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Abstract. Edon80 is a recent stream cipher design that has advanced
to the third and last phase of the eSTREAM project. It has remained
unbroken and untweaked since it was designed and submitted to eS-
TREAM. It is now one of the 8 �nal hardware candidates. In this paper
we cryptanalyze the cipher by describing a key recovery attack. The com-
plexity of the attack is around 269 simple operations for a keystream of
similar length.

1 Introduction

Edon80 is a recent stream cipher design, described in [1], that was submitted
to the eSTREAM project. It uses a novel approach in stream cipher design,
concatenating 80 basic building blocks derived from 4 di�erent quasigroups of
order 4. A quasigroup is basically a Latin square, a very simple combinatorial
object.

The design has received a lot of attention and much work has been done
based on Edon80. Regarding security, Hong observed in [2] that with some small
probability, the period of the keystream sequence could be quite small. This was
further studied by the designers themselves in [3] and later also in the paper
[4]. However, this property could not be exploited in any kind of attack. A
theoretical treatment of the quasigroups used in Edon80 is given in [5]. Finally,
from an implementations point of view, it was shown in [6] that Edon80 can be
implemented using less than 3000 gates. Even though the eSTREAM project has
allowed tweaks, the Edon80 construction has remained untweaked since it was
designed and submitted to eSTREAM. However, due to the probability of short
periods, the designers has introduced a limitation in the number of keystream
bits that can be produced per key/IV pair. This limitation is 248 bits and was
proposed in [7], when entering the second phase of eSTREAM.

The small implementation and the fact that the construction has remained
untweaked are the main reasons for the success of Edon80 in eSTREAM � its
advancement to the third and last phase phase of the eSTREAM project. It is
now one of the 8 �nal hardware candidates.

In this paper we cryptanalyze the cipher by describing a key recovery attack.
The complexity of the attack is around 269 for a keystream of similar length.
The design philosophy is not completely broken. A design using, say, 160 con-
catenated quasigroup operations would be out of scope of the new attack. On



the other hand, such a change of the design would double the implementation
cost, making such a design much less interesting.

The new attack to be presented is based on exploiting some periodicity inside
the generator. Using the fact that some elements will repeat with large proba-
bility, we can build a kind of test to �nd out the correct value of the key bits
used at the end of the concatenation. This leads to a key recovery attack, where
we may vary some parameters and obtain a trade-o� between required length of
the received key stream and the computational complexity.

The paper is organized as follows. In Section 2 we describe in more detail the
stream cipher design Edon80. In Section 3 we summarize some previous work
relating to the security of Edon80. In Section 4 we then give the basic ideas of
the new attack, followed by a more detailed analysis in Section 5. In Section 6
we discuss how the attack can be e�ciently implemented. In Section 7 we verify
some of the claims by presenting simulation results. Finally, in Section 8 we
derive some possible attack complexities and then we conclude.

2 Description of Edon80

In this section we give a description of the Edon80 stream cipher. An additive
synchronous stream cipher is built around a keystream generator. A generator
takes a key K and an IV value (nonce) IV as its input and produces an arbitrary
long keystream sequence Z = z1, z2, z3, . . .. The keystream is then added to the
plaintext in the encryption phase.

The sizes of the key and IV in Edon80 are 80 bits and 64 bits, respectively.
The design of Edon80 is based on string transformation using 4 quasigroups of
order 4 denoted (Q, •j) (0 ≤ j ≤ 3). The internal updated state consists of 80
memory cells of two bits each. Each memory cell, referred to as an e-transformer
∗i (0 ≤ i ≤ 79), holds 2 bits representing a value between 0 and 3. The 80
e-transformers are connected in series and the result from ∗i is used as input to
∗i+1.

