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Abstract. We develop a new multi-party generalization of Naor-Nissim indi-
rect indexing, making it possible for many participants to simulate a RAM ma-
chine with only poly-logarithmic blow-up. Our most efficient instantiation (built
from length-flexible additively homomorphic public key encryption) improves
the communication complexity of secure multi-party computation for a number
of problems in the literature. Underlying our approach is a new multi-party vari-
ant of oblivious transfer which may be of independent interest.
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1 Introduction

Naor-Nissim indirect indexing [24] allows two parties to privately access an ar-
ray at a shared index. We develop a multiparty generalization of Naor-Nissim
indirect indexing, and show that our methods have many cryptographic applica-
tions. For example, we can transform any non-private multiparty protocol into a
private one, in a manner that preserves its communication efficiency. Further, we
can construct a multiparty generalization of Naor-Nissim circuits with look-up
tables [24], enabling any number of parties to privately and obliviously simulate
a RAM machine with only polylogarithmic overhead. The tools we build also
yield automatic generalizations and efficiency improvements for several other
protocols, including those for secure distributed constraint satisfaction [34, 35,
39, 29] and private stable matching [18, 11].

Underlying our techniques is a useful multiparty generalization of oblivious
transfer (mOT), which may be of independent interest. In mOT, the role of the
chooser is divided among many participants, each of whom holds a share of an
input and receives a share of the output. We define this primitive and its related
security notions, and provide two main constructions. Our first construction is
generic, and can be built from black-box access to any ordinary two-party obliv-
ious transfer. Our second construction is highly efficient and uses length-flexible
additively homomorphic public key encryption [8, 9].



The paper is organized as follows. In Section 2, we define our multiparty
generalization of Naor-Nissim indirect indexing. In Section 3, we show how
this tool yields multiparty generalizations of existing protocols and efficiency
improvements in existent multiparty protocols. In Section 4, we reduce the con-
struction of multiparty indirect indexing to that of a simpler protocol, which can
be seen as a multiparty variant of the well-known oblivious transfer primitive.
In Section 5, we provide an efficient construction for this new protocol.

1.1 Background and Related Work

General secure multiparty computation (e.g., see [14, 15]) can be used to pri-
vately implement the functions of interest in our paper, though rather ineffi-
ciently. Particularly, the communication complexity of such a construction for
our mOT function would be linear in the size of the database. We are most in-
terested in protocols with sublinear communication complexity.

Ostrovsky and Shoup [31] design communication-efficient protocols for the
case where the database is shared between k servers and the index to be ac-
cessed is held by a single chooser. Only the chooser will learn the element in
this position. Our setting is more general, as the index and final output cannot be
learned by any one party, and are instead shared. As a result, our protocols auto-
matically give new constructions for the problem considered by Ostrovsky and
Shoup. Their goal, however, is information-theoretic security, while we work in
the computational setting.

Naor and Pinkas [26] introduce distributed oblivious transfer which dis-
tributes the task of the database among multiple servers to compute the standard
oblivious transfer functionality. Unconditional security is guaranteed as long a
limited number of these participants do not collude. Unlike our mLUT protocol,
the database is not shared explicitly between the servers. Instead, the database
sends these servers a “transfer function,” which allows each to compute a value
related to the original database. From these values, the chooser can compute the
original desired value in the database.

Barkol and Ishai [2] design a communication-efficient secure multiparty
protocol in which m parties share an input x, and all hold the same constant-
depth circuit C. Parties then privately compute C(x). Let x = σ be an index
shared between the parties and let circuit C hard-code elements of a database
∆ and return the x-th element as its output. Our construction is different in the
sense that the database and the final output are not known to any single party and
are shared instead. These are crucial properties that we need in order to securely
implement multiparty circuits with look-up tables.

