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Abstract. We present six multiparty protocols with information-theoretic
security that tolerate an arbitrary number of corrupt participants. All
protocols assume pairwise authentic private channels and a broadcast
channel (in a single case, we require a simultaneous broadcast channel).
We give protocols for veto, vote, anonymous bit transmission, collision
detection, notification and anonymous message transmission. Not assum-
ing an honest majority, in most cases, a single corrupt participant can
make the protocol abort. All protocols achieve functionality never ob-
tained before without the use of either computational assumptions or of
an honest majority.
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1 Introduction

In the most general case, multiparty secure computation enables n participants
to collaborate to compute an n-input, n-output function (one per participant).
Each participant only learns his private output which, depending on the function,
can be the same for each participant. Assuming that private random keys are
shared between each pair of participants, we known that every function can
be securely computed in the presence of an active adversary if and only if less
than n/3 participants are corrupt; this fundamental result is due to Michael Ben-
Or, Shafi Goldwasser and Avi Wigderson [BGW88] and David Chaum, Claude
Crépeau and Ivan Damg̊ard [CCD88]. When a broadcast channel is available,
the results of Tal Rabin and Michael Ben-Or [RB89] tell us that this proportion
can be improved to n/2.

Here, we present six specific multiparty computation protocols that achieve
correctness and privacy without any assumption on the number of corrupt parti-
cipants. Naturally, we cannot always achieve the ideal functionality, for example
in some cases, a single participant can make the protocol abort. This is the price
to pay to tolerate an arbitrary number of corrupt participants and still provide
information-theoretic privacy of the inputs.
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All protocols we propose have polynomial complexity in the number of par-
ticipants and the security parameter. We always assume pairwise shared private
random keys between each pair of participants, which allows pairwise private
authentic channels. We also assume a broadcast channel and, even though it
is a strong assumption, in some cases we need the broadcast to be simultane-
ous [CGMA85,HM05].

1.1 Summary of Results

Our main contributions are in the areas of elections (vote) and anonymity
(anonymous bit transmission and anonymous message transmission). Each pro-
tocol is an astute combination of basic protocols, which are also of independent
interest, and that implement parity, veto, collision detection and notification.

The main ingredient for our information-theoretically secure protocols is the
dining cryptographers protocol [Cha88] (see also Section 2), to which we add the
following simple yet powerful observation: if n participants each hold a private
bit of an n-bit string with Hamming weight of parity p, then any single partic-
ipant can randomize p by locally flipping his bit with a certain probability. It
is impossible, however, for any participant to locally derandomize p. In the case
of the anonymous message transmission, we also build on the dining cryptog-
raphers protocol by noting that a message that is sent can be ciphered with a
one-time pad by having one participant (the receiver) broadcast a random bit.
Any modification of the message can then be detected by the receiver with an
algebraic manipulation detection code [CFP07].

Vote. Our vote protocol (Section 4) allows n participants to conduct an m-
candidate election. The privacy is perfect but the protocol has the drawback that
if it aborts (any corrupt participant can cause an abort), the participants can still
learn information that would have been available had the protocol succeeded.
For this protocol, we require a simultaneous broadcast channel. It would be
particularly well-suited for a small group of voters that are unwilling to trust
any third party and who have no advantage in making the protocol abort.

Previous work on information-theoretically secure voting protocols include
[CFSY96], where a protocol is given in the context where many election au-
thorities are present. To the best of our knowledge, our approach is fundamen-
tally different from any other approaches for voting. It is the first to provide
information-theoretic security without requiring or trusting any third party,
while also providing ballot casting assurance (each participant is convinced that
their input is correctly recorded [AN06]) and universal verifiability (each par-
ticipant is conviced that only registered voters cast ballots and that the tally is
correctly computed [SK95]).

Anonymity. Anonymity is the power to perform a task without identifying the
participants that are involved. In the case of anonymous message transmission,
it is simply the capacity of the sender to transmit a private message to a specific
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receiver of his choosing without revealing either his identity or the identity of the
receiver. A number of protocols have been suggested for anonymous transmission.
Many of these rely on trusted or semi-trusted third parties as well as computa-
tional assumptions (for instance, the MIX-net [Cha81]). Here, we do not make
any such assumptions. The most notable protocol for anonymous transmission
in our context is the dining cryptographers protocol [Cha88], which allows a sin-
gle sender to anonymously broadcast a bit, and provides information-theoretical
security against a passive adversary. We present the protocol in a version that
implements the multiparty computation of the parity function in Section 2.