The 80 bit key K is divided into 40 2-bit values K = K0K1 . . .K39 each
represented as a value 0 ≤ Ki ≤ 3. The quasigroup (Q, ∗i), (0 ≤ i ≤ 79) used by
e-transformer ∗i is given by

(Q, ∗i)←
{

(Q, •Ki
) 0 ≤ i ≤ 39,

(Q, •Ki−40) 40 ≤ i ≤ 79.

The quasigroups used in Edon80 are given in Figure 1.
Let the value in ∗i at time t be denoted ai,t. Then the values are updated as

a0,0 = a0 ∗0 0,
a0,j = a0,j−1 ∗0 (j mod 4), 1 ≤ j,
ai,0 = ai ∗i ai−1,0, 1 ≤ i ≤ 79,
ai,j = ai,j−1 ∗i ai−1,j , 1 ≤ i ≤ 79, 1 ≤ j,

where ai denotes the initial value of ∗i for 1 ≤ i ≤ 79 at the beginning of the
keystream generation phase.



•0 0 1 2 3

0 0 2 1 3
1 2 1 3 0
2 1 3 0 2
3 3 0 2 1

•1 0 1 2 3

0 1 3 0 2
1 0 1 2 3
2 2 0 3 1
3 3 2 1 0

•2 0 1 2 3

0 2 1 0 3
1 1 2 3 0
2 3 0 2 1
3 0 3 1 2

•3 0 1 2 3

0 3 2 1 0
1 1 0 3 2
2 0 3 2 1
3 2 1 0 3

Fig. 1. The 4 quasigroups used in Edon80.

Summarizing, the in�nite period 4 string 0, 1, 2, 3, 0, 1, 2, 3, 0, . . . is trans-
formed by ∗0 and the resulting string is transformed by ∗1 etc. The keystream
is obtained by taking every second value produced by ∗79, see Figure 2.

∗i 0 1 2 3 0 1 2 3 0

∗0 a0 a0,0 a0,1 a0,2 a0,3 a0,4 a0,5 a0,6 a0,7 a0,8

∗1 a1 a1,0 a1,1 a1,2 a1,3 a1,4 a1,5 a1,6 a1,7 a1,8

...
...

...
...

...
...

...
...

...
...

...
∗79 a79 a79,0 a79,1 a79,2 a79,3 a79,4 a79,5 a79,6 a79,7 a79,8

Fig. 2. The quasigroup string e-transformation in keystream generation mode.

For simplicity, we adopt the notation Z = z1, z3, z5, . . . as the received
keystream, where

zt = a79,t t ≥ 0, t odd.

A schematic picture of Edon80 is given in Figure 3. Remember that only every
second output is used in the keystream.

0, 1, 2, 3, 0, . . . ∗0 ∗1 ∗2 ∗76 ∗77 ∗78 ∗79- - - - - - - - - keystream

Fig. 3. The keystream generator Edon80.

The initial state of Edon80, (a0, a1, . . . , a79), is determined by the key K and
the IV through an IV setup process. Exactly how this is done is not relevant in
our analysis and we refer to the design document [1] for a detailed description
of the IV setup. We can assume that the mapping from the 80-bit key and the
64-bit IV to the initial state a0, a1, . . . , a79 is a random mapping. However, the
attack will still be applicable even if the mapping would be shown to su�er from
some nonrandomness.

Edon80 is designed to be a hardware e�cient stream cipher. The hardware
description is slightly di�erent from the algorithmic description given above. In



order to output 1 bit/clock, the implementation uses a second 2-bit memory cell
in ∗i which stores the output from ∗i−1. Though, in [6] the authors demonstrated
an implementation which does not use this extra memory cell. The implemen-
tation required only a gate count of about 3000 but the output was decreased
to 1/80 bit/clock resulting in a throughput of just a few Mbit/s. However, this
small implementation cost shows that Edon80 is a very interesting candidate for
a stream cipher suitable for constrained environments.

