
Boosting Merkle-Damg̊ard Hashing
for Message Authentication

Kan Yasuda

NTT Information Sharing Platform Laboratories, NTT Corporation
3-9-11 Midoricho Musashino-shi, Tokyo 180-8585 Japan

yasuda.kan@lab.ntt.co.jp

Abstract. This paper presents a novel mode of operation of compres-
sion functions, intended for dedicated use as a message authentication
code (MAC.) The new approach is faster than the well-known Merkle-
Damg̊ard iteration; more precisely, it is (1 + c/b)-times as fast as the
classical Merkle-Damg̊ard hashing when applied to a compression func-
tion h : {0, 1}c+b → {0, 1}c. Our construction provides a single-key
MAC with provable security; we show that the proposed scheme yields a
PRF(pseudo-random function)-based MAC on the assumption that the
underlying compression function h satisfies certain PRF properties. Thus
our method offers a way to process data more efficiently than the conven-
tional HMAC without losing formal proofs of security. Our design also
takes into account usage with prospective compression functions; that is,
those compression functions h with relatively weighty load and relatively
large c (i.e., “wide-pipe”) greatly benefit from the improved performance
by our mode of operation.

Key words: Merkle-Damg̊ard, pseudo-random function, related-key at-
tack, message authentication code, hash function, compression function,
mode of operation, NMAC, HMAC.

1 Introduction

The Merkle-Damg̊ard iteration [16, 10] is a popular and classical mode of opera-
tion for cryptographic hash functions. It is widely used not only for keyless hash
functions but also for randomized hash functions, message authentication codes
(MACs) and pseudo-random functions (PRFs.) It is popular, widespread and
successful in some respects, but nowadays some problems are becoming more
and more evident, which initiates investigation into better modes of operation
[14, 9].

Inspired by this trend, in this paper we free ourselves from the traditional
Merkle-Damg̊ard iteration and devise a novel mode of operation that can be
used exclusively as a secure, single-keyed MAC. Our method is the first of its
kind that can process a message more efficiently than the conventional Merkle-
Damg̊ard iteration and that can be provided with formal proofs of security. More
precisely, the proposed scheme is (1 + c/b)-times faster than the conservative

Merkle-Damg̊ard hashing (and hence HMAC [2]), when applied to a compression
function h : {0, 1}c+b → {0, 1}c. For example, with the compression function
sha256 : {0, 1}256+512 → {0, 1}256 the new method yields a 50% increase in
performance as compared to HMAC. As to the security of our new scheme,
we obtain results that are similar to the recent ones of NMAC and HMAC
[2]; namely, we prove that the proposed mode of operation results in a PRF-
based MAC whose security relies on the pseudo-randomness properties of the
underlying compression function.

Brief Outline of Our Construction and Its Security. Our construction
can be regarded as a derivative of NMAC. Recall that NMAC is based on a
nested structure consisting of an inner part of hashing and an outer part of en-
cryption. In our construction we boost up the performance of the inner hashing
by introducing a novel method of iteration, where each invocation to the un-
derlying compression function h : {0, 1}c+b → {0, 1}c processes more input bits.
It takes c + b bits of a message, rather than just b bits as in the conventional
Merkle-Damg̊ard iteration.

The inner hashing should satisfy a certain form of collision resistance, in order
for the nested MAC to be secure. NMAC fulfills this requirement by assuming
that the underlying compression function is a PRF [3, 2]. On the other hand,
in our construction it turns out that we need to impose an extra condition on
the underlying compression function in order to ensure the desired property of
the inner hashing. The additional condition is a type of pseudo-randomness in
a mild form of related-key setting; in fact, our proofs of security can be viewed
as a related-key version of those in [3].

Backgrounds. A motive for this work originates from the recent degrada-
tion of existing hash functions such as MD5 and SHA-1. These algorithms are
first shown to be vulnerable to collision attacks as keyless hash functions, but
the techniques are then extended to forgery and key-recovery attacks against
NMAC/HMAC constructed of these hash functions [8, 13]. These attacks tell us
that it is high time to move toward new compression functions. In fact, NIST
announces ending its support for SHA-1 and recommends migrating to SHA-2
family by the year 2010 [17, 18]. Since SHA-2 family are slower than SHA-1, the
replacement would result in lowering performance and losing an advantage of
hash-based MACs (as compared to MACs of other types, say block-cipher-based
or universal-hash-based ones.) One way to overcome this problem is to use a
more efficient mode of operation, absorbing the decrease in performance caused
by the new compression function.

