguity means that given a
partial signature σP from a signer A, a verifier B should not be able to
convince others that σP was indeed generated by A. To capture this prop-
erty, we use the idea of defining ambiguity in concurrent signature [11]. We
require that B can generate partial signatures that look indistinguishable
from those generated by A. This is also the reason why a verifier should
also have a public/secret key pair, and the verifier’s public key should be
included in the inputs of PSig and Sig. Formally, we define an experiment
in which D is a probabilistic polynomial-time distinguisher.

PM← PMGen(1k)

(APK, ASK)← SetupTTP(PM)

(M, (PK0, SK0), (PK1, SK1), δ)← DORes(APK)

b← {0, 1}
σP ← PSig(M, SKb, PKb, PK1−b, APK)

b′ ← DORes(δ, σP )

success of D := [b′ = b ∧ (M, σP , {PK0, PK1}) 6∈ Query(D, ORes)]

where δ is D’s state information, oracle ORes takes as input a valid4

partial signature σP of user Ui on message M with respect to verifier Uj ,
i.e. (M,σP , {PKi, PKj}), and outputs a full signature σF on M under
PKi, PKj , and Query(D,ORes) is the set of valid queries D issued to the
resolution oracle ORes. In this oracle query, D can arbitrarily choose a
4 By ‘valid’, we mean that σP is a valid partial signature on M under public keys

PKi, PKj , alternatively, the input (M, σP , PKi, PKj) of ORes satisfies the condition
that PVer(M, σP , {PKi, PKj}, APK) = accept.
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public key PK without knowing the corresponding private key. However,
we do require that there exists a PPT algorithm to check the validity of
the two key pairs output by D, i.e. if SKb matches PKb for b = 0, 1,
or if (PKb, SKb) is a possible output of SetupUser. The advantage of D,
AdvSA

D (k), is defined to be the gap between its success probability in the
experiment above and 1/2, i.e. AdvSA

D (k) = |Pr[b′ = b]− 1/2|.

Definition 2 (Signer Ambiguity). An OFE scheme is said to be signer
ambiguous if for any probabilistic polynomial-time algorithm D, AdvSA

D (k)
is negligible in k.

Remark 1. We note that a similar notion was introduced in [14,22]. It’s
required that the signer’s partial signature can be simulated in an indis-
tinguishable way. However, the ‘indistinguishability ’ in [14,22] is defined
in CPA fashion, giving the adversary no oracle that resolves a partial
signature to a full one, while our definition of signer ambiguity is done in
the CCA fashion, allowing the adversary to ask for resolving any partial
signature except the challenge one to a full signature, which is comparable
to the CCA security of public key encryption schemes.

(Security Against Signers): We require that no PPT adversary A
should be able to produce a partial signature with non-negligible proba-
bility, which looks good to a verifier but cannot be resolved to a full signa-
ture by the honest arbitrator. This ensures the fairness for verifiers, that
is, if the signer has committed to a message with respect to an (honest)
verifier, the verifier should always be able to obtain the full commitment
of the signer. Formally, we consider the following experiment:

PM← PMGen(1k)

(APK, ASK)← SetupTTP(PM)

(PKB , SKB)← SetupUser(PM, APK)

(M, σP , PKA)← AOB
PSig,ORes(APK, PKB)

σF ← Res(M, σP , ASK, {PKA, PKB})
success of A := [PVer(M, σP , {PKA, PKB}, APK) = accept

∧ Ver(M, σF , PKA, PKB , APK) = reject

∧ (M, PKA) 6∈ Query(A, OB
PSig)]

where oracle ORes is described in the previous experiment, OB
PSig takes as

input (M,PKi) and outputs a partial signature on M under PKi, PKB

generated using SKB, and Query(A,OB
PSig) is the set of queries made by

A to oracle OB
PSig. In this experiment, the adversary can arbitrarily choose

a public key PKi, and it may not know the corresponding private key of
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PKi. Note that the adversary is not allowed to corrupt PKB, otherwise
it can easily succeed in the experiment by simply using SKB to produce
a partial signature under public keys PKA, PKB and outputting it. The
advantage of A in the experiment AdvSAS

A (k) is defined to be A’s success
probability.