Since its proposal by Rabin [33], oblivious transfer has been a widely stud-
ied primitive and many variants, reductions, and applications have been con-



sidered. Even, Goldreich and Lempel [10] formalized 1-out-of-2 OT as a gen-
eralization of Rabin’s OT. This was further generalized by Brassard, Crépeau
and Robert [4] into 1-out-of-n OT, under the name “all-or-nothing disclosure of
secrets.” We believe that the mOT primitive may be of independent interest. Gol-
dreich and Vainish [17] and Killian [20] show that OT is a complete primitive in
the sense that two parties can compute any circuit securely using only blackbox
access to OT. Goldreich [15] provides a nice presentation of the completeness
of OT using a linear (in the circuit size) number of invocations of 1-out-of-4
two-party OT. Our mOT primitive directly translates this result to the case of
general multiparty computation in a straight-forward fashion, yielding a new
proof of this result. It also leads to new proofs for other results in general se-
cure multiparty computation such as, for example, given a secure two-party OT
protocol, n parties can compute any function n-privately (e.g., see [14]), given
secure channels, n parties can compute any function t-privately (information
theoretically) for t < n/2 (e.g., see [3]), and similar results.

In concurrent and independent work, Ishai et al. [19] design an mOT pro-
tocol under the name “distributed OT.” Both our protocol and theirs involve the
use of efficient PIR protocols, though in different ways. Thus, our work gives
new constructions for the results in their paper. Comparing our two tools, our
database performs O(n) work where theirs performs O(n2), where n is the size
of the database. While both tools are comparable in terms of communication
efficiency, theirs is only efficient in this sense under some limitations on the
number of parties m, since the size of the messages passed in their scheme is
linear in m. The length of the messages passed in our protocol is independent
of the number of parties, and thus we impose no limit on the number of par-
ties involved in our protocols. Additionally, our protocol has a logarithmic (in
n) round complexity, while theirs has a linear (in m) round complexity (the
database’s response is a log n-iterated encryption in the former, and an m − 1-
iterated encryption in the later).

1.2 Definitions and Notation

We use the following definitions and notations.

Notation 1 We denote the negation of bit b by ¬b.

Definition 2 (t-privacy). A protocol is t-private if any set of at most t partic-
ipants cannot compute after the protocol more then they could jointly compute
solely from their set of private inputs and outputs.

Notation 3 (Asymptotic notation) We use the following asymptotic notation:
o(f) denotes that the asymptotic upper bound f is not tight; Ω(f) denotes that



the asymptotic lower bound f is tight; and Õ(f) denotes the asymptotic upper
bound O(f), ignoring polylog(f) factors.

Notation 4 (Share notation) We let ([δ]1, [δ]2, . . . , [δ]m) be the collection of
the shares of δ split among m parties via some secret-sharing scheme, so that
player i holds the share [δ]i. When the subscript can be determined from context,
we abuse notation and omit the subcript for ease of exposition; thus, we may
denote the share of player i as, simply, [δ].

2 Secure Multiparty Computation with Look-Up Tables

Naor and Nissim [24] define and give a secure two-party protocol for circuits
with look-up tables. In the computational model of circuits with look-up tables,
gates of a circuit are represented by look-up tables (LUT). The LUT input wires
define the table entries and an index, and the LUT output wires are set according
to the value stored in the indexed position. The protocol for private LUT serves
as a building block in a protocol for privately evaluating circuits with LUT (a
variant of the garbled circuit transformation). Here, we extend the definition of
the look-up table primitive to the multiparty case.

Definition 5 (Multiparty LUT). In a multiparty LUT (mLUT) protocol, all the
parties are both a chooser and a database holder. Each party i holds a share
of the database ∆, and a share of the index σ. At the end of the protocol, each
party learns a share of δσ, the element at position σ in database ∆. Let ∆ =
(δ0, . . . , δn−1). Let party i’s share of δ be denoted by [δ]i. Then, the mLUT
protocol can be summarized by the following protocol Π .

Π([∆]1, [σ]1; [∆]2, [σ]2; . . . ; [∆]m, [σ]m) → ([δσ]1; [δσ]2; . . . ; [δσ]m)

Definition 6 (Private mLUT). We call a mLUT protocol t-private if no coali-
tion of up to t parties can learn any information about σ or any of the elements
in ∆.

Circuits with LUT amount to performing computations with tables as fol-
lows. (1) Read operations: The table values as well as the index specifying the
location of the read item are either preset or the result of an intermediate compu-
tation. In particular, it is possible to perform any kind of indirect read. (2) Write
operations: The value written to the table may be the result of an intermediate
operation but the location should be predetermined. In other words, no indirect
writes are allowed.