The case of multiple yet honest senders in the dining cryptographers pro-
tocol can be solved by time slot reservation techniques, as originally noted by
Chaum [Cha88]. But nevertheless, any corrupt participant can jam the chan-
nel. Techniques offering computational security to this problem have been pro-
posed [Cha88,WP89b]. Also, computational assumptions allow the removal of
the reliance on a broadcast channel [WP89a].

In our implementation of anonymous bit transmission (Section 5), we ele-
gantly deal with the case of multiple senders by allowing an unlimited amount
of participants to act as anonymous senders. Each anonymous sender can target
any number of participants and send them each a private bit of his choice. Thus,
the outcome of the protocol is, for each participant, a private list indicating how
many 0s and how many 1s were received. The anonymity of the sender and re-
ceiver and the privacy of all transmitted bits is always perfectly achieved, but
any participant can cause the protocol to abort, in which case the participants
may still learn some information about their own private lists.

We need a way for all participants to find out if the protocol has succeeded.
This is done with the veto protocol (Section 3), which takes as input a single bit
from each participant; the output of the protocol is the logical OR of the inputs.
Our implementation differs from the ideal functionality since a participant that
inputs 1 will learn if some other participant also input 1. We make use of this
deviation from the ideal functionality in further protocols.

In our fixed role anonymous message transmission protocol (Section 8), we
present a method which allows a single sender to communicate a message of
arbitrary length to a single receiver. To the best of our knowledge, this is the first
protocol ever to provide perfect anonymity, message privacy and integrity. For a
fixed security parameter, the anonymous message transmission is asymptotically
optimal.

Our final protocol for anonymous message transmission (Section 9) allows
a sender to send a message of arbitrary length to a receiver of his choosing.
While any participant can cause the protocol to abort, the anonymity of the
sender and receiver is always perfectly achieved. The privacy of the message is
preserved except with exponentially small probability. As far as we are aware, all
previous proposed protocols for this task require either computational assump-
tions or a majority of honest participants. The protocol deals with the case of
multiple senders by first executing the collision detection protocol (Section 6),
in which each participant inputs a single bit. The outcome only indicates if the



4 Anne Broadbent and Alain Tapp

sum of the inputs is 0, 1 or more. Compared to similar protocols called time slot
reservation [Cha88,WP89b], our protocol does not leak any additional informa-
tion about the number of would-be senders. The final protocol also makes use of
the notification protocol (Section 7) in which each participant chooses a list of
other participants that are to be notified. The output privately reveals to each
participant the logical OR of his received notifications. A special case of this
protocol is when a single participant notifies another single participant; this is
the version used in our final protocol to enable the sender to anonymously tell
to the receiver to act accordingly.

1.2 Common Features to All Protocols

All protocols presented in the following sections share some common features,
which we now describe. Our protocols are given in terms of multiparty computa-
tion with inputs and outputs and involve n participants, indexed by i = 1, . . . , n.
In the ideal functionality, the only information that the participants learn is their
output (and what can be deduced from it). Correctness refers to the fact that
the outputs are correctly computed, while privacy ensures that the inputs are
never revealed.

The protocols ensure correctness and privacy even in the presence of an
unlimited number of misbehaving participants. Two types of such behaviour
are relevant: participants who collude (they follow the protocol but pool their
information in order to violate the protocol’s privacy), and participants who
actively deviate from the protocol (in order to violate the protocol’s correctness
or privacy). Without loss of generality, these misbehaviours are modelled by
assuming a central adversary that controls some participants, rendering them
corrupt. The adversary is either passive (it learns all the information held by the
corrupt participants), or active (it takes full control of the corrupt participants).
We will deal only with the most general case of active adversaries, and require
them to be static (the set of corrupt participants does not change). A participant
that is not corrupt is called honest. Our protocols are such that if they do not
abort, there exists inputs for the corrupt participants that would lead to the
same output if they were to act honestly. If a protocol aborts, the participants
do not learn any more information than they could have learned in an honest
execution of the protocol. The input and output description applies only to
honest participants.

We assume that each pair of participants shares a private, uniformly random
string that can be used to implement an authentic private channel. The partici-
pants have access to a broadcast channel and in some cases, it is simultaneous.
A broadcast channel is an authentic broadcast channel for which the sender is
confident that all participants receive the same value and the receivers know
the identity of the sender. A simultaneous broadcast channel is a collection of
broadcast channels where the input of one participant cannot depend on the
input of any other participant. This could be achieved if all participants simul-
taneously performed a broadcast. In order to distinguish between the two types
of broadcast, we sometimes call the broadcast channel a regular broadcast. It
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is not uncommon in multiparty computation to allow additional resources, even
if these resources cannot be implemented with the threshold on the honest par-
ticipants (the results of [RB89] which combine a broadcast channel with n/2
honest participants being the most obvious example). Our work suggests that
a simultaneous broadcast channel is an interesting primitive to study in this
context.