Definition 3 (Security Against Signers). An OFE scheme is said
to be secure against signers if there is no PPT adversary A such that
AdvSAS

A (k) is non-negligible in k.

(Security Against Verifiers): This security notion requires that any
PPT verifier B should not be able to transform a partial signature into a
full signature with non-negligible probability if no help has been obtained
from the signer or the arbitrator. This requirement has some similarity
to the notion of opacity for verifiably encrypted signature [9]. Formally,
we consider the following experiment:

PM← PMGen(1k)

(APK, ASK)← SetupTTP(PM)

(PKA, SKA)← SetupUser(PM, APK)

(M, PKB , σF )← BOPSig,ORes(PKA, APK)

success of B := [Ver(M, σF , PKA, PKB , APK) = accept ∧
(M, ·, {PKA, PKB}) 6∈ Query(B, ORes)]

where oracle ORes is described in the experiment of signer ambiguity,
Query(B, ORes) is the set of valid queries B issued to the resolution oracle
ORes, and oracle OPSig takes as input a message M and a public key PKj

and returns a valid partial signature σF on M under PKA, PKj generated
using SKA. In the experiment, B can ask the arbitrator for resolving any
partial signature with respect to any pair of public keys (adaptively chosen
by B, probably without the knowledge of the corresponding private keys),
with the limitation described in the experiment. The advantage of B in
the experiment AdvSAV

B (k) is defined to be B’s success probability in the
experiment above.

Definition 4 (Security Against Verifiers). An OFE scheme is said
to be secure against verifiers if there is no PPT adversary B such that
AdvSAV

B (k) is non-negligible in k.

(Security Against the Arbitrator): Intuitively, an OFE is secure
against the arbitrator if no PPT adversary C including the arbitrator,
should be able to generate with non-negligible probability a full signa-
ture without explicitly asking the signer for generating one. This ensures
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the fairness for signers, that is, no one can frame the actual signer on a
message with a forgery. Formally, we consider the following experiment:

PM← PMGen(1k)

(APK, ASK∗)← C(PM)

(PKA, SKA)← SetupUser(PM, APK)

(M, PKB , σF )← COPSig(ASK∗, APK, PKA)

success of C := [Ver(M, σF , PKA, PKB , APK) = accept ∧
(M, PKB) 6∈ Query(C, OPSig)]

where the oracle OPSig is described in the previous experiment, ASK∗ is
C’s state information, which might not be the corresponding private key
of APK, and Query(C,OPSig) is the set of queries C issued to the oracle
OPSig. The advantage of C in this experiment AdvSAA

C (k) is defined to be
C’s success probability.

Definition 5 (Security Against the Arbitrator). An OFE scheme
is said to be secure against the arbitrator if there is no PPT adversary
C such that AdvSAA

C (k) is non-negligible in k.

Remark 2. In A-OFE, both signer UA and verifier UB are equipped with
public/secret key pairs (of the same structure), and UA and UB can gen-
erate indistinguishable partial signatures on the same message. If the se-
curity against the arbitrator holds for UA (as described in the experiment
above), it should also hold for UB. That is, even when colluding with UA

(and other signers), the arbitrator should not be able to frame UB for a
full signature on a message, if it has not obtained a partial signature on
the message generated by UB.

Definition 6 (Secure Ambiguous Optimistic Fair Exchange). An
A-OFE scheme is said to be secure in the multi-user setting and chosen-
key model if it is resolution ambiguous, signer ambiguous, secure against
signers, secure against verifiers and secure against the arbitrator.