It follows that any computation on a RAM machine where write operations
are oblivious, in the sense that the time and location of the write operations



should not depend on the input and randomness, may be emulated by circuits
with LUT.

Results of Pippenger and Ficher [32] imply that when considering circuits
vs. Turing Machines there is no significant advantage to the latter since there
exists a series of circuits of size comparable to the running time of the Turing
Machine. Currently it is not known whether a similar result applies to circuits
vs. RAM machines. Particularly, there is a potential gap between the two, i.e.
a computation on a RAM machine may be much more efficient than any cir-
cuit family. But for circuits with LUT this gap is closed. Particularly, note that
for any write-oblivious RAM machine M running in time T (n), there exists a
family of circuits with LUT of size T (n) computing fM . Now, all one needs
to show is an efficient simulation of any RAM machine using a write-oblivious
RAM machine. Such a simulation exists, with polylogarithmic blow-up [16, 24].
Specifically, for any RAM machine M running in time T (n) using space S(n),
there exist a series of circuits with LUT of size T (n)polylog(S(n)) computing
fM .

3 Applications

Although we have not yet provided a private protocol for multiparty LUT (mLUT),
we show how such a protocol leads to immediate efficiency improvements for
several privacy-preserving protocols in the literature and efficient multiparty
generalizations of existing two-party protocols.

We note that by replacing the two-party private LUT of Naor and Nis-
sim [24] with a private construction of mLUT, we generalize all the construc-
tions given in that paper to the multiparty case. In Appendix A of the full version
of this paper [12], we present a multiparty generalization of the communication
complexity model and a transformation which makes any efficient, non-private
protocol in this model into an efficient, private protocol with the same function-
ality. Also, a private mLUT protocol automatically yields the ability to simu-
late, as a multiparty computation, a private oblivious RAM machine with only
a polylog (in size of the RAM) blowup in communication between the parties.

Furthermore, we believe our mLUT protocol to be useful in a variety of
existing applications, such as private multiparty sampling protocols [19], dis-
tributing the function of an “auction issuer” in Naor-Pinkas-Sumner style auc-
tions [27], private approximation protocols, and any setting where a global deci-
sion is privately computed using access to some of the inputs of several parties.
In the remainder of this section, we discuss applying our tools to two such do-
mains: protocols for distributed constraint satisfaction problems, and protocols
for the stable matching problem.



3.1 Private DisCSPs

Distributed constraint satisfaction problems (DisCSPs) are composed of agents
holding local variables, and a constraint network that restricts the legal assign-
ments to agents’ variables. A solution to a DisCSP is an assignment to variables
that is in agreement with all the constraints ([38, 36]). To achieve this goal,
agents run a protocol where they check assignments to their and other agents’
variables for consistency. Distributed CSPs are an elegant model for many ev-
ery day combinatorial problems that are distributed by nature, such as meeting
scheduling [13, 23] in which agents attempt to schedule meetings according to
their constrained personal schedule.

Nissim and Zivan [29] design new secure protocols for DisCSPs based on
advanced search heuristics. The first protocol they design is a centralized proto-
col, where two of the agents collect “encrypted” data from all other parties, and
obliviously perform a search algorithm. Their centralized algorithm avoids in-
formation leakage to all agents. their second protocol makes the first step toward
a feasible distributed secured protocol for solving DisCSPs. They construct a
network, whose nodes are small groups (e.g. pairs) of agents, from the original
DisCSPs. Each node group obliviously performs the roles of all its members in
the search algorithm. This protocol has the following disadvantages (1) it is not
fully distributed and a small collusion of agents could learn information about
the other participants’ private inputs. (2) As mentioned in the paper, the proto-
col is not perfectly secure, i.e. the communication pattern in the protocol leaks
information about the agents’ private inputs.

Using our private construction for multiparty computation of circuits with
LUT, we can securely extend the centralized protocol given in section 5 of [29]
to a fully distributed one without adding any overhead in the communication
or computation of their protocol. More specifically, the agents will collectively
share the private data and obliviously perform the search algorithm. This leads
to the first fully distributed and completely secure protocol for DisCSPs. For
completeness, we include a brief description of our construction in Appendix B
of the full version of this paper [12].