In all protocols, the security parameter is s. Unfortunately, in many of our
protocols, a single corrupt participant can cause the protocol to abort. All proto-
cols run in polynomial time with respect to the number of participants, the secu-
rity parameter and the input length. Although some of the protocols presented
in this paper are efficient, our main focus here is in the existence of protocols
for the described tasks. We leave for future work improvement of their efficiency.
Finally, due to lack of space, we present only sketches of security proofs.

2 Parity

Protocol 1 implements the parity function and is essentially the same as the
dining cryptographers protocol [Cha88], with the addition of a simultaneous
broadcast channel. Note that if we used a broadcast channel instead, then the
last participant to speak would have the unfair advantage of being able to adapt
his input in order to fix the outcome of the protocol!

Protocol 1 Parity
Input: xi ∈ {0, 1}
Output: yi = x1 ⊕ x2 ⊕ · · · ⊕ xn

Broadcast type: simultaneous broadcast
Achieved functionality:
1) (Correctness) If the protocol does not abort, the output is the same as in the ideal
functionality.
2) (Privacy) No adversary can learn more than the output of the ideal functionality.

Each participant i does the following:
1. Select uniformly at random an n-bit string ri = r1

i r2
i . . . rn

i with Hamming weight
of parity xi.

2. Send rj
i to participant j using the private channel; keep bit ri

i to yourself.
3. Compute zi, the parity of the sum of all the bits received, including ri

i.
4. Use the simultaneous broadcast channel to announce zi.
5. After the simultaneous broadcast is finished, compute yi =

⊕n
k=1 zk. This is the

outcome of the protocol. If the simultaneous broadcast fails, abort the protocol.

Correctness and privacy follows from [Cha88]. Thus, any adversary can learn
only what can be deduced from the corrupt participant’s inputs and the out-
come of the protocol. Note that this means that the adversary can deduce the
parity of the inputs of the other participants. We will later use the two simple
observations that there is no way to cheat except by refusing to broadcast and
that any value that is broadcast is consistent with a choice of valid inputs. In
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the following protocols, we will adapt step 4 of the parity protocol to make
it relevant to the scenario, this will allow us to remove the assumption of the
simultaneous broadcast. We will also use the fact that if a single participant
either does not broadcast, or broadcasts a random bit in step 4 then the value
of the output of parity is known to this participant, but is perfectly hidden to
all other participants.

3 Veto

In this section, we build on the parity protocol to give a protocol for the secure
implementation of the veto function, which computes the logical OR of the
participant’s inputs (Protocol 2). As noted in Lemma 3, the protocol achieves a
variant of the ideal functionality: any participant can passively learn the value
of the logical OR of all other participants’ inputs. This deviation from the ideal
functionality is unavoidable since the two-participant ideal scenario is impossible
to implement in our model. We will use this deviation in the collision detection
protocol of Section 6.

Protocol 2 Veto
Input: xi ∈ {0, 1}
Output: yi = x1 ∨ x2 ∨ · · · ∨ xn

Broadcast type: regular broadcast
Achieved functionality:
1) (Reliability) No participant can make the protocol abort.
2) (Correctness) The outcome of the protocol is the outcome of the ideal functionality.
3) (Privacy) Any adversary learns the logical OR of the other participants’ inputs but
nothing more.

The n participants agree on n orderings such that each ordering has a different last
participant.
result← 0
For each ordering,

Repeat s times:
1. Each participant i sets the value of pi in the following way: if xi = 0 then pi = 0;

otherwise, pi = 1 with probability 1
2

and pi = 0 with complimentary probability.
2. The participants execute the parity protocol with inputs p1, p2, . . . pn, with the

exception that the simultaneous broadcast is replaced by a regular broadcast with
the participants broadcasting according to the current ordering (if any participant
refuses to broadcast, set the value result← 1). If the outcome of parity is 1, then
set result← 1 .

Output the value result.

Lemma 1. (Reliability) No participant can make the veto protocol abort.

Proof. If a participant refuses to broadcast, it is assumed that the output of the
protocol is 1. ut
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Lemma 2. (Correctness) If all participants in the veto protocol have input
xi = 0, then the protocol achieves the ideal functionality with probability 1. If
there exists a participant with input xi = 1 then the protocol is correct with
probability at least 1− 2−s.

