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and Alain Tapp1

1 Université de Montréal
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Abstract. We present the first protocol for the anonymous transmis-
sion of a quantum state that is information-theoretically secure against
an active adversary, without any assumption on the number of corrupt
participants. The anonymity of the sender and receiver, as well as the
privacy of the quantum state, are perfectly protected except with expo-
nentially small probability. Even though a single corrupt participant can
cause the protocol to abort, the quantum state can only be destroyed
with exponentially small probability: if the protocol succeeds, the state
is transferred to the receiver and otherwise it remains in the hands of
the sender (provided the receiver is honest).
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1 Introduction

In David Chaum’s classic dining cryptographers scenario [Cha88], a group of
cryptographers is having dinner at a restaurant and it is the case that either
one of them has anonymously paid the dinner bill or the NSA has paid. The
task that the cryptographers wish to accomplish is to find out which of the two
cases occurred, without revealing any additional information. The security of
Chaum’s protocol does not rely on any computational assumption, but only on
the cryptographers having access to pairwise private channels and to a broadcast
channel. A simple extension to this protocol allows a single participant, say Alice,
to broadcast a message to all the other participants in such a way that Alice’s
identity is information-theoretically protected.

But what if Alice wishes to send a private message to Bob (who is also sit-
ting at the dinner table), while ensuring the anonymity of both herself and of
Bob? This task is called anonymous message transmission. As an instance of
multiparty secure computation, such a protocol can be accomplished, assuming
pairwise private channels and a broadcast channel, as long as a majority of par-
ticipants are honest [RB89]. Recently, two of us [BT07] have given a protocol
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that requires pairwise private channels and a broadcast channel, and accom-
plishes anonymous message transmission without any assumption on the num-
ber of honest participants. The protocol, however, allows even a single corrupt
participant to cause an abort.

Our main contribution is to give the first information-theoretically secure
protocol for quantum anonymous transmission that tolerates any number of cor-
rupt participants. That is, our protocol allows Alice to send a quantum message
to Bob such that both Alice and Bob remain anonymous (no participant learns
the identity of Alice—even if Bob is corrupt—and the identity of Bob remains
known only to Alice), and the quantum message remains private (nothing about
it leaks to participants other than Bob, unless of course Bob is corrupt). The
anonymity of the sender and receiver, as well as the privacy of the quantum
message, are perfect except with exponentially small probability, regardless of
the behaviour of cheating parties, with no need to rely on any assumptions
other than the availability of a classical broadcast channel as well as private au-
thenticated quantum channels between each pair of participants. Our protocol
has features similar to the anonymous (classical) message transmission protocol
mentioned above: we can tolerate an arbitrary number of corrupt participants,
but any single corrupt participant can cause the protocol to abort. However, no
private information can be obtained by making the protocol abort.

Since Alice sends quantum information, we need to address a concern that did
not exist in the context of classical anonymous message transmission: the state
to be transmitted should never be destroyed even if the protocol aborts (unless
the receiver is corrupt, since in that case he can follow honestly the protocol until
the very end, and then destroy the successfully transmitted message!). Because
of the no-cloning theorem [WZ82], the sender cannot generally keep a backup
copy of the message before entering the protocol. Nevertheless, we accomplish
this safeguard as part of the main protocol with a simple and novel notion called
fail-safe teleportation. This notion ensures that if something went wrong with
the transmission of the state, its integrity is never at stake because the receiver
can always teleport it back to the sender in a way that does not compromise
anonymity.

1.1 Anonymity

Anonymity is a basic cryptographic concept whose goal is to hide the identity of
the sender or receiver of a message (or both). It is different from, but often com-
plementary to privacy, which ensures the confidentiality of a message. Examples
of anonymous tasks include sending an anonymous letter to one’s love, using
an email account with a pseudonym, accessing a web page through a trusted
identity proxy server or blind reviewing of a conference paper. Three approaches
to classical anonymity are generally considered. The first one requires the help
of a trusted third party that forwards messages between participants without
revealing the identity of the senders. Anonymizers [Boy97,GGK+99] belong to
this class. The second approach uses chains of untrusted servers that randomize
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the ordering of messages. This reordering prevents an outside observer from link-
ing the sender and the receiver of a particular message. The privacy of messages
is generally assured by a public-key cryptosystem. Chaum’s MixNets [Cha81] are
an instance of techniques using this approach. The third and last approach offers
information-theoretic security, assuming resources such as a broadcast channel
and pairwise private channels. Chaum’s dining cryptographers protocol [Cha88]
is the archetypical example of a protocol in this category.