3 Previous Analysis of Edon80

In this section we review the previous results and known properties of Edon80
that will be used in our cryptanalysis. The most important property that will
be exploited in the attack is the relatively short period of Edon80. In the design
document [1] it was stated that the expected average period of the keystream
is about 2103. In [2], Hong argued that there are many key/IV pairs that pro-
duce a keystream with undesirably short period. Referring to Figure 2, using
exhaustive search all d-row key/state pairs of period p = 4, 8 and 16 was found.
Extrapolating the results to 40 rows, and then repeating the same key for the
lower 40 rows, it was concluded that there are many key/IV pairs that produce
a keystream with relatively short period. As an example, it was claimed that
there is a 2−75 probability that a key/IV pair generates a keystream with period
261. In response to these results, the designers claimed in [3] that the values
given by Hong was actually underestimated and that the probability of gener-
ating a keystream with period less than 261 was 2−18.62. Thus, with a total of
279.62 bits we can expect to �nd a sequence with period less than 261. Further,
it was concluded that the average period of Edon80 is 291. A more detailed
investigation of the periods was given in [4]. Each e-transformer increases the
period of the incoming string by a factor 1, 2, 3 or 4. Let Xi denote the factor
by which e-transformer ∗i increases the period. Considering several consecutive
e-transformers, it was shown that the probability distribution for Xi converges
to the stationary distribution

X =
(

1 2 3 4
1
4

1
4

11
32

5
32

)
,

with expected value E(X) = 77
32 and variance σ2 = V (X) = 1079

1024 . Furthermore,
let 2m be the total number of e-transformers and let P2m be a random variable
for the period after 2m e-transformers. Then when m→∞, probability density
function (pdf) fP2m

can be approximated by the continuous function [4, section
2]

fP2m(s) =
1

0.701658s
√

2πm
exp

(
− (ln(s)− 1.535086m)2

0.984648m

)
, 0 < s <∞. (1)

We refer to [4] for more details. Despite the relatively high probability of short
periods, it has until now been unclear how to use this to obtain information
about the key.



4 A Key Recovery Attack � Basic Ideas

In this section we give the ideas behind our key recovery attack on Edon80. The
details are then given in Section 5. We assume a known plaintext scenario i.e.,
the keystream sequence Z = z1, z3, z5, . . . is known to the adversary. The basic
ideas behind the attack are based on the following properties of the cipher,

� The quasigroup (Q, •j) (0 ≤ j ≤ 3) used in e-transformer ∗i (0 ≤ i ≤ 79) is
completely determined by the key. For example, if we know which quasigroup
is used in the last e-transformer, we also know 2 key bits.

� The period of the string produced by ∗i can be expected to be moderately
small for small i. In fact, some internal values (output from e-transformers)
will repeat with large probability due to the periodicity.

We visualize the attack in Figure 4 by considering a matrix with elements ai,j ,
(0 ≤ i ≤ 79, t ≤ j ≤ t + u + v), u, v to be de�ned later. Every column here
corresponds to one speci�c time instance t. Also, the ith row corresponds to the
ith e-transformer. Thus we have 80 rows in the Edon80 description. A restriction
to the �rst B rows simply corresponds to an Edon instance with only B e-
transformers.

�� �� �� �� �� �� �� �� �� ��- - - - - - - - -- - - - - - - -

zt zt+2 zt+u+1 zt+u+3 zt+u+v

?

y1

? ? ? ? ? ? ?

- - - - - - - - -- - - - - - - -
? ?

y2

? ? ? ? ? ?

- - - - - - - - -
? ? ? ? ? ? ? ?

- - - - - - - -

yu- - - - - - - - -

? ? ? ? ? ? ? ?

- - - - - - - -
? ? ? ?

x1

?

x2

?

x3

?

xv

?

- - - - - - - - -
? ? ? ? ? ? ? ?

- - - - - - - -

- - - - - - - - -

? ? ? ? ? ? ? ?

- - - - - - - -
? ? ? ? ? ? ? ?