Proof. The correctness follows by the properties of the parity protocol, with
the difference that we now have a broadcast channel instead of a simultaneous
broadcast channel. The case where all inputs are 0 is trivial. Let xi = 1 and
suppose that the protocol is executed until the ordering in which participant i
speaks last. Then with probability at least 1−2−s, in step 2 of veto, the output
of the protocol will be set to 1. ut

Lemma 3. (Privacy) In the veto protocol, the most an adversary can learn is
the logical OR of the other participants’ inputs. Additionally, this information is
revealed, even to a passive adversary, with probability at least 1− 2−s.

Proof. This follows from the properties of the parity protocol: for a given repeti-
tion, the adversary learns the parity of the honest participants’ pi’s, but nothing
else. Because of the way that the pi’s are chosen in step 1, if for any repetition,
this parity is odd, the adversary concludes that at least one honest participant
has input 1, and otherwise if all repetitions yield 0, then the adversary concludes
that with probability at least 1− 2−s, all the honest participant’s inputs are 0.
In all cases, this is the only information that is revealed; clearly, it is revealed
to any passive adversary, except with exponentially small probability. Note that
this information could be learned in the ideal functionality by assigning to all
corrupt participants the input 0. ut

4 Vote

The participants now wish to conduct an m-candidate vote. The idea of Proto-
col 3 is simple. In the veto protocol, each participant with input 1 completely
randomizes his input into the parity protocol, thus randomizing the output of
parity. By flipping the output of parity with probability only 1/n, the prob-
ability of the outcome being odd becomes a function of the number of such
flips. Using repetition, this probability can be approximated to obtain the exact
number of flips with exponentially small error probability. This can be used to
compute the number of votes for each candidate. Unfortunately, a corrupt par-
ticipant can randomize his bit with probability higher than 1/n, enabling him
to vote more than once. But since a participant cannot derandomize the parity,
he cannot vote less than zero times. Verifying that the sum of the votes equals n
ensures that all participants vote exactly once. Note that the protocol we present
is polynomial in m and not in the length of m.

Lemma 4. (Correctness) If the vote does not abort, then there exists an input
for each corrupt participant such that the output of the honest participants equals
the output of the ideal functionality, except with probability exponentially small
in s.
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Protocol 3 Vote
Input: xi ∈ {1, . . . , m}
Output: for k = 1 to m, y[k]i = |{xj | xj = k}|
Broadcast type: simultaneous broadcast
Achieved functionality:
1) (Correctness) If the protocol does not abort, then there exists an input xi for each
corrupt participant such that the protocol achieves the ideal functionality.
2) (Privacy) Even if the protocol aborts, no adversary can learn more that what it would
have learned by setting in the ideal functionality xi = 1 for all corrupt participants.

Phase A
For each candidate k = 1 to m,

For j = 1 to s,
1. Each participant i sets the value of pi in the following way: if xi 6= k, then pi = 0;

otherwise, pi = 1 with probability 1
n

and pi = 0 with complimentary probability.
2. The participants execute the parity protocol to compute the parity of p1, p2, . . . pn,

but instead of broadcasting their output bit zi, they store it as z[k]ji .
Phase B
All participants simultaneously broadcast z[k]ji (j = 1, 2, . . . , s). If the simultaneous
broadcast is not successful, the protocol aborts.
Phase C
To compute the tally, y[k]i, for each value k = 1 . . . m, each participant sets:
p[k]j =

⊕n
i=1 z[k]ji , σ[k]i =

∑s
j=1 p[k]j/s and if there exists an integer v such that

|σ[k]i − pv| < 1
2e2n

,

where pv = 1
2

(
n−2

n

)v
((

n
n−2

)v

− 1
)
, then y[k]i = v .

If for any k, no such value v exists, or if
∑m

k=1 y[k]i 6= n, the protocol aborts.

Proof. If all participants are honest, the correctness of the protocol is derived
from the Chernoff bound as explained in the Appendix. Assume now t corrupt
participants. Since the parity protocol is perfect, the only place participant i can
deviate from the protocol is by choosing pi with an inappropriate probability.
We first note that if the t corrupt participants actually transmit the correct
number of private bits in phase A and broadcast the correct number of bits
in phase B, then whatever they actually send is consistent with some global
probability of flipping.