3.2 Private Stable Matching

Golle [18] initiated the study of privacy-preserving protocols for stable match-
ing, arguing persuasively that such protocols could have great practical benefit.
In Golle’s framework, m “matching authorities” receive the encrypted prefer-
ence lists from the participants and then perform a secure multiparty computa-
tion to return the stable matching to the participants. Franklin et al. [11] revisit



Golle’s work and design substantially more efficient protocols for private stable
matching in this framework.

Naor, Pinkas, and Sumner [27] observe, in considering this problem as a
possible domain for their paper’s techniques, that the algorithm for solving the
stable matching problem requires the power of indirect addressing of a RAM
and, thus, its translation into a circuit is rather inefficient. Indeed, the stable
matching algorithm of Franklin et al. [11] can be efficiently implemented as a
circuit of size O(n2) with access to a RAM. More specifically, one can imple-
ment their algorithm [11, Section 5] in the multiparty setting1 by implementing
their array/matrix accesses using our mLUT protocol. In this way, we extend
this (very efficient) construction of theirs from two-party to multiparty, yielding
a protocol in the same framework as Golle and Franklin et al., but a factor of
n more efficient than previous private stable matching protocols. The following
table compares our results with those of the previous work.

Protocol Total Total Round
Work Communication Complexity

Golle [18] O(n5) O(mn5) Õ(n3)
Franklin et al. [11] O(n4

√
log n) O(mn3) Õ(n2)

Ours O(n4) O(mn2) Õ(n2)

4 Protocols for private mLUT

In this section, we reduce the problem of constructing a protocol for private
mLUT to a subproblem we call “generalized multiparty oblivious transfer.” First
we define this subproblem, and then we show our construction for mLUT. Later,
we define a related protocol we call “multiparty oblivious transfer” and draw
connections between this new primitive and general multiparty computation.
Finally, in Section 5, we give a construction for an efficient, private g-mOT
protocol, completing our private mLUT construction.

4.1 A construction for private mLUT

Our construction for the private mLUT protocol invokes a protocol called gen-
eralized multiparty oblivious transfer (g-mOT) for each share of the database.
Parties get their shares of the output for each run of the g-mOT protocol and

1 Franklin et al. generalize this two-party protocol to the multiparty case, but the resulting pro-
tocol is only secure in a new security model where one considers collections of pairs of match-
ing authorities, where each pair is honest-majority. Our generalization is secure in the standard
passive adversary security model where up to a certain threshold of players may be corrupted.



combine their shares in the appropriate way to compute shares of the indexed
position in the original database ∆. We define generalized mOT below, and then
describe this protocol in more detail.

Definition 7 (Generalized multiparty oblivious transfer). Generalized multi-
party oblivious transfer (g-mOT) is a protocol involving m parties where: at the
beginning of the protocol, each party holds a share of a secret index σ and one
distinguished party holds a table of n bits, the database ∆ = (δ0, . . . , δn−1);
at the end of the protocol, each party holds a share of the database element δσ.
In the terminology of oblivious transfer, every party is a chooser and one party
is also the database. The protocol Π for

(n
1

)
–g-mOT(m, t) can be summarized

as:
Π(∆, [σ]; [σ]; . . . ; [σ]) → ([δσ]; [δσ]; . . . ; [δσ])

We give a full security description of g-mOT later but, for our mLUT con-
struction, we only require that this protocol be t-private.

For simplicity, we assume that the outputs and database are shared using
XOR sharing in the construction below. Any other sharing scheme would work
fine, however, as the overhead for switching between different sharing methods
does not effect the overall complexity of our protocols. Again, let m be the
number of parties participating in the protocol. Let chooser i hold ∆i = [∆]i,
where ⊕∆i = ∆. The protocol is outlined below.

Inputs: Each party holds a share of the database ∆ = (δ0, . . . , δn−1)
and a share of the index σ.
Output: Each party holds a share of δσ.

– For i = 1 to m:
• Parties run

g-mOT(∆i, [σ]; [σ]; [σ]; . . . ; [σ]) → ([δi
σ]; [δi

σ]; . . . ; [δi
σ]).

– Participant i locally computes a share of δσ as [δσ] = ⊕[δj
σ].