- - - - - - - - -- - - - - - - -

t t+1 t+2 t+u t+u+1 t+u+2 t+u+3 t+u+v

PB

?

6

B

Fig. 4. Visualization of the attack idea.



Looking at a speci�c value ai,j , this value is calculated from its neighbours
to the left and above. I.e., the value at position (i, j) will depend on all values
at positions (i′, j′) for i′ < i and j′ < j, i.e., all values above and to the left in
the matrix.

In order to set up the attack, we select the B top rows as one part (upper
part) and the remaining rows below as a second part (lower part) of the e-
transformers. Consider two vectors, X and Y of length v = |X| and u = |Y |
respectively,

X = (x1, x2, . . . , xv),
Y = (y1, y2, . . . , yu),

xi, yj ∈ {0, 1, 2, 3}, i = 1, 2, . . . v; j = 1, 2, . . . , u, with the values located as shown
in Figure 4. For Edon80, we then have B = 80 − u − 1. As can be seen, the
X = (x1, x2, . . . , xv) vector is simply v symbols coming out of the chain of B
e-transformers starting from some predetermined time. The Y = (y1, y2, . . . , yu)
can be characterized as the values needed to compute the internal state of the
second part of the e-transformers.

Each quasigroup transformation will increase the period of the initial string
by a factor of 1, 2, 3 or 4. Thus the period, denoted Pi, of the sequence produced
by ∗i is given by

Pi = 2µ13µ2 , (2)

for some µ1, µ2 ∈ Z. Let PB be the period of the sequence produced by the
upper part of the e-transformers, giving output corresponding to the vector
X = (x1, x2, . . . , xv). Then, the matrix corresponding to time instance t and time
instance t + kPB , k = 0, 1, 2, . . . will have the same values in the e-transformers
∗i for i ≤ B. More speci�cally, and which will be used in the attack, the vector

X will have the same value in all considered time instances.

Assume for a moment that the key bits used to determine the quasigroups
in the second part are known. With in total u + v values in the vectors X and
Y , we consider the (u + v)/2 known keystream symbols that are directly below
X and Y , see Figure 4 again. Using the knowledge of these keystream symbols,
the number of possible combinations of the two vectors X, Y will be reduced
from 4u+v to roughly 2u+v. The idea is to choose u and v such that v > u. This
means that not all X vectors will be possible in the set of possible X, Y pairs.
Thus, the outcome of this part is a set Γk such that

Γk = {X : there exists (X, Y ) matching zt+kPB
, zt+kPB+2, . . . zt+kPB+u+v}.

Finally, we combine this with the fact that the vector X = (x1, x2, . . . , xv)
will be the same at time instances t and t+kPB . This means that X must appear
in all sets Γk and hence in the intersection of them. The procedure should now
be clear.

For each choice of the 2u + 2 key bits used to de�ne the quasigroups in the
lower part, we determine the sets Γk, for k = 0, 1, 2, . . .. We take the intersection
between the sets obtained so far, and continue until the intersection is empty.
If we eventually receive an empty intersection, the chosen value of the key bits



is discarded. On the other hand, if at the end there is only one vector X in the
intersection, then we assume that we found the correct key bits. The number of
key bits that are guessed in this attack is 2u + 2. When we know these key bits,
the remaining part of the key could be exhaustively searched.

5 A More Detailed Analysis of the Attack

In this section we give a more detailed analysis of the di�erent parts and para-
meters used in the attack. The parameters that will be covered are

� Guessing the correct period PB .

� The length of the vectors X and Y .

� The number of time instances that has to be considered in order to discard
a wrong key candidate.

5.1 The Period PB

As stated in (2), the period of the sequence after B e-transformers have the form
PB = 2µ13µ2 for some µ1, µ2. It is clear that the X vector will repeat the same
values if the distance between two matrices as described in Figure 4 is a multiple
of the period. So we will assume a distance P ′

B and the repetition of the value
for the X vectors will be true if the actual period is a factor, i.e., if PB |P ′

B .
We denote the probability that PB |P ′

B by αP ′
B
. This value is, according to [4],

approximately calculated as

αP ′
B

=
∫ P ′

B

0

fP2m(s) ds, (3)

where fP2m
(s) is de�ned in (1).