2.2 Weaker Variants of the Model

In this section, we evaluate the relation between the signer ambiguity
and security against verifiers. Intuitively, if an A-OFE scheme is not se-
cure against verifiers, the scheme cannot be signer ambiguous because a
malicious verifier can convert with non-negligible probability a signer’s
partial signature to a full one which allows the verifier to win the signer
ambiguity game. For technical reasons, we first describe some weakened
models before giving the proof for a theorem regarding the relation.
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In our definition of signer ambiguity (Def. 2), the two public/secret key
pairs are selected by the adversary D. In a weaker form, the key pairs can
be selected by the challenger, and D is allowed to corrupt these two keys.
This is comparable to the ambiguity definition for concurrent signature
[11], or the strongest definition of anonymity of ring signature considered
in [6], namely anonymity against full key exposure. We can also define an
even weaker version of signer ambiguity, in which D is given two public
keys, PKA, PKB, the oracle access of OPSig which returns UA’s partial
signatures, and is allowed to corrupt PKB. We call this form of signer
ambiguity as weak signer ambiguity.

In the definition of security against verifiers (Def. 4), the verifier’s
public key PKB is adaptively selected by the adversary B. In a weaker
model, PKB can be generated by the challenger and the corresponding
user secret key can be corrupted by B. The rest of the model remains
unchanged. We call this as weak security against verifiers. Below we show
that if an OFE scheme is weakly signer ambiguous and secure against the
arbitrator, then it is also weakly secure against verifiers.

Theorem 1. In A-OFE, weak signer ambiguity and security against the
arbitrator (Def. 5) together imply weak security against verifiers.

Proof. Suppose that an A-OFE scheme is not weakly secure against veri-
fiers. Let B be the PPT adversary that has non-negligible advantage ε in
the experiment of weak security against verifiers and B make at most q
queries of the form (·, PKB) to oracle OPSig. Due to the security against
the arbitrator, B must have queried OPSig in the form (·, PKB). Hence the
value of q is at least one. Denote the experiment of weak security against
verifiers by Ex(0). Note that in Ex(0) all queries to OPSig are answered with
partial signatures generated using SKA. We now define a series of exper-
iments, Ex(1), · · · ,Ex(q), so that Ex(i) (i ≥ 1) is the same as Ex(i−1) except
that starting from the (q+1− i)-th query to OPSig up to the q-th query of
the form (·, PKB), they are answered with partial signatures generated
using SKB. Let B’s success probability in experiment Ex(i) be εi. Note
that ε0 = ε, and in experiment Ex(q) all queries of the form (·, PKB) to
OPSig are answered with partial signatures generated using SKB. Since B
also knows SKB (through corruption), it can use SKB to generate par-
tial signatures using SKB on any message. Therefore, making queries of
the form (·, PKB) to OPSig does not help B on winning the experiment if
answers are generated using SKB. It is equivalent to the case that B does
not issue any query (·, PKB) to OPSig. Hence guaranteed by the security
against the arbitrator, we have that B’s advantage in Ex(q) is negligible
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as B has to output a full signature without getting any corresponding
partial signature.

Since the gap, |ε0 − εq|, between B’s advantage in Ex(0) and that in
Ex(q) is non-negligible, there must exist an 1 ≤ i ≤ q such that |εi−1−εi| is
at least |ε0−εq|/q, which is non-negligible as well. Let i∗ be such an i. We
show how to make use of the difference of B’s advantage in Ex(i∗−1) and
Ex(i∗) to build a PPT algorithm D to break the weak signer ambiguity.

Given APK and PKA, PKB, D first asks its challenger for SKB,
and then invokes B on (APK, PKA, PKB). D randomly selects an i∗

from {1, · · · , q}, and simulates the oracles for B as follows. If B asks for
SKB, D simply gives it to B. The oracle ORes is simulated by D using
its own resolution oracle. If B makes a query (M,PKj) to OPSig where
PKj 6= PKB, D forwards this query to its own partial signing oracle, and
returns the obtained answer back to B. Now consider the `-th query of
the form (M,PKB) made by B to OPSig. If ` < q + 1− i∗, D forwards it
to its own oracle, and returns the obtained answer. If ` = q + 1 − i∗, D
requests its challenger for the challenge partial signature σ∗

P on M and
returns it to B. If ` > q +1− i∗, D simply uses SKB to produce a partial
signature on M . At the end of the simluation, when B outputs (M∗, σ∗

F ),
if B succeeds in the experiment, D outputs 0; otherwise, D outputs 1.