Another reason to propose the new mode comes from a security principle of
iterated functions that the size c of a chaining variable be relatively large. This
requirement is particularly evident for MACs, due to the birthday attack [20]
showing that half the size of c of the chaining variable corresponds to a security
parameter. Having a large size c of a chaining variable is a good design principle
also in the context of keyless hash functions, as illustrated by the “wide-pipe”
argument [14]. Such design with large c, unfortunately, results in a performance
disadvantage of the traditional Merkle-Damg̊ard iteration. On the other hand,

in our approach the size c is irrelevant in terms of efficiency, and indeed large c is
welcomed; such large c increases relative performance of our scheme as compared
to the conventional Merkle-Damg̊ard iteration.

Organization of This Paper. In the following section we review some of
the previous results concerning modes of operation of compression functions
and identify the position of this work among them. Section 3 introduces design
principles of our approach and a two-key prototype of our MAC construction.
In Sect. 4 and 5 we define security notions utilized in this paper and discuss
some aspects of them. Section 6 is devoted to security proofs of the two-key
construction. In Sect. 7 and 8 we show techniques of constructing a single-key
version and those of using a shorter key, respectively. Section 9 summarizes this
paper.

2 Related Work

Merkle-Damg̊ard. The Merkle-Damg̊ard iteration gives a way to extend the
domain of a compression function, having an attractive property that collision
resistance of the compression function extends to the entire hash function (in
either a keyless or keyed context) [16, 10]. Owing to standardization and lack of
regulation on export control, hash functions such as MD5 and SHA-1 are widely
available in software libraries today. The widespread use of these keyless hash
functions implemented with the Merkle-Damg̊ard iteration also influences design
principles for randomized hash functions and hash-based MACs/PRFs.

Randomized Hash Functions. The question of domain extension of target-
collision-resistant (TCR) functions is intensively studied [7, 21], where several
modes of operation are suggested, which extend a TCR compression function to
TCR hash functions. The common problem of these schemes is that the key size
grows as a message length does. This obstacle is resolved in [12], where proposed
is a mode of operation that runs as efficiently as the Merkle-Damg̊ard iteration
and that requires only a constant-size key. The trick is that its security is based
on the assumption that the compression function satisfies new (but reasonable)
properties, which are different from the notion of TCR.

MACs and PRFs. The NI and CS constructs [1, 15] provide domain extension
of MACs. The problem is that these modes are slower than the Merkle-Damg̊ard
iteration. This drawback is absent from HMAC, which achieves the same effi-
ciency as the Merkle-Damg̊ard iteration. This is a natural outcome since HMAC
gives domain extension of PRFs, not MACs.1

In this paper we push ahead with this idea in order to obtain a PRF via
a mode of operation that is even more efficient than HMAC. The trick is that
our security result is based on the assumption that the underlying compression

1 Recall that a PRF is a secure MAC. There is another construct based on a PRF,
called XOR-MAC [4]. XOR-MAC is capable of parallel processing, yet without it
XOR-MAC is in general slower than the Merkle-Damg̊ard iteration.

function satisfies, in addition to the usual PRF, a new (but reasonable) PRF
property (which we call ∆-2PRF.)

Our construction is dedicated to MAC/PRF use. In return, our approach ac-
complishes higher performance than the Merkle-Damg̊ard iteration, which seems
to be hard to realize in the context of keyless or randomized hash functions —
we may consider the circumstances as evidence that our mode of operation fully
takes advantage of the presence of a “secret” key in the MAC/PRF situation.
See Table 1 for comparison of these MAC/PRF modes.

Table 1. Comparison of modes of operation for MAC/PRF

Performance Goal Assumptions2 Reference

NI / CS < Merkle-Damg̊ard MAC MAC [1, 15]

NMAC / HMAC = Merkle-Damg̊ard MAC pp-MAC, 2PRF [3, 2]
PRF PRF

Proposed > Merkle-Damg̊ard MAC pp-MAC, ∆-2PRF —
construction PRF PRF, ∆-2PRF

Multi-Property Preservation. EMD [5] and ESh [6] are modes of operation
that preserve multiple properties (e.g., collision resistance, pseudo-randomness,
etc..) These are integrative approaches, taking the converse point of view to the
problem of domain extension; our goal is to construct a mode of operation that is
specific to MAC/PRF property. While EMD or ESh offers a single program that
can be used for multiple purposes (and hence a small source code, less confusion
and a safety net), it may not perform the best with respect to a specific property
(e.g., pseudo-randomness.) It should be noted that the code size of our mode of
operation is much smaller than that of the compression function: The description
of our construction requires only a loop, an XOR and a concatenation.