We use again the fact that it is possible to randomize the parity but not to
derandomize it: if the corrupt participants altogether flip with a probability not
consistent with an integer number of votes, either the statistics will be incon-
sistent, causing the protocol to abort, or we can interpret the results as being
consistent with an integer amount of votes. If they flip with a probability con-
sistent with an integer different than t, then each y[k]i will be assigned a value,
but with probability exponentially close to 1, we will have

∑m
k=1 y[k]i 6= n and

the protocol will abort. ut

Lemma 5. (Privacy) In the vote protocol, no adversary can learn more than
what it would have learned by assigning to all corrupt participants the input 1 in
the ideal functionality, and this even if the protocol aborts.
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Proof. Assume that the first t participants are corrupt. No information is sent
in phase A or phase C. We thus have to concentrate on phase B where the
participants broadcast their information regarding each parity. For each execu-
tion of parity, the adversary learns the parity of the honest participant’s values,
pt+1⊕ pt+2⊕ . . .⊕ pn, but no information on these individual values is revealed.
The adversary can thus only evaluate the probability with which the other parti-
cipants have flipped the parity. But this information could be deduced from the
output of the ideal functionality, for instance by fixing the corrupt participants’
inputs to 1. ut

It is important to note that the above results do not exclude the possibility of
an adversary causing the protocol to abort while still learning some information
as stipulated in Lemma 5. This information could be used to adapt the behaviour
of the adversary in a future execution of vote.

In addition to the above theorems, it follows from the use of the simulta-
neous broadcast channel that an adversary cannot act in a way that a corrupt
participant’s vote depends an honest participant’s vote. In particular, it can-
not duplicate an honest participant’s vote. We claim that our protocol provides
ballot casting assurance and universal verifiability. This is straightforward from
the fact that participants do not entrust any computation to a third party: they
provide their own inputs and can verify that the final outcome is computed
correctly.

5 Anonymous Bit Transmission

The anonymous bit transmission protocol enables a sender to privately and
anonymously transmit one bit to a receiver of his choice. Protocol 4 actually
deals with the usually problematic scenario of multiple anonymous senders in
an original way: it allows an arbitrary number participants to act as anonymous
senders, each one targeting any number of participants and sending them each a
chosen private bit. Each participant is also simultaneously a potential receiver :
at the end of the protocol, each participant has a private account of how many
anonymous senders sent the bit 0 and how many sent the bit 1. Note that in
our formalism for multiparty computation, the privacy of the inputs implies the
anonymity of the senders and receivers.

The security of the anonymous bit transmission protocol follows directly
from the security of the vote and of the veto. Of course, the anonymous bit
transmission also inherits the drawbacks of these protocols. More precisely we
have the following:

Lemma 6. (Correctness) The anonymous bit transmission protocol com-
putes the correct output, except with exponentially small probability.

Proof. If the protocol does not abort, by Lemmas 2 and 4, except with expo-
nentially small probability, all bits are correctly transmitted. ut
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Protocol 4 Anonymous Bit Transmission
Input: xj

i ∈ {0, 1,⊥}, (j = 1, 2, . . . , n)
Output: yi = (|{xi

j | xi
j = 0}|, |{xi

j | xi
j = 1}|)

Broadcast type: regular broadcast
Achieved functionality:
1) (Correctness) If the protocol does not abort then the output of the protocol equals
the output of the ideal functionality.
2) (Privacy) The privacy is the same as in the ideal functionality.

For each participant j,
1. Execute the vote protocol with m = 3 as modified below. The three choices are:

0, 1, or ⊥ (abstain). Each participant i chooses his input to the vote according
to xj

i , his choice of message to be sent anonymously to participant j. The vote
protocol is modified such that:
(a) The output strings are sent to participant j through the private channel.
(b) Participant j computes the tally as in the vote and if this computation suc-

ceeds, he finds out how many participants sent him a 0, how many sent him
a 1 and how many abstained. If this occurs (and the results are consistent) he
sets his success bit, sj to 0. If the vote aborts, he sets sj to 1.

Execute the veto protocol, using as inputs the success bits sj . If the output of veto
is 0, then the anonymous bit transmission succeeds. Otherwise, the protocol fails.

Lemma 7. (Privacy) In the anonymous bit transmission protocol, the pri-
vacy is the same as in the ideal functionality.

Proof. Each execution of the vote protocol provides perfect privacy, even if the
protocol aborts. The final veto reveals some partial information about which
honest participants have been targeted by corrupt participants, but this does
not compromise the privacy of the protocol. ut

In Protocol 4, the use of the private channel in step (a) can be removed and
replaced by a broadcast channel. Since participant j does not broadcast, the
messages remain private. Another modification of the protocol makes it possible
to send m possible messages instead of just two but note that the complexity
is polynomial in m and not in the length of m. The transmission of arbitrarily
long strings is discussed in Sections 8 and 9.