1.2 Model

In our model, we suppose that each pair of participants shares a private authen-
ticated quantum channel, which means that a participant can send an authen-
ticated private message (quantum or classical) to any other participant. Such a
channel can be implemented if the participants share pairwise quantum channels
as well as classical secret keys. An extra tool is given to the participants under
the form of a (classical) broadcast channel. This channel guarantees that all par-
ticipants receive the same message from a publicly known sender, and that the
message is not modified while in transit.

Two security models are generally considered in secure multiparty compu-
tation: honest-but-curious and malicious. In the honest-but-curious model (also
called semi-honest), the participants are assumed to follow the protocol (thus be-
ing honest) but at the same time record all the information they have seen during
its execution (thus being curious). In this model, a protocol is said to be secure
against a collusion of participants if, by pooling their data, these participants
cannot learn more information than from their inputs and the output of the pro-
tocol alone. In the malicious model, participants may actively cheat and deviate
from the original prescription of the protocol. Cheaters can for instance try to
learn information about the input of honest participants or tamper with the
output of the protocol. Formal definitions can be found in Chapter 7 of [Gol04].
Both these models are neatly encapsulated by considering a central entity called
an adversary, which controls some of the participants, rendering them corrupt.
The adversary is passive if the corrupt participants are honest-but-curious, and
active if the corrupt participants are malicious. In this paper, we consider the
case of an active adversary that chooses the set of corrupt participants before
the execution of the protocol.

In the scenario that we consider, within a group of n participants, the
anonymous sender communicates a private quantum message to an anonymous
receiver. The sender is unknown to all participants and the receiver is unknown
to all participants except to the sender. We give the following definitions:

Definition 1 (Sender Anonymity). A protocol achieves sender anonymity if
it does not reveal any information concerning the identity of the sender to any
adversary. An exception concerns the receiver (or the adversary, if the receiver is
corrupt), who may legitimately learn something about the identity of the sender
by virtue of the contents of the transmitted message.
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Note that in particular, if the sender is corrupt, a protocol vacuously achieves
sender anonymity, and that sender anonymity requires that no adversary can
learn the identity of the sender, even if the receiver is corrupt.

Definition 2 (Receiver Anonymity). A protocol achieves receiver anonym-
ity if it does not reveal any information concerning the identity of the receiver
to any adversary beyond what could be legitimately learned by knowing for each
corrupt participant whether or not he is the receiver.

Note that in particular, if the sender or receiver is corrupt, a protocol vacuously
achieves receiver anonymity.

Definition 3 (Full Anonymity). A protocol achieves full anonymity if it does
not reveal any information about the relation between the identity of the sender
and receiver to any adversary beyond what could be legitimately learned by know-
ing for each corrupt participant whether or not he is the receiver.

Note that full anonymity implies sender and receiver anonymity and that if the
sender is corrupt, a protocol vacuously achieves full anonymity.
Remark. The asymmetry between the definitions of sender and receiver ano-
nymity stems from the fact that, contrary to the sender, the receiver does not
know at the onset of the protocol that such a role will be imparted upon him.

In what follows, we are only interested in protocols that are uncondition-
ally secure in the information-theoretic sense for the purpose of achieving full
anonymity. We place no limit on the number of corrupt participants. However,
our protocol could abort if even a single corrupt participant deviates from the
prescribed protocol. Even if the protocol aborts, full anonymity as well as mes-
sage privacy are never compromised, except with exponentially small probability.
Note that if we had some sort of guarantee that a strict majority of participants
is honest, then anonymous quantum message transmission could be implemented
as a special case of quantum secure multiparty computation [BCG+06].