It’s easy to see that D guesses the correct i∗ with probability at least
1/q. Now suppose that D’s guess of i∗ is correct. If σ∗

P was generated
by D’s challenger using SKA, i.e. b = 0, the view of B is identical to
that in Ex(i∗−1). On the other side, if σ∗

P was generated using SKB, i.e.
b = 1, the view of B is identical to that in Ex(i∗). Let b′ be the bit
output by D. Since D outputs 0 only if B succeeds in the experiment,
we have Pr[b′ = 0|b = 0] = εi∗−1 and Pr[b′ = 0|b = 1] = εi∗ . Therefore,
the advantage of D in attacking the weak signer ambiguity over random
guess is∣∣∣∣Pr[b′ = b]− 1

2

∣∣∣∣ =

∣∣∣∣Pr[b′ = 0 ∧ b = 0] + Pr[b′ = 1 ∧ b = 1]− 1

2

∣∣∣∣
=

∣∣∣∣Pr[b′ = 0 ∧ b = 0] +
(
Pr[b = 1]− Pr[b′ = 0 ∧ b = 1]

)
− 1

2

∣∣∣∣
=

1

2

∣∣Pr[b′ = 0|b = 0]− Pr[b′ = 0|b = 1]
∣∣

≥ 1

2q
|εi∗−1 − εi∗ | ≥

1

2q2
|ε0 − εq|

which is also non-negligible. This contradicts the weak signer ambiguity
assumption. ut

Corollary 1. In A-OFE, signer ambiguity (Def. 2) and security against
the arbitrator (Def. 5) together imply weak security against verifiers.



Ambiguous Optimistic Fair Exchange 13

Letting an adversary select the two challenge public keys gives the adver-
sary more power in attacking signer ambiguity. Therefore, signer ambigu-
ity defined in Sec. 2.1 is at least as strong as the weak signer ambiguity.
Hence this corollary follows directly the theorem above.

3 Preliminaries

(Admissible Pairings): Let G1 and GT be two cyclic groups of large
prime order p. ê is an admissible pairing if ê : G1 × G1 → GT is a
map with the following properties: (1) Bilinear : ∀R,S ∈ G1 and ∀a, b ∈
Z, ê(Ra, Sb) = ê(R,S)ab; (2) Non-degenerate: ∃R,S ∈ G1 such that
ê(R, S) 6= 1; and (3) Computable: there exists an efficient algorithm for
computing ê(R,S) for any R,S ∈ G1.

(Decision Linear Assumption (DLN)[8]): Let G1 be a cyclic group
of large prime order p. The Decision Linear Assumption for G1 holds if
for any PPT adversary A, the following probability is negligibly close to
1/2.
Pr[F, H, W ← G1; r, s← Zp; Z0 ←W r+s; Z1 ← G1; d← {0, 1} : A(F, H, W, F r, Hs, Zd) = d]

(q-Strong Diffie-Hellman Assumption (q-SDH)[7]): The q-SDH prob-
lem in G1 is defined as follows: given a (q + 1)-tuple (g, gx, gx2

, · · · , gxq
),

output a pair (g1/(x+c), c) where c ∈ Z∗
p. The q-SDH assumption holds if

for any PPT adversary A, the following probability is negligible.

Pr
[
x← Z∗

p : A(g, gx, · · · , gxq

) = (g
1

x+c , c)
]

4 Ambiguous OFE without Random Oracles

In this section, we propose an A-OFE scheme, which is based on Groth
and Sahai’s idea of constructing a fully anonymous group signature scheme
[15,16]. Before describing the scheme, we first describe our construction
in a high level.

4.1 High Level Description of Our Construction

As mentioned in the introduction part, many OFE schemes in the lit-
erature follows a generic framework: Alice encrypts her signature under
the arbitrator’s public key, and then provides a proof showing that the
ciphertext indeed contains her signature on the message. To extend this
framework to ambiguous optimistic fair exchange, we let Alice encrypt
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her signature under the arbitrator’s public key and provide a proof show-
ing that the ciphertext contains either her signature on the message or
Bob’s signature on it. Therefore, given Alice’s partial signature, Bob can-
not convince others that Alice was committed herself to something, as he
can also generate this signature.