Claim. The complete protocol is a t-private multiparty LUT. The protocol has
O(k` log2 npoly(m)) communication complexity and O(log n) round complex-
ity, where k is a security parameter, m is the total number of parties, and the
database is composed of n strings of bit-length `.

Proof (Proof (sketch)). Our mLUT protocol uses m invocations of a generalized
mOT protocol. Thus, the communication complexity of our mLUT construction
is simply m times that of the g-mOT protocol from Section 5.2. Since we can run
the generalized mOT protocols in parallel, the round complexity of the mLUT
protocol remains the same as that of the g-mOT protocol. The t-privacy of the



mLUT protocol follows from general composition theorems [5, 15] and the t-
privacy of our g-mOT protocol.

4.2 Multiparty oblivious transfer

Before we give a construction for an efficient t-private generalized multiparty
oblivious transfer protocol, we explore a related protocol we call multiparty
oblivious transfer. We also give a detailed security definition for these protocols,
as there may be interesting applications that require something stronger than t-
privacy.

Multiparty oblivious transfer (mOT) is a protocol involving m′ + 1 parties:
m′ choosers and a database. Each chooser holds a share of a secret index σ ∈
[0, n − 1]. The database holds a table2 of n bits, ∆′ = (δ0, . . . , δn−1). At the
end of the protocol, each chooser holds a share of the database element δσ. The
protocol Π for

(n
1

)
–mOT(m′, t) can be summarized as follows:

Π(∆′; [σ]1; . . . ; [σ]m′) → (∅; [δσ]1; . . . ; [δσ]m′)

We consider mOT for its simplicity and because, in many scenarios, g-mOT
reduces to mOT. For example, by letting m = m′ + 1 it is clear that, when
the inputs and outputs are XOR shares, there is a simple reduction of g-mOT to
mOT. More specifically, the database in the g-mOT protocol can compute the
database ∆′ by permuting ∆ according to x0 (his share of the secret index) and
blinding each entry by a random y0 (his share of the output). Considering XOR
shares, then, generalized mOT reduces to an invocation of the following mOT
protocol Π .

Π(∆′;x1, . . . ;xm′) → (∅; y1; . . . ; ym′) where
m′⊕
i=0

xi = σ and
m′⊕
i=0

yi = δσ

Definition 8 (Secure mOT). Following Naor and Pinkas [26], we give a de-
tailed, four-parameter security definition for this new variant of oblivious trans-
fer. We relate this definition to the more common and intuitive security notion
of t-privacy. We say the mOT protocol is (t1, t2, t3, t4)-secure if, when all the
participants follow their steps properly (i.e., considering a passive adversary),
the following properties are met:

input t1-privacy: no coalition of up to t1 choosers should be able to learn
any information about σ.

2 In Section 5.2, we consider a generalization of this definition, where the database is a table of
n strings, each of length `.



output t2-privacy: no coalition of up to t2 choosers should be able to learn
any information about δσ.
chooser t3-privacy: the database should not be able to learn any information
about σ, even when colluding with up to t3 other participants.
database t4-privacy: no coalition of up to t4 non-database players should be
able to learn any information about δj for j 6= σ.

We could easily create information theoretic and computational variants of
this definition by specifying the power of the adversary accordingly.

Remark 1. The following are automatic consequences.

– (t1, t2, t3, t4)-security implies min(t1, t2, t3 + 1, t4)-privacy.
– It is necessary that t3 ≤ min(t1, t2). For g-mOT this becomes strict, t3 <

min(t1, t2).
– For g-mOT, since the database is a chooser, there is always a collusion of

t3 + 1 choosers who can learn σ, so t1 = t3 + 1. Furthermore, t1 = t2
because, for the database, learning σ implies learning δσ (and vice versa).
Thus, for g-mOT, t-privacy implies (t, t, t−1, t4)-security, for some t4 ≥ t.

– If the players are computationally unbounded, it must be the case that (m′+
1)/2 > min(t1, t2, t3 + 1, t4), or else we contradict known results for the
privacy of unconditionally secure multiparty computation.

5 Protocols for private mOT and g-mOT

In this section, we give two constructions for multiparty oblivious transfer. The
first mOT construction uses blackbox access to two-party oblivious transfer,
showing that mOT can be constructed under a variety of complexity assump-
tions. The second is a construction of g-mOT which we rely on for our ear-
lier applications, as it is efficient in terms of communication complexity. We
leave open the problem of finding a fully black-box transformation of two-party
oblivious transfer into multiparty oblivious transfer with sublinear (in size of the
database) blowup in communication complexity.