1.3 Anonymity in the Quantum World

The first protocol based on quantum mechanics that allows the anonymous com-
munication of classical information was proposed by P. Oscar Boykin [Boy02].
In the case of a quantum message, Matthias Christandl and Stephanie Wehner
were first to define the concept of anonymous quantum message transmis-
sion and to give an explicit protocol for solving this task [Weh04,CW05], but
under the deus ex machina assumption that the n participants share ahead
of time entangled state |+n〉 = 1√

2
|0n〉+ 1√

2
|1n〉. (No mechanism is proposed

to verify the validity of that state.) Under that assumption, their protocol is
information-theoretically secure in terms of full anonymity, but malicious par-
ticipants can alter the transmitted state in a way that will not be detected by
the honest participants.
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One key notion introduced in the paper of Christandl and Wehner is that
of anonymous entanglement. Starting with the assumed n-party entangled
state |+n〉, the sender and the receiver end up sharing a two-party entangled
state |+2〉, better known as Bell State |Φ+〉 = 1√

2
|00〉+ 1√

2
|11〉, provided the

other parties follow the protocol honestly. This entanglement is anonymous
because the sender has chosen with which other party (the receiver) he shares
it, but the receiver has no information concerning the party with which he is
entangled. Moreover, the other parties have no information concerning who are
the two entangled parties (assuming the entangled parties are not corrupt).

A first attempt to accomplish quantum message transmission in the presence
of an unlimited number of corrupt participants without assuming that a trusted
state |+n〉 is shared between the participants before the onset of the protocol
was made by Jan Bouda and Josef Šprojcar [BŠ07], but in a public-receiver
model (the sender is anonymous but the receiver is public). The creation and
distribution of a |+n〉 state is an important part of their protocol. From there,
they attempt to establish semi-anonymous entanglement (the identity of one of
the entangled parties, the receiver, is public). However, careful analysis reveals
that an active adversary can proceed in such a way that the probability that
the protocol aborts becomes correlated with the identity of the sender, thus
compromising his anonymity. If the protocol requires the receiver to stay quiet
in order not to reveal whether or not the protocol has succeeded, it is true that
the anonymity of the sender is preserved. However, this is very different from
the model usually considered in secure multiparty computation, in which all the
participants learn at the end of the protocol whether or not it has succeeded.
More importantly, this approach makes it impossible to preserve the identity of
the sender whenever the receiver is corrupt. Indeed, if we wanted to cope with a
corrupt receiver and still preserve sender anonymity, this would require the need
to hide from the receiver himself whether or not the protocol has succeeded.
But if it were the case that the message itself (if received) did not convey any
information on the success of the protocol, then it would mean that it is no more
useful than a totally random state. Then, why bother send it at all?

Our own protocol is also based on the establishment of anonymous entangle-
ment between the sender and the receiver. However, compared to the protocol of
Christandl and Wehner, we do not need to assume an a priori shared |+n〉 state
and no malicious attempt at corrupting the intended final |Φ+〉 state between the
sender and the receiver can succeed (except with exponentially small probability)
without causing an abort. It follows that the intended state will be transmitted
faithfully unless the protocol aborts, in which case it will end up intact at the
sender’s by virtue of fail-safe teleportation (unless the receiver is corrupt). Com-
pared with the protocol of Bouda and Šprojcar, our receiver is anonymous and
the identity of the sender and the receiver cannot be correlated with the proba-
bility that the protocol aborts, allowing us to achieve full anonymity according
to Definition 3.
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2 Toolbox

We now survey the classical and quantum tools that are used in our main pro-
tocol. Two of us recently developed several classical secure multiparty proto-
cols [BT07]; we present below some of the relevant results, which will be used in
the next section. All protocols assume pairwise authentic private classical chan-
nels and a broadcast channel. They offer information-theoretic security and have
polynomial complexity in the number of participants as well as in a security pa-
rameter and, in the case of Theorem 4, in the number of bits in the transmitted
message. In all cases, the expression “exponentially close to 1” or “exponentially
small” means “exponentially in the security parameter”. We also review a key
result from [BCG+02].

Theorem 1 (Logical OR–[BT07]). There exists a secure multiparty protocol
to compute the logical OR of the participants’ input bits (one bit per participant).
If all participants are honest, the correct answer is computed with probability
exponentially close to 1. Misbehaving participants cannot cause the protocol to
abort. (Any refusal to participate when expected will cause the output to be 1.)
The only information an active adversary can learn through the protocol is if at
least one honest participant has input 1. No information about the number of
such participants or their identity is revealed.