Recall that Xi denoted the factor by which e-transformer ∗i increases the
period. In Section 3 we saw that the probability distribution for Xi converges to
the distribution

X =
(

1 2 3 4
1
4

1
4

11
32

5
32

)
.

This gives us a rough idea of the expected period. For example, if B = 64 we
can expect around 16 of the factors being 1, around the same number being
2, around 22 factors being 3, and around 10 factors being 4. So for B = 64
we can set P ′

B = 236 · 322 and there is a fairly large chance that PB |P ′
B . The

actual probability for di�erent values of the period deviated slightly from the
above since the probabilities are not as the asymptotic ones for low values of i.
However, it can all be computed numerically.



5.2 The Length of Vectors X and Y

Assuming that we have chosen a value B = 80 − u − 1 and an assumed period
P ′

B such that PB |P ′
B , we now consider the choice of v. In order to create a set

Γk where not all X vectors appear we need to choose v > u. We denote the
di�erence by d, hence

v = u + d.

The simplest approach is then to start at time t and move forward. We assign
all 42 possible values to y1, y2. We can then calculate everything below these
positions in Figure 4. As we already know the value of zt+2, only 4 of the possible
candidates for y1, y2 will survive. For each surviving value of y1, y2, we assign all
possible values for y3, y4, compute the values below and check against the known
value of zt+4. We will have 16 possibilities for the (y1, y2, y3, y4) vector. After
�nishing the Y vector we just continue in this fashion with xi, i = 1, . . . xv. The
set of possible assignments of (Y, X) is then 2u+v. The complexity of calculating
this set in this basic way is then roughly 2u+v. Finally, the Y values are stripped
o� and the result is the set Γk. In an actual implementation we can make the
constant factor in the algorithm very small. This will be described in more detail
in Section 6.

5.3 The Number of Intersections Needed to Discard a Key

Candidate

The total number of possible X vectors is 4v. However, in the algorithm, using
the knowledge of the keystream zt, the vector X can only take 2u+v values. Thus,
using v = u + d, only a fraction 1/2d of all values will be possible. Actually, in
practice it is slightly less because some X vectors may appear twice (for di�erent
Y vectors). If we put

4v ·
(

1
2d

)K

≈ 1,

we see that we need about K ≈ 2v
d sets Γk, k = 0, 1, . . . ,K − 1 to get an empty

intersection. At least, the average number is around 2v/d. As an example, for
the choice v = u + 2 (d = 2) there can be at most 25% of all the X vectors in
Γk. Since the number of possible X vectors is 4v we expect that we do not need
much more than v sets.

In general, a higher value of d will increase the computational complexity but
since the reduction of possible X values in an intersection is much higher, it will
lead to a smaller number of required intersections and hence a shorter required
keystream length.

5.4 Computational Complexity

Let us summarize the computational complexity of the attack. We assume �rst
a value B = 80− u− 1 and P ′

B such that PB |P ′
B . There is an error probability,

1− αP ′
B
that this assumption is not true.



Then we guess 2u + 2 key bits corresponding to the last u + 1 quasigroups
used. For each such key the complexity of checking it is then roughly 2u+v ·K.
Since v = u + d this results in a total complexity of about

24u+d+3 · u + d

d
.

After recovering 2u + 2 key bits one can either reconstruct the sequence after B
e-transformers and apply the same attack again, now with much less complexity;
or simply do an exhaustive key search on the remaining key bits.

6 Algorithmic Aspects

In this section we describe some algorithmic aspects of the attack and show that
the complexity is based on very simple operations, much faster than the oper-
ation of verifying a key candidate in exhaustive key search. The considerations
here relate to the part of the attack that calculates the Γk sets.