5.1 A generic construction for 1-out-of-2 mOT

Here, we describe a generic construction for a 1-out-of-2 mOT protocol, using
blackbox access to a two-party oblivious transfer protocol. For this construction,
we consider the case where the secret σ is shared among the m′ choosers using
XOR sharing. Let chooser i hold share bi and ⊕bi = σ.



1. The database chooses 2m′ bits, {(r1
0, r

1
1), (r

2
0, r

2
1), . . . , (r

m′
0 , rm′

1 )}
uniformly at random, such that the bits satisfy the following condi-
tion:

m′⊕
i=1

ri
bi

= δ⊕bi

2. For all 1 ≤ i ≤ m′

Chooser i and the database run a two-party oblivious trans-
fer protocol, where the chooser’s private input is bi and the
database’s private input is the two element “database” (ri

0, r
i
1).

3. The output for chooser i is ri
bi

which, according to the previous
condition, is an XOR share of δ⊕bi

= δσ.

It is clear that the values of the 2m′ variables which satisfy the above con-
dition are precisely the solutions to the following set of m′+1 linear equations:

{
ri
1 = δ0 ⊕ δ1 ⊕ ri

0 | i < m′
}

, rm′
0 = δ0 ⊕

m′−1⊕
i=1

ri
0 and rm′

1 = δ1 ⊕
m′−1⊕
i=1

ri
1

In this form, it is easier to see that the database can find a random solution to
the above system by simply choosing the values for variables {ri

0 | i < m′}
uniformly at random. The remaining values are uniquely defined.

When the two-party oblivious transfer protocol is private, the above mOT
protocol is (m′ − 1)-private. This construction is essentially the same as that of
Crépeau and Kilian [6], though in a different context, and our proof of security
follows directly from theirs.

This 1-out-of-2 mOT construction protocol can be turned into a 1-out-of-
n mOT protocol using a variant of the Brassard-Crépeau-Robert transform [4]
which constructs 1-out-of-n oblivious transfer from (a linear number of invo-
cations of) the 1-out-of-2 variant. While these constructions are not particularly
efficient, they do demonstrate that mOT protocols can be constructed under a
variety of standard cryptographic assumptions and in the information-theoretic
case. For example, given secure channels, each two-party OT protocol can be re-
placed with the distributed OT (dOT) protocol of Naor and Pinkas [26]. Briefly,
in a (r, m, `, t)-dOT protocol, the database sends messages to m servers3 and
the chooser contacts r of the servers to reconstruct δσ, where no coalition of
less than t servers learns σ and no coalition of the chooser with less than `
servers can compute more than can be jointly computed from these participant’s

3 We note the database itself might play the role of a server, sending itself a message, causing
dOT to be a protocol among m + 1 parties.



inputs and outputs. A straight-forward argument of Nikov et al. [28] shows that
a necessary and sufficient condition for dOT is r ≥ t + `. Thus, our mOT pro-
tocol based on dOT will be τ -private for τ < min(` + 1, t). Since r ≤ m, this
condition implies our mOT protocol is τ -private for τ < (m + 1)/2.

Using this construction for mOT instead of OT in a proof of the complete-
ness of OT such as Goldreich’s [15, §7.1.3.3] yields new proof that (given secure
channels) n parties can compute any function τ -privately (information theoret-
ically) for τ < n/2. The original presentation of this result, due to Ben-Or,
Goldwasser, and Wigderson [3], uses polynomial shares and requires a special,
private polynomial degree-reduction technique to handle the degree growth dur-
ing the interactive multiplication steps. This new proof avoids such complicated
machinery. In fact, using a basic proof of the completeness of mOT while build-
ing mOT out of different tools (e.g., secure channels, secure channels and one-
way functions, two-party OT, etc) yields new proofs for a variety of interesting
results in secure multiparty computation.