6 Collision Detection

The collision detection protocol (Protocol 5) enables the participants to verify
whether or not there is a single sender in the group. This will be used as a pro-
cedure for the implementation of anonymous message transmission in Section 9.
Ideally, a protocol to detect a collision would have as inputs only xi ∈ {0, 1},
with outputs in {0, 1, 2}, depending on the sum of the inputs. Unfortunately we
do not know how to achieve such a functionality; instead, we allow any partici-
pant to choose to force output 2, which in our description, corresponds to using
input value 2.
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Protocol 5 Collision Detection
Input: xi ∈ {0, 1, 2}
Output: let r =

∑n
i=1 xi then yi = min{r, 2}

Broadcast type: regular broadcast
Achieved functionality:
1) (Reliability) No participant can make the protocol abort.
2) (Correctness) The output of the protocol equals the output of the ideal functionality.
3) (Privacy) An adversary cannot learn more than it could have learned by assigning
to all corrupt participants the input 0 in the ideal functionality.

Veto A
All participants perform the veto protocol with inputs min{xi, 1}. As in Lemma 3,
the participants note the value of the logical OR of the other participants’ inputs.
Veto B
If the outcome of veto A is 0, skip this step. Otherwise, each participant with input 1
in veto A will set bi = 1 if he detected in veto A that another participant had
input 1, or if xi = 2. All other participants set bi = 0. Then all participants perform a
second veto protocol with inputs bi.

Output: yi =


0 if the outcome of veto A is 0

1 if the outcome of veto A is 1 and the outcome of veto B is 0

2 if the outcome of veto A is 1 and the outcome of veto B is 1

Lemma 8. (Reliability) No participant can make the collision detection pro-
tocol abort.

Proof. This follows from the reliability of veto. ut

Lemma 9. (Correctness) In the collision detection protocol, the output equals
the output of the ideal functionality (except with exponentially small probability).

Proof. This follows from the correctness of the veto protocol. There are only
two ways a corrupt participant can deviate from the protocol. First, participant i
can set bi = 0 although xi ∈ {0, 1} and although in the first veto his input was 1
and a collision was detected. The outcome of veto B will still be 1 since another
participant with input 1 in veto A will input 1 in veto B. This is consistent with
input xi = 1. Second, participant i can set bi = 1 although xi = 0. If veto B is
executed, then we know that another participant has input 1 in veto A. This is
consistent with input xi = 1. ut

Note that we have raised a subtle deviation from the ideal protocol in the
above proof: we showed how it is possible for a corrupt participant to set his input
to 0 if all other participants have input 0 and to 1 otherwise. Fortunately, the
protocol is still sufficiently good for the requirements of the following sections.

Lemma 10. (Privacy) In the collision detection protocol, an adversary can-
not learn more than it could have learned by assigning to all corrupt participants
the input 0 in the ideal functionality.

Proof. In each veto, an adversary can only learn whether or not there exists
an honest participant with input 1. In all cases, this can be deduced from the
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outcome of the ideal functionality by setting the input to be 0 for all corrupt
participants. ut

7 Notification

In the notification protocol (Protocol 6), each participant chooses a list of other
participants to notify. The output privately reveals to each participant whether
or not he was notified, but no information on the number or origin of such
notifications is revealed. Because participants are notified one after another, our
protocol does not exclude adaptive behaviours.

Protocol 6 Notification
Input: ∀j 6= i, xj

i ∈ {0, 1}
Output: yi =

∨
j 6=i xi

j

Broadcast type: regular broadcast
Achieved functionality:
1) (Correctness) If the protocol does not abort then the output of the protocol equals
the output of the ideal functionality.
2) (Privacy) The privacy is the same as in the ideal functionality.

For each participant i:
Participant i sets yi ← 0.
Repeat s times:

1. Each participant j 6= i sets the value of pj in the following way: if xi
j = 0 then

pj = 0; otherwise, pj = 1 with probability 1
2

and pi = 0 with complimentary
probability. Let pi = 0.

2. The participants execute the parity protocol with inputs p1, p2, . . . pn, with the
exception that participant i does not broadcast his value, and the simultaneous
broadcast is replaced by a regular broadcast (if any participant refuses to broad-
cast, abort).

3. Participant i computes the outcome of parity, and if it is 1, yi ← 1 .

Lemma 11. The notification protocol achieves privacy and except with expo-
nentially small probability, the correct output is computed.