Let (aB+1,t, aB+2,t, . . . , a79,t) be the state of the lower part of Edon80 at time
t and denoted St. In Figure 4 this corresponds to a column starting below an xi

value.
In a straight forward algorithm we save all possible states St and the cor-

responding X vector. Each time a new a79,t (t even) is introduced, each state
St with corresponding X vector will produce 4 new states. Each new state will
have a corresponding X vector with 2 additional entries. Thus, at the end of the
algorithm, we will have 2u+v possible states and X vectors. We can note that
the last step is the most expensive step. It will cost C · 2u+v where C is the cost
for making 2u + 2 table lookups. This constant can be signi�cantly reduced by
using a slightly di�erent algorithm.

We can take advantage of the following observation. Since the length of the
state vector St is u + 1 there are in general 4u+1 possible values for the state
of the lower part of Edon80 at any time. However, looking at the attack as
illustrated in Figure 4, where we have a given keystream sequence zt, zt+2, . . .,
we observe that at any time instance (with a received keystream symbol) only
22du/2e di�erent states of the second part of Edon80 are possible.

This property comes from the fact that we know every second of the values
zt = a79,t. Knowing a79,t and a79,t+2 and allowing 4 possible values for a79,t+1

will give 4 possibilities for the pair (a77,t+2, a78,t+2). Knowing a79,t, a79,t+2 and
a79,t+4 and allowing 16 possibilities for (a79,t+1, a79,t+3) gives 16 possibilities for
the vector (a75,t+4, a76,t+4, a77,t+4, a78,t+4) etc.

We can from the known keystream compute all 2u possible states for times
t+u+1, t+u+3, . . .. We can then obtain a trellis by including all possible state
transitions from time t + u + 1 to t + u + 3 and so on. A state transition from
time t + u + 1 to t + u + 3 can be labelled by the values of (x1, x2) giving rise to
that transition. This way of modelling the lower part of Edon80 is useful when
we implement the algorithm for computing the Γk sets for a given choice of key
bits.



We can divide the X vector in two equally sized parts, X = (X1, X2), where
X1 = (x1, x2, . . . , xv/2) and X2 = (xv/2+1, xv/2+2, . . . , xv). We �rst assign Y and
compute possible values of Y as before. This is actually equivalent to computing
the state of the second part of Edon80 at time t + u, so when we continue
we do not keep the value of Y but instead we keep the state St at the time
we are considering. We continue as before, but only over the X1 vector. This
results in a set of possible X1 vectors and their ending states St+u+v/2. The

complexity of calculating this set is then C ·2u+v/2. Next, for every choice of the
2u possible states St+u+v/2 at time t + u + v/2, we assign all possible values for
xv/2+1, xv/2+2, . . ., and create a second set of all possible X2 vectors and their
starting states St+u+v/2. The complexity of calculating this second set is also

C · 2u+v/2. Thus, calculating the two sets is much faster than �nding Γk in the
straight forward algorithm.

The bottle neck in this algorithm is to create Γk from the two sets. This
is done by selecting all possible combinations of X1 and X2 where the ending
state of X1 and the starting state of X2 are the same. With the two sets sorted
according to the states St+u+v/2, the set Γk is easily obtained. Since the size
of Γk is about 2u+v this does not change the asymptotic complexity but the
constant term in the complexity is very small. Each operation consists of just
concatenating X1 and X2, a very simple operation.

The memory requirement in the algorithm is moderately small. We need
about 2u+v words, where each word represents an X vector.