ENMAC. ENMAC [19] is an improvement over NMAC/HMAC, which is effi-
cient particularly with short messages. This technique is also orthogonal to our
approach, but it is so in a compatible way. That is, both ENMAC and our MAC
in principle conform to the nested construction of NMAC (Recall that NMAC
consists of outer encryption and inner hashing.) While ENMAC is an improve-
ment on the outer function of NMAC, our construction is an improvement on the
inner function. Hence ENMAC and our approach can coexist, but throughout
the paper we base our construction upon the conventional NMAC for the sake
of simplicity.3

2 “pp-MAC” stands for privacy-preserving MAC, and “2PRF” for PRF against just
two oracle queries.

3 Intuitively, ENMAC improves performance mainly for short messages while our con-
struction does so mainly for long messages. To a greater or lesser degree, each scheme
alone improves performance essentially for all messages.

3 Design Principles

Merkle-Damg̊ard. Figure 1 depicts the traditional Merkle-Damg̊ard iteration
using a compression function h : {0, 1}c+b → {0, 1}c. In this classical hashing, a
message M is divided into b-bit blocks as M = m1‖m2‖ · · · , and it is processed
via the iteration xi

def= h(xi−1‖mi). Note that each invocation to h processes
b-bits of M in this conservative mode of operation.

b
xi−1

c
h h h

mi mi+1 mi+2

c
xi

Fig. 1. Usual Merkle-Damg̊ard iteration

Boosting. We start by trying to “maximize” the efficiency of each invocation
to the compression function h. Note that h has (c + b)-bit input; we devise
a mode of iteration we call “hyper-Merkle-Damg̊ard,” in which each invoca-
tion to h disposes of c + b bits of a message M . We do this by XOR-ing the
chaining variable xi and the next c bits of M on each input. This is illustrated
in Fig. 2. In the hyper-Merkle-Damg̊ard iteration, a message M is divided as
M = m1‖m2‖ · · · so that |m1| = |m3| = · · · = c and |m2| = |m4| = · · · = b. We
refer to the (c + b)-bit segment m2i−1‖m2i as a “chunk.” The iteration works as
xi

def= h
(
(xi−1⊕m2i−1)‖m2i

)
. Thus, the hyper-Merkle-Damg̊ard iteration is c/b

as fast again as the usual Merkle-Damg̊ard.

⊕

m2i−1 m2i+1

h h h

m2i m2i+2 m2i+3 m2i+4

⊕ ⊕

Fig. 2. Hyper-Merkle-Damg̊ard iteration

Keying. We adopt the popular approach of keying a compression function h
via its chaining variable. Namely, we obtain hK : {0, 1}b → {0, 1}c by defining

hK(·) def= h(K‖·) where K
$← {0, 1}c. Also, let {0, 1}(c+b)∗ denote the set of bit

strings whose lengths are multiples of c + b bits and define HK : {0, 1}(c+b)∗ →
{0, 1}c as x1 ← hK⊕m1(m2), xi ← hxi−1⊕m2i−1(m2i), HK(M) def= xn, for an
n-chunk message M = m1‖ · · · ‖m2n.

Nesting. The keyed function HK constructed above as it is cannot be used
as a secure MAC/PRF. In order to turn it into secure construction, we em-
ploy the “nested approach” of the NI and NMAC construction. Namely, define
BNMACK,K′ : {0, 1}(c+b)∗ → {0, 1}c via BNMACK,K′(·) def= hK′

(
HK(·)‖1b−c

)
.4

See Fig. 3 for a pictorial definition of our BNMAC construction. As already
pointed out in [2], the conventional NMAC construction can be viewed as a com-
putational version of the Carter-Wegman paradigm. Similarly, our result can be
viewed as a related-key version of the result for the conventional NMAC. Since
our assumptions concerning the function h include a related-key, non-standard
one, we try to base the assumption upon as weak a condition as possible. We
successfully do this; the condition only allows an adversary to make just two
(related-key) oracle queries in a non-adaptive way.