Proof. Privacy and correctness are trivially deduced from properties of the par-
ity protocol. ut

8 Fixed Role Anonymous Message Transmission

In Section 5, we presented an anonymous bit transmission protocol. The
protocol easily generalizes to m messages, but the complexity of the protocol
becomes polynomial in m. It is not clear how to modify the protocol to transmit
a string of arbitrary length, while still allowing multiple senders and receivers.
However, in the context where a single sender S is allowed, it is possible to
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implement a secure protocol for S to anonymously transmit a message to a
single receiver R, which we call fixed role anonymous message transmission
(Protocol 7). If the uniqueness condition on S and R is not satisfied, the protocol
aborts. The protocol combines the use of the parity protocol with an algebraic
manipulation detection code [CFP07], which we present as Theorem 1. Due to
lack of space, the encoding and decoding algorithms, F and G, respectfully,
are not repeated. For a less efficient algorithm that achieves a similar result,
see [CPS02].

Theorem 1 ([CFP07]). There exists an efficient probabilistic encoding algo-
rithm F and decoding algorithm G, where F : {0, 1}m → {0, 1}m+2(log(m)+s and
G : {0, 1}m+2(log(m)+s) → {⊥, {0, 1}m} such that for all w, G(F (w)) = w, and
any fixed combination of bit flips applied to w′ = F (w) produces a w′′ such that
G(w′′) =⊥, except with probability 2−s.

Protocol 7 Fixed Role Anonymous Message Transmission
Oracle: The sender S and receiver R know their identity
Input: S has input w ∈ {0, 1}m, all other players have no input
Output: R has output w, all other players have no output
Broadcast type: regular broadcast
Achieved functionality:
1) (Correctness) If the protocol does not abort, R obtains the correct message.
2) (Privacy) The only information that can be learned through the protocol is for R
to learn w.
3) (Oracle) If the oracle conditions are not satisfied (in the sense that more than one
honest participant believes to be the sender or the receiver), the protocol will abort.

1. S computes w′ = F (w)
2. The participants execute m + 2(log(m) + s) rounds of the parity protocol, with

participants using a broadcast instead of a simultaneous broadcast and using the
following inputs:
(a) S uses as input the bits of w′.
(b) R uses as input the bits of a random m-bit string, r.
(c) All other players use 0 as input for each round.

3. Let d be the output of the rounds of parity. R computes w′′ = d⊕ r.
4. R computes y = G(w′′).
5. A veto is performed: all players input 0 except R who inputs 1 if y =⊥ and 0

otherwise.
If the outcome of veto is 1, the protocol aborts. Otherwise, R sets his output to y.

Lemma 12. (Correctness, Privacy, Oracle) In the fixed role anonymous
message transmission protocol, the probability that R obtains as output a
corrupt message is exponentially small. The protocol is perfectly private, and if
the oracle conditions are not satisfied, it will abort (except with exponentially
small probability).
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Proof. Because of the properties of parity and the fact that the receiver broad-
casts a random bit, we have perfect privacy. Correctness is a direct consequence
of Theorem 1. Finally, if more than one participant acts as a sender or receiver,
then again by Theorem 1, the message will not be faithfully transmitted and the
protocol will abort in step 5, except with exponentially small probability. ut

Theorem 2. For a fixed security parameter, the fixed role anonymous mes-
sage transmission protocol is asymptotically optimal.

Proof. For any protocol to preserve the anonymity of the sender and the receiver,
each player must sent at least one bit to every other player for each bit of the
message. In the fixed role anonymous message transmission protocol, for
a fixed s, each player actually sends O(1) bits to each other player and therefore
the protocol is asymptotically optimal. ut

9 Anonymous Message Transmission

Our final protocol allows a sender to anonymously transmit message to a receiver
of his choosing. Contrary to the fixed role anonymous message transmis-
sion protocol of Section 8, anonymous message transmission (Protocol 8)
does not suppose that there is a single sender, but instead, it deals with poten-
tial collisions (or lack of any sender at all) by producing the outputs Collision
or No Transmission. The only deviation from the ideal functionality in the
protocol is that a single participant can force the Collision output. Note again
that in this protocol, the privacy of the input implies anonymity of the sender
and receiver.

Lemma 13. (Correctness) In the anonymous message transmission pro-
tocol, the output equals the output of the ideal functionality except with exponen-
tially small probability. The only exception is that a single participant can make
the protocol produce the output Collision.

Proof. This follows easily from the correctness of the collision detection, no-
tification and fixed role anonymous message transmission protocols. ut

Lemma 14. (Privacy) The anonymity of the sender and receiver are perfect. If
the protocol succeeds, except with exponentially small probability, participant r is
the only participant who knows w.