Our concrete construction below follows the aforementioned frame-
work, which is based on the idea of Groth in constructing a fully anony-
mous group signature scheme [15]. In more details, Alice’s signature con-
sists of a weakly secure BB-signature [7] and a strong one-time signature.
Since only the BB-signature is related to Alice’s identity, we encrypt it un-
der the arbitrator’s public key using Kiltz’ tag-based encryption scheme
[20], with the one-time verification key as the tag. The non-interactive
proof is based on a newly developed technique by Groth and Sahai [16],
which is efficient and doesn’t require any complex NP-reduction. The
proof consists of two parts. The first part includes a commitment to Al-
ice’s BB-signature along with a non-interactive witness indistinguishable
(NIWI) proof showing that either Alice’s BB-signature or Bob’s BB-
signature on the one-time verification key is in the commitment. The
second part is non-interactive zero-knowledge (NIZK) proof (of knowl-
edge) showing that the commitment and the ciphertext contains the same
thing. These two parts together imply that the ciphertext contains a BB-
signature on the message generated by either Alice or Bob. Both the
ciphertext and the proof are authenticated using the one-time signing
key. Guaranteed by the strong unforgeability of the one-time signature,
no efficient adversary can modify the ciphertext or the proof.

The NIWI proof system consists of four (PPT) algorithms, KNI , PWI ,
VWI and Xxk, where KNI is the key generation algorithm which outputs
a common reference string crs and an extraction key xk; PWI takes as
input crs, the statement to be proved x, and a corresponding witness w,
and outputs a proof π; VWI is the corresponding verification algorithm;
and Xxk takes as input crs and a valid proof π, outputs a witness w′.
The NIZK proof shares the same common reference string with the NIWI
proof. PZK and VZK are the proving and verification algorithms of the
NIZK proof system respectively. Due to the page limit, we refer readers
to [16] for detained information about the non-interactive proofs and to
[15] for an introduction to the building tools needed for our construction.

4.2 The Scheme

Now we propose our A-OFE scheme. It works as follows:
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– PMGen takes 1k and outputs PM = (1k, p, G1, GT , ê, g) so that G1

and GT are cyclic groups of prime order p; g is a random generator
of G1; ê : G1 ×G1 → GT is an admissible bilinear pairing; and group
operations on G1 and GT can be efficiently performed.

– SetupTTP: The arbitrator runs the key generation algorithm of the
non-interactive proof system to generate a common reference string
crs and an extraction key xk, i.e. (crs, xk)← KNI(1k), where crs =
(F,H, U, V,W,U ′, V ′,W ′). It also randomly selects K, L ← G1, and
sets (APK, ASK) = ((crs,K, L), xk), where F,H, K,L together form
the public key of the tag-based encryption scheme [20], and xk is the
extraction key of the NIWI proof system [15,16], which is also the
decryption key of the tag-based encryption scheme.

– SetupUser: Each user Ui randomly selects xi ← Zp, and sets (PKi, SKi)
= (gxi , xi).

– PSig: To partially sign a message m with verifier Uj , user Ui does the
following:
1. call the key generation algorithm of S to generate a one-time key

pair (otvk, otsk);

2. use SKi to compute a BB-signature σ on H(otvk), i.e. σ ← g
1

xi+H(otvk) ;
3. compute an NIWI proof π1 showing that σ is a valid signature

under either PKi or PKj , i.e. π1 ← PWI(crs, (ê(g, g), PKi, PKj ,
H(otvk)), (σ)), which shows that the following holds:

ê(σ, PKi · gH(otvk)) = ê(g, g) ∨ ê(σ, PKj · gH(otvk)) = ê(g, g)

4. compute a tag-based encryption ([20]) y of σ, i.e. y = (y1, y2, y3, y4,
y5)← E .Epk(σ, tag), where pk = (F,H, K,L) and tag = H(otvk);

5. compute an NIZK proof π2 showing that y and the commitment C
to σ in π1 contain the same σ, i.e. π2 ← PZK(crs, (y, π1), (r, s, t));

6. use otsk to sign the whole transcript and the message M , i.e.
σot ← S.Sotsk(M,π1, y, π2).