5.2 A construction for 1-out-of-n g-mOT

In this section, we describe a generic construction of a 1-out-of-n generalized
multiparty oblivious transfer protocol. At a high level, the construction can be
viewed as a non-black-box transformation from a two-party private information
retrieval (PIR) protocol (see [30] for a recent survey). First, the two-party PIR
protocol is converted into a two-party OT protocol. The owners of the secret
sharing scheme engage in a multiparty computation, t-privately transforming
their shares of σ into the messages m̄0 that would be sent to the database during
the two-party OT protocol. A single chooser and the database then engage in the
message passing of the original PIR protocol. The received messages m̄1 are
then used as inputs to another multiparty computation, t-privately converting
these messages into shares of δσ. In this construction, the sharing used for the
inputs and outputs is some t-out-of-m linear secret sharing scheme with security
parameter k, owned by an appropriate subset of the choosers.

One particularly efficient instantiation of our construction can be built using
a two-round PIR protocol, the length-flexible additively homomorphic public
key encryption [8, 9] and design ideas of Aiello-Ishai-Reingold [1]. In the re-
mainder of this section, we discuss this highly efficient instantiation. The steps
of this protocol are assembled in order and summarized below.



1. The choosers collaborate to create a (t-out-of-m) threshold, length-
flexible, additively homomorphic) encryption system.

2. The choosers collaborate to compute the PIR scheme’s first message
m̄0, using their shares of σ (see Section 5.2).

3. The choosers send the public parameters, E(σ), and m̄0 to the
database.

4. The database uses E(σ) to blind the database, according to the
Aiello-Ishai-Reingold transform (see Section 5.2).

5. The database runs the PIR protocol as usual, using m̄0 and the
blinded database (see Section 5.2).

6. The database sends its response m̄1 to the choosers.
7. The choosers collaborate to decrypt m̄1. In our case, they decrypt

the response α times and then split the remaining ciphertext into
shares (see Section 5.2).

Highly Efficient Two-Party PIR and OT A highly efficient two-party PIR
scheme can be built from length-flexible additively homomorphic public key
encryption [8, 9] using design ideas of Kushilevitz-Ostrovsky [21] (e.g., follow-
ing the presentation of Lipmaa [22]).

The database is composed of n `-bit strings. The chooser takes her secret
σ and constructs q̄ = (q1, . . . ,qα), the α-dimensional vector which indicates
the position of σ in a λ1 × · · · × λα coordinate system. In this system, index
(i1, . . . , iα) is resolved in the following manner:

∆[(i1, . . . , iα)] = ∆[i1 ·
α∏

j=2

λj + i2 ·
α∏

j=3

λj + · · ·+ iα−1 · λα + iα]

The first query sent to the database is the encryption of q1 with the cor-
responding public key. The database uses this to construct ∆[q1, i2, . . . , iα], a
new database with α − 1 dimensions. The next query is the encryption of q2,
the first coordinate of the same element in this new database. We iterate in this
fashion α times. This is a standard trick, due to Kushilevitz and Ostrovsky [21]
and is used in the PIR scheme of Stern [37]. In the final round, the database’s re-
sponse is the α times encryption of δi. In fact this process happens in one round,
since the encryption of q̄ = (q1, . . . ,qα) can be sent in a single message. When
encryption is achieved using a length-flexible additively homomorphic public-
key cryptosystem, this PIR protocol has Θ(k log2 n + ` log n) communication
complexity, as shown by Lipmaa [22].

A modification of this PIR scheme, using the Aiello-Ishai-Reingold trans-
form, yields a highly efficient OT scheme. The chooser encrypts σ using a ho-



momorphic encryption scheme and sends this to the database with the corre-
sponding public-key. The database takes advantage of the homomorphic prop-
erty of the ciphertext to compute a new database where each entry δj is rep-
resented by E(rj(σ − j) + δj), for some random rj . Thus, for all j 6= σ, the
j-th element of the database is the encryption of a random element. The origi-
nal Aiello-Ishai-Reingold transform suggests that the homomorphic encryption
scheme generated for this step be verifiable, such as the El-Gamal scheme, so
the database can verify the correctness of the public-key sent by the chooser. As
we consider only honest-but-curious adversaries, we can re-use the homomor-
phic encryption scheme used in the original PIR protocol and ignore the need
for verifiable keys. The rest of the OT protocol proceeds just as in the original
PIR protocol, but the database’s response must now be decrypted α + 1 times
to recover δσ. This transformation increases the communication complexity by
a term of ` + k(log n + 1) bits, which does not effect the overall asymptotic
complexity.