Proof. Perfect anonymity follows from the privacy of the collision detection,
notification and anonymous message transmission protocols. If the sender
successfully notifies the receiver in step 2, then the privacy of w is perfect. But
with exponentially small probability, the receiver will not be correctly notified,
and an adversary acting as the receiver will receive the message w. ut
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Protocol 8 Anonymous Message Transmission
Input: xi =⊥ or xi = (r, w) where r ∈ {1, . . . , n} and w ∈ {0, 1}m
Output: If |{xi | xi 6=⊥}| = 0 then yi = No Transmission and if |{xi | xi 6=⊥}| > 1
then yi = Collision. Otherwise let S be such that xS = (r, w) then all yi =⊥ except
yr = w.
Broadcast type: regular broadcast
Achieved functionality:
1) (Correctness) The output equals the output of the ideal functionality except that a
single participant can make the protocol produce the output Collision.
2) (Privacy) The privacy is the same as in the ideal functionality.

1. The participants execute the collision detection protocol; participants who have
input xi =⊥ use input 0 while all others use input 1. If the outcome of collision
detection is 1, continue, otherwise output No Transmission if the output is 0
and Collision if the output is 2.

2. Let the sender S be the unique participant with xS 6=⊥. The participants execute
the notification protocol, with S using input xr

S = 1 and xj
S = 0 otherwise. All

other participants use the input bits 0. Let R be the participant who computes as
output yR = 1. If the notification protocol fails, abort.

3. The participants execute the fixed role anonymous message transmission
protocol.

10 Conclusion

We have given six multiparty protocols that are information-theoretically secure
without any assumption on the number of honest participants. It would be in-
teresting to see if the techniques we used can be applied to other multiparty
functions or in other contexts.

Our main goal was to prove the existence of several protocols in a model that
does not make use of any strong hypotheses such as computational assumptions
or an honest majority. This being said, all the presented protocols are reasonably
efficient: they are all polynomial in terms of communication and computational
complexity and in one case, asymptotically optimal.
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A Proof of Correctness for Protocol 3

Lemma 15. (Correctness) If all participants are honest in Protocol 3 (vote),
then the output is correct, except with probability exponentially small in s.
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Proof. We fix a value k and suppose that v participants have input xi = k.
Thus we need to show that in the vote, y[k]i = v, except with probability
exponentially small in s.

We now give the intuition behind phase C of the vote. Let pv be the prob-
ability that p[k]j =

⊕n
i=1 z[k]ji = 1. For v ≤ n, we have p0 = 0, p1 = 1

n and
pv+1 = pv

(
1− 1

n

)
+ (1− pv) 1

n . Solving this recurrence, we get

pv =
1
2

(
n− 2

n

)v ((
n

n− 2

)v

− 1
)

. (1)

Thus, the idea of phase C of the vote is for the participants to approximate pv

by computing σ[k]i =
∑s

i=1 p[k]j/s. If the approximation is within 1
2e2n of pv,

then the outcome is y[k]i = v. We first show that if such a v exists, it is unique.
Clearly, for v < n, we have that pv+1 > pv. We also have limn→∞ pn =

1
2 −

1
2e2 . Thus the difference between pv+1 and pv is:

pv+1 − pv = pv

(
1− 1

n

)
+ (1− p)

1
n
− pv (2)

=
1− 2pv

n
>

1− 2pn

n
>

1
e2n

(3)

Hence if such a v exists, it is unique. We now show that except with proba-
bility exponentially small in s, the correct v will be chosen. Let X =

∑s
j=1 p[k]j

be the sum of the s executions of parity, with µ = spv the expected value of X.
The participants have computed σ[k]i = X/s .

By the Chernoff bound, for any 0 < δ ≤ 1,

Pr[X ≤ (1− δ)µ] < exp(−µδ2/2) (4)

Let δ = 1
2e2npv

. We have

Pr[X ≤ µ− s

2e2n
] < exp(− s

8e4n2pv
) (5)

and so
Pr[σ[k]i − pv ≤

−1
2e2n

] < exp(− s

8e4n2pv
) (6)

Similarly, still by the Chernoff bound, for any δ < 2e− 1,

Pr[X > (1 + δ)µ] < exp(−µδ2/4) (7)

Let δ = 1
2e2npv

and we get

Pr[X > µ +
s

2e2n
] < exp(

−s

16e4n2pv
) (8)

and so
Pr[σ[k]i − pv >

1
2e2n

] < exp(
−s

16e4n2pv
) (9)

Hence the protocol produces the correct value for y[k]i, except with probability
exponentially small in s. ut