Theorem 2 (Collision Detection–[BT07]). There exists a collision detection
protocol in which each participant inputs a bit. Let r denote the number of 1s
among these input bits. The protocol has three possible outcomes corresponding
to whether r = 0, r = 1 or r ≥ 2. If all participants are honest, the correct value
is computed with probability exponentially close to 1. No participant can make
the protocol abort, and an adversary cannot learn more than it could have learned
by assigning to all corrupt participants the input 0 and letting them follow the
protocol faithfully. A single corrupt participant can cause the output correspond-
ing to r ≥ 2 regardless of the other inputs (even if all the other inputs are 0).
Also, it is possible for a corrupt participant to set his input to 0 if all other par-
ticipants have input 0 (producing an r = 0 output) and to 1 otherwise (producing
an r ≥ 2 output). No other form of cheating is possible.

Although the collision detection protocol outlined above may look rather im-
perfect, it is actually just as useful as the ideal protocol for our purpose.

Theorem 3 (Notification–[BT07]). There exists a notification protocol in
which participants can notify other participants of their choosing. Each player’s
output is one private bit specifying if he has been notified at least once; this
value is correctly computed with probability exponentially close to 1. This is the
only information accessible through the protocol even in the case of an active
adversary.

According to [BT07], it is possible in general to invoke the notification pro-
tocol even if multiple senders want to notify several receivers. However, in the
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specific context of our use of this protocol for the purpose of anonymous quan-
tum message transmission, we forbid any honest participant to engage in the
above notification protocol without having previously caused output “r = 1” in
the collision detection protocol (Theorem 2). Similarly, no honest participant S
will ever engage in the anonymous message transmission protocol below unless
he has initially caused output “r = 1” in the collision detection protocol and has
notified a single other participant R.

Theorem 4 (Anonymous Message Transmission–[BT07]). There exists an
anonymous message transmission protocol in which a sender can transmit a clas-
sical message to a receiver such that even in the presence of an active adversary,
full anonymity is achieved and the privacy of the message is perfect. If all par-
ticipants are honest then the message is transmitted perfectly. Any attempt by a
corrupt participant to modify the message will cause the protocol to abort, except
with exponentially small probability.

In 2002, Howard Barnum, Claude Crépeau, Daniel Gottesman and Alain
Tapp presented a non-interactive scheme for the authentication of quantum mes-
sages [BCG+02]. The protocol also encrypts the quantum state to be transmitted
and is information-theoretically secure.

Theorem 5 (Quantum Authentication–[BCG+02]). There exists an infor-
mation-theoretically secure quantum authentication scheme to authenticate an
arbitrary quantum message |ψ〉 of length m with an encoding circuit (called au-
thenticate) and a decoding circuit (called decode) of size polynomial in m, which
uses a random private key of length 2m + 2s + 1 and has authenticated mes-
sage of length m + s. Let p the probability that the message is accepted. If the
message is accepted then let q be the probability of obtaining outcome |ψ〉 when
measuring in a basis containing |ψ〉. If the authenticated message is not modified,
then p = q = 1. Otherwise, pq+(1−p) > 1− m+s

s(2s+1) . The protocol also perfectly
preserves the privacy of the transmitted message.

3 Protocol for Anonymous Quantum Message
Transmission

In this section, we describe and analyse our protocol for anonymous quantum
message transmission. Our protocol allows an anonymous sender S to transmit
an m-qubit message |ψ〉 to an anonymous receiver R. We assume a broadcast
channel as well as an information-theoretically secure private and authenticated
quantum channel between each pair of participants (which can also be used, of
course, to transmit classical information). Our protocol achieves full anonymity
and message privacy, except with exponentially small probability. The security
proof for the protocol makes no assumption on the number of corrupt partici-
pants, but a single corrupt participant can make the protocol abort. However, if
the sender and the receiver are honest, the quantum message to be transmitted
will only be lost with exponentially small probability.
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Here is an informal description of the protocol. In the first step, the purely
classical collision detection protocol of Theorem 2 is performed to establish that
exactly one participant wants to send an anonymous quantum message. If this
is not the case, the protocol aborts. In case it is found that more than one
participant wants to speak, one might imagine alternative scenarios such as
asking each one of them to decide at random whether or not to skip their turn
and trying again the collision detection protocol until a single-sender occurrence
occurs. This will reveal information on the number of honest would-be senders
and may take too many trials if there are too many of them, so that more
sophisticated solutions might need to be considered. (Further elaboration on
this issue would go beyond the scope of this paper.)

In the next two steps, the participants collaborate to establish multiple
instances of a shared state |+n〉 = 1√

2
|0n〉 + 1√

2
|1n〉. Then, the sender desig-

nates a receiver by use of the notification protocol (Theorem 3).