7 Simulation Results

In order to verify the attack, it has been simulated on a reduced version of
Edon80. We have produced a keystream exactly as in Edon80 with the modi-
�cation that only 24 e-transformers was used, i.e., a variant logically denoted
Edon24. We have investigated the case when the assumed period P ′

B is such that
PB |P ′

B . The simulations target the number of possible values for the vector X
that are still possible after intersecting the k′ sets Γk, k = 0, 1, . . . , k′. Table 1
shows the average number of remaining elements for di�erent values of k′ when
v = u + 2, i.e., when d = 2. As stated in Section 5.3 we expect that we need
about v intersections of sets Γk. For all simulated values of u we have in average
only 0.1 possible value for the X vector left in Γk after v = u + 2 intersections.
This veri�es our claim. Table 2 shows the average number of remaining elements
when d = 6. As expected, the intersections produce an empty set with much
fewer sets Γk than in the case with d = 2.

Moreover, our implementation also always found the correct key and dis-
carded all false key candidates using our algorithm.

8 Estimating the Attack Complexity

As explained before, we have several parameters that we can choose, giving
di�erent parameters for the attack. Basically, there is a trade-o� between the



Table 1. The average number of possible values for X left in the intersection of Γk, k =
0, 1, . . . , k′ sets for di�erent choice of u, when d = 2.

|Y | = u

k′ 4 5 6 7 8 9

0 909.3 3597.7 14534.2 57953.3 232281.4 927796.6

1 201.6 788.9 3226.0 12823.0 51486.9 205105.3

2 45.8 172.3 716.5 2837.0 11407.7 45379.9

3 10.1 37.7 159.0 626.2 2526.2 10033.2

4 2.3 8.3 35.2 138.4 558.9 2223.5

5 0.5 1.9 7.8 30.6 124.2 493.0

6 0.1 0.4 1.7 6.8 27.7 109.2

7 0.0 0.1 0.4 1.5 6.1 23.9

8 0.0 0.0 0.1 0.3 1.3 5.4

9 0.0 0.0 0.0 0.1 0.3 1.1

10 0.0 0.0 0.0 0.0 0.1 0.2

11 0.0 0.0 0.0 0.0 0.0 0.1

12 0.0 0.0 0.0 0.0 0.0 0.0

required length of the received keystream and computational complexity of the
key recovery part. For example, choose d = 2 and u = 9 as simulated above,

Table 2. The average number of possible values for X left in the intersection of Γk, k =
0, 1, . . . , k′ sets for di�erent choice of u, when d = 6.

|Y | = u

k′ 4 5 6 7

0 16265.1 64310.8 260222.9 1040318.8

1 253.0 983.8 4036.7 16164.6

2 3.8 15.2 62.9 250.0

3 0.1 0.2 0.9 4.1

4 0.0 0.0 0.0 0.1

5 0.0 0.0 0.0 0.0

i.e. B = 70 in the Edon80 case, and an assumed period of P ′
B = 240 · 324. Then

the computational complexity is low, roughly 244 but the required keystream is
large, roughly 278 · 11, where the factor 11 comes from the fact that we need to
intersect at most 11+1 sets Γk. With the low computational complexity we can
of course increase the d parameter and reduce the required keystream to roughly
278. Finally, we must include the error probability. An error occurs if P ′

B is not
a multiple of the true period PB . We simply use (3) to estimate this probability.
A numerical calculation gives that the period is below 278 with probability more
than 1/2. There may be some possible periods below 278 which does not divide



P ′
B . On the other hand, we can try out di�erent (the most probable) forms of P ′

B

in our attack with only a slight increase in complexity. So here we can assume
that the error probability is about 1− αP ′

B
≈ 1/2.

Clearly, such a long received keystream sequence as 278 is not desirable,
even if the computational complexity is low. We also see that allowing the error
probability to be quite close to 1 might be bene�cial. We will then repeat the
attack α−1

P ′
B
times and the requirement is now to receive α−1

P ′
B
di�erent keystreams

(obtained from di�erent IV values). The computational complexity, T , grows to

T = α−1
P ′

B
· 24u+d+3 · u + d

d
.