The partial signature σP of Ui on message M then consists of (otvk, σot,
π1, y, π2).

– PVer: After obtaining Ui’s partial signature σP = (otvk, σot, π1, y, π2),
the verifier Uj checks the following. If any one fails, Uj rejects; other-
wise, it accepts.
1. if σot is a valid one-time signature on (M,π1, y, π2) under otvk;
2. if π1 is a valid NIWI proof, i.e. VWI(crs, (ê(g, g), PKi, PKj , H(otvk)),

π1)
?= accept;

3. if π2 is a valid NIZK proof, i.e. VZK(crs, (y, π1), π2)
?= accept;
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– Sig: To sign a message M with verifier Uj , user Ui generates a partial
signature σP as in PSig, and set the full signature σF as σF = (σP , σ).

– Ver: After receiving σF on M from Ui, user Uj checks if PVer(M,σP ,

{PKi, PKj}, APK) ?= accept, and if ê(σ, PKi · gH(otvk)) ?= ê(g, g). If
any of the checks fails, Uj rejects; otherwise, it accepts.

– Res: After receiving Ui’s partial signature σP on message M from user
Uj , the arbitrator firstly checks the validity of σP . If invalid, it returns
⊥ to Uj . Otherwise, it extracts σ from π1 by calling σ ← Xxk(crs, π1).
The arbitrator returns σ to Uj .

5 Security Analysis

Theorem 2. The proposed A-OFE scheme is secure in the multi-user
setting and chosen-key model (without random oracle) provided that DLN
assumption and q-SDH assumption hold.

Intuitively, the resolution ambiguity is guaranteed by the extractabil-
ity and soundness of the NIWI proof of knowledge system. The signer
ambiguity and security against verifiers are due to the CCA security of
the encryption scheme. Security against signers and security against the
arbitrator are guaranteed by the (weak) unforgeability of BB-signature
scheme. Due to the page limit, we leave the detailed proof in the full
version of this paper.

Remark 3. In our construction, the signer uses its secret key to gener-
ate a BB-signature on a fresh one-time verification key, while the mes-
sage is signed using the corresponding one-time signing key. As shown
by Huang et al. in [17], this combination leads to a strongly unforgeable
signature scheme. It’s not hard to see that our proposed A-OFE scheme
actually achieves a stronger version of security against the verifier. That
is, even if the adversary sees the signer UA’s full signature σF on a mes-
sage M with verifier UB, it cannot generate another σ′

F on M such that
Ver(M,σ′

F , PKA, PKB, APK) = accept. The claim can be shown using
the proof given in this paper without much modification.

(Comparison): We note that schemes proposed in [14,22] have similar
properties as our ambiguous OFE, i.e. (online, offline) non-transferability.
Here we make a brief comparison with these two schemes. First of all,
our A-OFE scheme is better than them in terms of the level of non-
transferability. In [14,22], the non-transferability is defined only in the
CPA fashion. The adversary is not given an oracle for converting a partial
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signature to a full one. While in our definition of A-OFE, we define the
ambiguity in the CCA fashion, allowing the adversary to ask for resolving
a partial signature to a full one. Second, in terms of efficiency, our scheme
outperforms the scheme proposed in [22], and is slightly slower than [14].
The generation of a partial signature of their scheme requires linear (in
security parameter k) number of encryptions, and the size of a partial
signature is also linear in k. While in our scheme both the computation
cost and size of a partial signature are constant. The partial signature of
ousr scheme includes about 41 group elements plus a one-time verification
key and a one-time signature. Third, both our scheme and the scheme in
[14] only require one move in generating a partial signature, while the
scheme in [22] requires four moves. Fourth, in [22], there is a setup phase
between each signer and the confirmer, in which the confirmer generates
an encryption key pair for each signer. Therefore, the confirmer has to
store a key pair for each signer, leading to a large storage. While our
scheme and [14] don’t need such a phase. Fifth, in terms of security, our
scheme and [22] are provably secure without random oracles. But the
scheme in [14] is only provably secure in the random oracle model.
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