If honest, the receiver will act differently from the other participants, but in
a way that is indistinguishable, so that his anonymity is preserved. The shared
instances of |+n〉 are then used to create anonymous entanglement between the
sender and the receiver. However, the anonymous entanglement could be imper-
fect if other participants misbehave. For this reason, the sender then creates a
sufficient number of instances of Bell state |Φ+〉. The possibly imperfect anony-
mous entanglement is used to teleport [BBC+93] an authenticated version of half
of each |Φ+〉. If this first teleportation is successful, the sender uses this newly
established perfect anonymous entanglement to teleport the quantum message
itself. Our fail-safe quantum teleportation protocol ensures that unless the receiver
is corrupt, the quantum message is never destroyed, except with exponentially
small probability: either it is safely transmitted to the receiver, or it comes back
intact at the sender’s.

In more detail, all classical communication from the sender to the receiver
is performed anonymously using the anonymous message transmission proto-
col (Theorem 4). To create anonymous entanglement, all participants must be
involved. One participant (who is chosen arbitrarily, for instance the first par-
ticipant in lexicographic order) creates a state |+n〉 and distributes one qubit to
each participant, keeping one for himself. Of course, this participant could be
corrupt, so that there is no guarantee that a proper |+n〉 has been distributed.
Moreover, a corrupt distributor could send different states to different honest
participants, in the hope that the future evolution of the protocol may depend
on who is the sender and who is the receiver. Foiling this threat constitutes
a key contribution of our protocol. For this reason, all participants verify this
state without destroying it in the next step. If the verification succeeds, the state
shared amongst all participants is guaranteed to be invariant under permutation
of the honest participants (Lemma 1), even though it could still not be a gen-
uine |+n〉 state. This ensures full anonymity. Furthermore, the behaviour of the
state |+n〉, when measured by all but two parties in the Hadamard basis, ensures
correctness (unless it aborts) as shown in Theorems 6 and 8.
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The full protocol is given as Protocol 1, where we denote by P the condi-
tional phase change defined by P |0〉 = |0〉 and P |1〉 = −|1〉. Note that if two
participants (such as the sender and the receiver) share an instance of Bell state
|Φ−〉 = 1√

2
|00〉 − 1√

2
|11〉, a single participant (such as the sender) can convert

this to a |Φ+〉 by locally applying the P operation. Note also that such a local
operation (performed by the sender) has no detectable effect that could be mea-
sured by the other participants (in particular the receiver), which ensures that
the anonymity of the sender is not compromised. It is easy to see that Pro-
tocol 1 has polynomial complexity in n (the number of participants), s (the
security parameter) and m (the length of the message).

Theorem 6 (Correctness). Assume all participants are honest in Protocol 1.
If more than one of them wishes to be a sender, this will be detected with probabil-
ity exponentially close to 1 in the first step. Otherwise, the message is transmitted
perfectly with probability exponentially close to 1, and the protocol can abort only
with exponentially small probability.

Proof. Even if all participants are honest, it is possible for collision detection or
notification to produce an incorrect output (the notification protocol may also
abort); however, this happens with exponentially small probability.

To ensure correctness of the protocol, we only have to verify that S and R
share a sufficient number of proper Bell states |Φ+〉 at the end of step 5. It is clear

Protocol 1 Anonymous Quantum Message Transmission
Let s be the security parameter and m be the length of quantum message |ψ〉. All
quantum communication is performed using the private authenticated quantum chan-
nels.

1. Multiple Sender Detection
1.1 The collision detection protocol (Theorem 2) is used to determine if one and

only one participant wants to be the sender. If not, the protocol aborts.
2. Entanglement Distribution

2.1 One arbitrarily designated participant creates 2m+s instances of the state |+n〉
and sends one qubit of each instance to each participant, keeping one qubit of
each instance for himself.

3. Entanglement Verification
For each of the 2m+ s instances:
3.1 Each participant makes n−1 pseudo-copies of his qubit by applying a control-

not with it as the source and a qubit initialized to |0〉 as the target. One such
pseudo-copy is sent to every other participant.