Though in average we only need slightly less than K intersections, there will be
key candidates that need more intersections before they can be discarded. On
the other hand, it is not crucial that all wrong key candidates are discarded. If
we end up with a set up possible keys then these keys can be tested individually
at the end. This will not a�ect the computational complexity. With P ′

B · K
keystream bits, we will have K + 1 sets Γk, k = 0, 1, . . . ,K to intersect. This
will keep the probability of false alarm low. Thus, the number of keystream bits,
DIV , that are needed from each IV is given by

DIV = P ′
B ·

2u + 2d

d
.

The total number of keystream bits, Dtot, is given by

Dtot = α−1
P ′

B
· P ′

B ·
2u + 2d

d
.

The trade-o� parameters in the attack are u, d and P ′
B . The attack complex-

ities are all functions of these values. We consider two cases.

I There is no restriction on the amount keystream that can be generated by
one key/IV pair.

II We respect the limitation given in [7], i.e., only 248 keystream bits can be
generated before reinitialization with a new IV.

In Table 3 we tabulate some possible values of T , DIV and Dtot for the two
di�erent cases. With no restriction on the keystream per key/IV pair the para-
meter choice u = 13, d = 4 and P ′

B = 258 gives about 269 for both computational
complexity and total amount of keystream. We conclude that we have an attack
requiring a total of 269 received keystream bits and 269 simple operations to
recover the key.

If we respect the 248 limit, choosing parameters u = 9, d = 6 and P ′
B = 245

will allow us to recover the key with in total 272.4 keystream bits and 271.4

simple operations. In many situations it is di�cult to argue that we can have
a computational complexity that is lower than the number of keystream bits.
An adversary observing the keystream is likely to need at least one operation
per observed keystream bit. On the other hand, only very few keystream bits



Table 3. Attack complexity for various parameter choices.

Case u d P ′
B

αP ′
B

DIV Dtot T

9 6 260 2−9.18 262.3 271.5 255.5

13 2 254 2−10.9 257.9 268.8 270.8

I
13 4 258 2−7.72 261.1 268.8 268.8

15 2 256 2−7.73 260.1 267.8 275.8

7 10 246 2−26.1 247.8 273.9 267.9

9 6 245 2−25.1 247.3 272.4 271.4

II
9 8 245 2−25.1 247.1 272.2 273.2

11 4 245 2−22.7 247.9 270.6 275.6

are actually used in the attack. If the adversary can randomly access keystream
bits, the computational complexity can be allowed to be much smaller than the
keystream.

Comparing the attack to an exhaustive key search, we can note that an
exhaustive key search would require computing the key/IV setup consisting of
160 cycles and then additionally 80 cycles to get the 80 �rst output bits. Every
cycle must compute 80 quasigroup operations. So a software implementation
would require 240 · 80 quasigroup operations, i.e., more than 214 operations to
test one key. Thus, our attack requiring roughly 269 simple operations is about
225 times faster than a software implemented exhaustive key search.

9 Conclusion

An attack on Edon80 has been presented. It takes advantage of the relatively
short period inside the state of the cipher. By knowing that some values in the
internal state will repeat with high probability after a certain amount of state
updates, it was possible to determine several key bits used in the update of the
last part of the state. The required number of keystream bits as well as the total
complexity is around 269, if we allow each key/IV pair to generate about 261

keystream bits. If we consider the restriction put by the designers i.e., only 248

keystream bits can be produced by each key/IV pair, then the total complexity
is about 272 simple operations with about 247 bits from each key/IV pair.

Adding just a few more quasigroup operations to the chain of 80 is not enough
to counter the attack, but doubling this number to 160 would be su�cient to
resist the attack. However, such a modi�cation comes at the cost of doubling the
hardware (and the gate count).

We do not exclude the possibility of improving this attack by for example
�nding more e�cient ways of computing the intersection of Γk sets. Since we
are guessing a lot of key bits, there might be a possibility to do something more



e�cient. Some minor improvements to the described attack have already been
found, and will be described in the full version of this paper.
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