K ⊕
m3

h h h

m1 m2 m4 m2n−1 m2n

⊕ ⊕
h

K′ 1b−c

‖ z

Fig. 3. Proposed MAC construction, double-key version (BNMAC)

Padding. The above BNMACK,K′(·) accepts only messages whose lengths are
multiples of c + b bits. In order for the scheme to process a message of arbitrary
length, the message M needs to be somehow padded. It turns out that any (one-
to-one) padding {0, 1}∗ → {0, 1}(c+b)∗ works with our BNMAC construction, so
hereafter we assume that a message always has a length multiple of c + b bits
(As an example of padding, just append 10 · · · 0.)

4 Definitions

Notation. The concatenation x‖y of strings x and y is sometimes written simply
xy. We say that a string x is a prefix of another string y and write x ⊂ y if there
exists a string e such that xe = y. We write x

$← X to denote the operation of
choosing an element uniformly at random from a set X and assigning its value
to a variable x. An adversary A is a probabilistic machine that may have access
to an oracle O. The notation AO ⇒ x indicates the event that, when run with
the oracle O, the adversary A outputs x. An oracle O is often defined by a game
G. In such a case we write AG in place of AO. We also write A ⇐ x to denote
the operation of inputting the value x into A.
4 Here we assume that b ≥ c. Although we could get around this requirement by

extending the outer function via Merkle-Damg̊ard iteration [22], yet for simplicity
we assume this condition throughout the paper.

Notion of PRF. Let
{
fK : M → X

}
be a family of functions with K ∈

{0, 1}k. A prf-adversary A tries to distinguish between two oracles, the “real”

oracle being fK(·), K
$← {0, 1}k and the “random” oracle being f(·), f

$← {
f :

M→ X
}

(Fixing K fixes the real oracle, and fixing f fixes the random oracle.)
Succinctly, define the advantage function of A as

Advprf
f (A) def= Pr

[
Af ⇒ 1

]− Pr
[
A$ ⇒ 1

]
,

where by f we denote the real oracle and by $ the random oracle. The first
probability is defined over the coins of A and K

$← {0, 1}k, and the second

probability over the coins of A and f
$← {

f : M→ X
}
.

New Notion of ∆-2PRF. Let
{
fK : M→ X

}
be a family of functions with

K ∈ {0, 1}k. A ∆-2prf adversary A tries to distinguish between two games,
as defined in Table 2. Namely, at the beginning of each game the adversary
A queries once (m,∆, m′) with m,m′ ∈ M and ∆ ∈ {0, 1}k. Then the oracle
answers (x, x′) to the adversary A, whose values are determined differently in
each game as described. Finally A outputs 1 or 0. Succinctly define

Adv∆-2prf
f (A) def= Pr

[
Af ⇒ 1

]− Pr
[
A$ ⇒ 1

]
,

where again by f we denote the real oracle and by $ the random oracle.

Table 2. Real and random games for ∆-2PRF

Real Random

A ⇒ (m, ∆, m′) A ⇒ (m, ∆, m′)

K
$← {0, 1}k x, x′

$← X
x ← hK(m); x′ ← hK⊕∆(m′) If ∆ = 0 and m = m′ then x′ ← x EndIf
A ⇐ (x, x′) A ⇐ (x, x′)

Resource Parameters. An adversary A’s resources are quantified with re-
spect to its time complexity t, the number q of oracle queries and the length
` (in chunks, if applicable) of each query. We adopt the convention that the
time complexity t includes the total execution time of an overlying game (the
maximum of each game) plus the code size of A. Define

Advgoal
f (t, q, `) def= max

A
Advgoal

f (A),

where max is taken over adversaries A, each having time complexity at most t
and making at most q oracle queries, each query being at most ` chunks. Often
one or two of t, q, ` are inappropriate to be quantified, in which case they are

omitted from the notation. Here, “goal” indicates the property in question, e.g.,
“prf.” We write Tf (`) to denote the time complexity that takes to compute a
function f on a input whose length is ` chunks (and again, ` may be omitted.)