Input share conversion In our g-mOT scheme, the choosers hold shares of σ
using some linear secret sharing scheme. We describe below how the choosers
can engage in an efficient t-private multiparty protocol to convert their shares
of σ into an encryption of q̄ = (q1, . . . ,qα). For simplicity, we represent the
database as the α = log n-dimensional 2× · · · × 2 system4.

The choosers interact to define a t-out-of-m threshold version of the length-
flexible homomorphic encryption scheme. In reality, qi is a λi-length bit string
of Hamming weight 1. Locally, the database uses E(qi), the bit-wise encryp-
tion of this value, to process the representation of the database at step i. In our
simplified scenario (for all i, λi = 2) this bit string is simply qi = (¬bi, bi),
where bi is the i-th bit in the binary representation of σ. In other words, if we
let ∆j denote the α− j-dimensional database constructed in round j of the PIR
protocol, then

∆j+1[i] = ¬qj ·∆j [i] + qj ·∆j [2i + 1]

Since the encryption of the negation of a bit can be computed by the database,
trivially, via the homomorphic property, it suffices to let qi = bi. Damgård et
al. [7] provide efficient, private constant-round multiparty protocols for com-
puting shares of the binary representation of a secret, from shares of the secret.

4 For efficiency in communication complexity when using this representation, we require the use
of length-flexible additively homomorphic encryption. It is possible to use a generic additively
homomorphic encryption system and achieve sublinear communication complexity by using
a different representation, at the cost of increasing the round complexity (by a factor of log n)
during this pre-processing phase. Such a choice would not effect the efficiency of the complete
protocol.



Using the homomorphic property, the choosers’ shares are encrypted and com-
bined, and E(q), E(σ), and the public key are sent to the database by a chooser.
From this, the database can run its portion of the OT protocol, and send its re-
sponse.

Output conversion The response from the database is jointly decrypted α times
by the choosers to recover E(δσ), the desired element encrypted using the same
t-threshold (length-flexible) additively homomorphic encryption scheme. This
is already, in a sense, a share of δσ. Using the homomorphic property, this ci-
phertext can be split into additive shares for the choosers, or a different type of
sharing if desired.

5.3 Analysis

Claim. The complete protocol of Section 5.2 has O(k` log2 npoly(m)) com-
munication complexity and O(log n) round complexity, where k is a security
parameter, m is the total number of players, and the database is composed of n
strings of bit-length `.

Proof (Proof (sketch)). The primitives used by the input share conversion pro-
tocol have O(poly(m, log q)) communication complexity, where q is the size of
the field in which σ lives. Since σ is a pointer into a table of size n, the communi-
cation complexity becomes, in our case, O(poly(m, log log n)) = o(poly(m) log n).
Also, the messages passed between the database and the other parties are the
same as those passed during the oblivious transfer protocol from Section 5.2,
whose communication complexity is Θ(k log2 n + ` log n). Thus, our complete
protocol has O(m(k log2 n+` log n)+poly(m) log n) = O(k` log2 npoly(m))
communication complexity and O(log n) round complexity.

Claim. The complete protocol of Section 5.2 is t-private, assuming the thresh-
old length-flexible additively homomorphic public-key encryption scheme is
IND-CPA secure.

Proof (Proof (sketch)). The above security claim follows from the security of
the share conversion protocols, from general composition theorems [5, 15], and
from the same security arguments of [22] since (although we make use of the
protocol in a non-blackbox manner) the transcript of the messages passed be-
tween the chooser and database in our protocol is identical.

More specifically, the g-mOT protocol is (t, t, t− 1,m)-secure, because the
Aiello-Ishai-Reingold transform makes the OT scheme information-theoretically



database-private. When the PIR protocol is converted into an OT protocol us-
ing a transformation that provides computational sender privacy, like the Naor-
Pinkas transform [25], the resulting mOT protocol is (t, t, t − 1, t)-secure. The
threshold, length-flexible homomorphic encryption scheme of Damgård and Ju-
rik [9] is IND-CPA secure in the standard model, under the Paillier and com-
posite DDH assumptions.
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