3.2 Each participant verifies that all the n qubits in his possession are in the
subspace spanned by {|0n〉, |1n〉}.

3.3 Each participant broadcasts the outcome of the previous step. If any outcome
is negative, the protocol aborts.

3.4 Each participant resets n− 1 of his qubits to |0〉 by performing n− 1 control-
not operations. These qubits are discarded and the one remaining is back to
the state distributed at step 2.
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Protocol 1 Anonymous Quantum Message Transmission (continued)
4. Receiver Notification

4.1 The participants execute the notification protocol (Theorem 3) in which only S
notifies a single R.

5. Anonymous Entanglement Generation
For each of the 2m+ s instances:
5.1 All participants except S and R measure in the Hadamard basis the qubit that

remains from step 3.
5.2 Each participant broadcasts the result of his measurement (S and R broadcast

two random dummy bits).
5.3 S computes the parity of all the bits received during the previous step (except

his own and that of R).
5.4 If the parity is odd, S applies P , the conditional phase change, to his remaining

qubit (the two qubits shared by S and R are now in Bell state |Φ+〉).
6. Perfect Anonymous Entanglement

6.1 S creates 2m instances of Bell state |Φ+〉. He keeps the first qubit of each pair;
let ρ be the rest of the pairs.

6.2 S creates a random classical key k of length 4m+ 2s+ 1, and computes ρ′ =
authenticate(ρ, k).

6.3 S performs a teleportation measurement on ρ′ using the anonymous |Φ+〉 states
generated during steps 2–5.

6.4 S uses the anonymous message transmission protocol (Theorem 4) to send k
and the teleportation bits to R.

6.5 R completes the teleportation and computes ρ = decode(ρ′, k). If the decoding
is successful, S and R share perfect anonymous entanglement (they share 2m
instances of |Φ+〉).

6.6 A logical OR is computed (Theorem 1): all players input 0 except R, who
inputs 1 if the authentication failed and 0 otherwise. If the outcome is 1, the
protocol aborts.

7. Fail-Safe Teleportation
7.1 S teleports the state |ψ〉 to R using the first m pairs generated in the previous

step. The teleportation bits are anonymously transmitted to R (Theorem 4).
If the communication succeeds, R terminates the teleportation.

7.2 A logical OR is performed (Theorem 1): all players input 0 except R, who
inputs 1 if the communication of the teleportation bits failed. If the outcome
is 0, the protocol succeeds. Otherwise, S and R do the following:

7.2.1 R performs a teleportation measurement using the remaining perfect
anonymous entanglement to teleport back to S the quantum state re-
sulting from partially failed step 7.1.

7.2.2 All participants broadcast 2m random bits, except R who broadcasts the
teleportation bits from above. The protocol continues even if one of the
participants refuses to broadcast.

7.2.3 S reconstructs |ψ〉 from his own teleportation bits from step 7.1 and R’s
teleportation bits received from the broadcast. The protocol aborts.



Anonymous Quantum Communication 11

that at the end of step 3, the participants share proper instances of state |+n〉
(since we are assuming in this theorem that they are honest). When S computes
the parity of the measurement outcomes in step 5, this corresponds to the parity
of the measurement results in the Hadamard basis of the state |+n〉, where
all but two qubits are measured. If the parity is even, S and R share |Φ+〉
and otherwise |Φ−〉, which is corrected by the sender by the application of the
conditional phase change P . ut

The following Lemma is necessary in the proof of anonymity and privacy
(Theorem 7).

Lemma 1 (Invariance Under Permutation of Honest Participants).
In Protocol 1, if step 3 succeeds, then the state of the system at the end of
the step is:

α|00 . . . 0〉H |ψ0〉C + β|11 . . . 1〉H |ψ1〉C , (1)

where H denotes the honest participants’ subsystem, C denotes the corrupt par-
ticipants’ subsystem, and α, β ∈ C are such that |α|2 + |β|2 = 1.

Proof. In the entanglement verification step, each honest participant sends a
pseudo-copy of his state to every other honest participant. Therefore, after a
single honest participant verifies that his qubits are in the subspace spanned
by {|0n〉, |1n〉}, we are already ensured that if the entanglement verification suc-
ceeds, the state will be of the form given above. Note that the corrupt partici-
pants’ subsystem C could span more than t qubits since they can bring arbitrary
ancillas into their cheating strategy. ut

Theorem 7 (Anonymity and Privacy). Regardless of the number of corrupt
participants and except with exponentially small probability, Protocol 1 achieves
full anonymity and privacy of the transmitted message |ψ〉.