5 Discussion on ∆-2PRF Property

Since we introduce the new notion ∆-2PRF on which our proofs of security are
based, in this section we take a closer look at this requirement on the underlying
compression function h. Intuitively, we can view the ∆-2PRF condition as a
form of pseudo-randomness under a related-key attack. Yet, it is so in one of
the weakest forms possible; namely, in ∆-2PRF, an adversary is limited to ask
only two queries, and these queries must be performed non-adaptively. In other
words, he must submit his entire queries (two messages m, m′ and a relation ∆)
together at the beginning of the game.

So the notion of ∆-2PRF itself is not a demanding requirement, though it
cannot be deduced from the standard PRF (against q queries) assumption. We
remark that the condition that h be a ∆-2PRF and the condition that h be a
PRF (against q queries) are independent; neither one implies the other.

To get the feel of handling the notion of ∆-2PRF, we give an example of
MD5. Let md5 : {0, 1}128+512 → {0, 1}128 be the compression function of MD5.
It is known [11] that md5 is vulnerable to so called a “pseudo-collision” attack.
That is, for ∆

def= 8000 0000 8000 0000 8000 0000 8000 0000 the condition
md5K(m) = md5K⊕∆(m) (K $← {0, 1}128, m

$← {0, 1}512) holds with a proba-
bility of about 1/246 À 1/2128. Using this technique, an adversary A can attack

md5 in the ∆-2PRF sense: A queries (m,∆, m) (m $← {0, 1}512) and receives
(x, x′); if x = x′, then A outputs 1; otherwise, A outputs 0. Such an A has ad-
vantage Adv∆-2prf

md5 (A) ≈ 1/246−1/2128. Thus, md5 does not satisfy the ∆-2PRF
property.

This characteristic of md5 is rather critical in its architecture. We expect that
this sort of attack be precluded by structural designs of forthcoming compression
functions, and certainly we would hope for designs without such a flaw in more
“matured” compression functions such as sha256.

At the end of this discussion, we emphasize the point that breaking ∆-2PRF
is easier than finding pseudo-collisions. Our proofs of security require that h be
a ∆-2PRF, and h just being resistant to pseudo-collisions would not suffice for
our purpose according to the current reduction.

6 Security Proofs (Double-Key Version)

This section proves the following:

Theorem 1. Let BNMAC be the two-key construction as defined in Sec. 3. If
the underlying compression function h is a PRF and a ∆-2PRF, then BNMAC

is a PRF. More concretely, we have

Advprf
BNMAC(t, q, `) ≤ Advprf

h (t, q) +
(

q

2

)
·
(

2(` + 1) ·Adv∆-2prf
h (t′) +

1
2c

)
,

where t′ = (4` + 1) · Th.

The reduction in the above theorem is essentially tight, due to the birthday
attack [20]. For more discussion on the gap from the exactly tight bound, see
[2].

In order to prove this theorem, we need the following five lemmas. The five
lemmas sequentially reduce the PRF condition on the BNMAC scheme to the
PRF and ∆-2PRF conditions on the underlying compression function. Along the
proofs, we need several intermediate security notions, which are defined when
they first appear. See Fig. 4 for a guide map.

BNMAC: PRF

H: cAU + h: PRF

h: ∆#∆′-2PRF

h: ∆∆′-2PRF

h: ∆-2PRF

H: pf-2PRF
Lemma 2

Lemma 3

Lemma 1

Lemma 4

Lemma 5

Fig. 4. A proof map

For stating the first lemma, we need to define the notion of cAU (com-
putational almost-universality.) An au-adversary A against a keyed function
HK : {0, 1}(c+b)∗ → {0, 1}c (with K ∈ {0, 1}c) simply outputs a pair of messages
(M, M ′) with M, M ′ ∈ {0, 1}(c+b)∗; define

Advau
H (A) def= Pr

[
HK(M) = HK(M ′) ∧M 6= M ′ ∣∣ A ⇒ (M, M ′),K $← {0, 1}c

]
.

Here note that such an adversary is non-adaptive. It also means that we can
disregard the time complexity of au-adversaries (and often it is set to 2 ·TH(`).)

Lemma 1. Let HK : {0, 1}(c+b)∗ → {0, 1}c and hK′ : {0, 1}b → {0, 1}c be
keyed functions with K, K ′ ∈ {0, 1}c. If HK is cAU and hK′ a PRF, then the
composition h◦H(K′,K) defined by hK′

(
HK(M)‖1b−c

)
is a PRF. More concretely

written, the following holds:

Advprf
h◦H(t, q, `) ≤ Advprf

h (t, q) +
(

q

2

)
·Advau

H (t′, `),

where t′ = 2 · TH(`).