Proof. We analyse the protocol step by step in order to prove the statement.
By virtue of Theorem 2, step 1 does not compromise the identity of the

sender, and it involves neither the receiver nor the quantum state to be trans-
mitted. Steps 2 and 3 are done without any reference to S or R and thus cannot
compromise their anonymity either. Furthermore, the state obtained at the end
of step 3 (if it does not abort) cannot be specifically correlated with any hon-
est participant even if some other participants are corrupt. More precisely, by
Lemma 1, the state is invariant under any permutation of the honest partici-
pants. This is crucial for the anonymity and privacy of the rest of the protocol.
In particular, it guarantees that the probability that the protocol aborts does
not depend on the identity of S or R, or any relationship between them. We
prove this below in the analysis of step 6.

The security of step 4 follows directly from the unconditional security of the
notification protocol (Theorem 3). However, if S fails to notify R in step 4 (this
happens with exponentially small probability), an adversary can surreptitiously
take over the role of the honest receiver in the rest of the protocol without being
detected. In that case, the adversary will violate the secrecy of the transmitted
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state, yet without compromising the sender and receiver anonymity beyond what
can be learned by inspecting the illegitimately received state.

In step 5, anonymous entanglement is generated. No information is revealed
to the adversary in this step since all communication is done by honest partici-
pants broadcasting random bits.

For step 6, all communication is done using the anonymous message trans-
mission protocol, which is secure according to Theorem 4, except in logical OR
computation at the end, which reveals the success or failure of the authentica-
tion part of the protocol. We now show that this last substep cannot reveal any
information on the identity of S or R. This is because the success or failure of
the authentication step is uncorrelated to the identity of S and R: by Lemma 1,
as far as the qubits are concerned, all honest participants are identical under
permutation. Thus the adversary has no strategy that would allow him to deter-
mine any information about the identity of S or R, or even about any relation
between them.

During step 7, all the bits sent from S to R are randomly and uniformly
distributed because they are the classical bits resulting from the teleportation
protocol, therefore they do not reveal any information about the identity of S.
A similar observation about the bits broadcast by R in the case that the very
last part of the protocol is executed ensures that R and S remain anonymous.

The privacy of the state |ψ〉 in the case that S successfully notified R in
step 4 (which happens with probability exponentially close to 1) is guaranteed
by the basic properties of teleportation. ut

Theorem 8 (Integrity). At the end of Protocol 1, if R is honest then the
state |ψ〉 is either in the possession of S or R, except with exponentially small
probability. Furthermore, |ψ〉 can only stay with S if the protocol has aborted.

Proof. If all participants are honest, then by Theorem 6, the state is in the pos-
session of R except with exponentially small probability. Otherwise, the protocol
might abort before step 7, in which case S still has |ψ〉. If the protocol reaches
step 7, due to the quantum authentication of step 6, S and R share 2m perfect
Bell states |Φ+〉 (with probability exponentially close to 1), which are used for
teleportation in step 7. If the first step of the fail-safe teleportation fails, then S
no longer has |ψ〉; however, the last three substeps of the protocol will always
succeed and S will reconstruct |ψ〉 (provided R is honest). Furthermore, it fol-
lows from the virtues of teleportation that if the protocol does not abort, the
state is no longer with S. ut

The reason why we specify in Theorem 8 that R must be honest is that a
corrupt R can destroy |ψ〉 by simply discarding it after having faithfully followed
the entire protocol. There remains one subtlety to mention: a corrupt R could
behave honestly until the last step. Then, he would input 1 in the logical OR
computation to force S to accept the teleportation back of the state. At that
point, the corrupt R could teleport back to S a fake state. As a result, S would
be fooled into thinking he still has custody of the original quantum state when,
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in fact, that state is in the hands of R. (In general, there will be no way for S
to know that this has happened.)

4 Conclusion and Discussion

We have presented the first information-theoretically secure protocol for quan-
tum communication between an anonymous sender and an anonymous receiver
that tolerates an arbitrary number of corrupt participants. In particular, this
means that no adversary can learn any information that will break the anonym-
ity of the sender or receiver. Our protocol also provides perfect privacy for the
quantum message and ensures that the quantum message is never destroyed, ex-
cept with exponentially small probability. The drawback of our protocol is that
any participant can disrupt the protocol and make it abort.
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