Proof. This lemma (along with its pp-MAC version) is proved in [2]. ut
The next lemma relates cAU to pseudo-randomness property, utilizing the

iterative structure of the hyper-Merkle-Damg̊ard. See Table 3 for the notion of
2PRF. We say that a 2prf-adversary A is “prefix-free” (pf-2prf) if M 6⊂ M ′ and
M 6⊃ M ′, where (M, M ′) is the query output by A. Note that in particular,
prefix-freeness implies M, M ′ 6= ε (null) and M 6= M ′.

Table 3. Real and random games for 2PRF

Real Random

A ⇒ (M, M ′) A ⇒ (M, M ′)

K
$← {0, 1}c x, x′

$← {0, 1}c

x ← HK(M); x′ ← HK(M ′) If M = M ′ then x′ ← x EndIf
A ⇐ (x, x′) A ⇐ (x, x′)

Lemma 2. Let h : {0, 1}c+b → {0, 1}c be a compression function and HK :
{0, 1}(c+b)∗ → {0, 1}c the hyper-Merkle-Damg̊ard iteration constructed of h,
keyed via its initial chaining variable. If HK is prefix-free 2PRF, then it is cAU.
More concretely,

Advau
H (t, `) ≤ Advpf-2prf

H (t, ` + 1) +
1
2c

.

Proof. This can be easily proven by using the well-known “extension trick” [2].
ut

Now we reduce the condition that H be a prefix-free 2PRF to the condition
that h be a ∆#∆′-2PRF, whose definition can be found in Table 4.

Lemma 3. If h is a ∆#∆′-2PRF, then its hyper-Merkle-Damg̊ard iteration H
is a prefix-free PRF. More concretely, we have

Advpf-2prf
H (t, `) ≤ ` ·Adv∆#∆′-2prf

h (t′),

where t′ = t + 2 · TH(`).

Table 4. Real and random games for ∆#∆′-2PRF

Real Random

A ⇒ (∆, m, #, ∆′, m′) A ⇒ (∆, m, #, ∆′, m′)

K, K′ $← {0, 1}c x, x′
$← {0, 1}c

If # = 1 then If # = 1 and
x ← hK⊕∆(m); x′ ← hK⊕∆′(m

′) (∆, m) = (∆′, m′) then
Else (i.e., # = 2) x′ ← x

x ← hK⊕∆(m); x′ ← hK′⊕∆′(m
′) EndIf

EndIf; A ⇐ (x, x′) A ⇐ (x, x′)

Proof. Let A be a pf-2prf adversary attacking H, having time complexity at most
t and querying messages each of at most ` chunks. We would like to bound the
advantage Advpf-2prf

H (A). Let (M, M ′) denote the pair of messages that A out-
puts, and write M = m1 · · ·m2n (n chunks) and M ′ = m′

1 · · ·m′
2n′ (n′ chunks).

Note that n, n′ ≤ `. Consider the intermediate games Gi defined in Fig. 5 for
i = 0, · · · , `. Note that running AG0 can be identified with running AH , treating
the condition m1 · · ·m2i = m′

1 · · ·m′
2i to be true when i = 0. Also, running AG`

coincides with the random game for A. Hence

Advpf-2prf
H (A) = Pr

[
AH ⇒ 1

]− Pr
[
A$ ⇒ 1

]

= P0 − P`

=
`−1∑

i=0

(Pi − Pi+1),

where Pi
def= Pr

[
AGi ⇒ 1

]
for i ∈ {0, . . . , `}.

Game Gi Adversary Bi

A ⇒ (M, M ′) A ⇒ (M, M ′)
If m1 · · ·m2i = m′

1 · · ·m′
2i then

(x, x′) ← O(m2i+1, m2i+2, 1, m′
2i+1, m

′
2i+2)

x, x′
$← {0, 1}c Else (i.e., m1 · · ·m2i 6= m′

1 · · ·m′
2i)

(x, x′) ← O(m2i+1, m2i+2, 2, m′
2i+1, m

′
2i+2)

EndIf
Define (y, y′) as in Table 5 Define (y, y′) as in Table 6
A ⇐ (y, y′) A ⇐ (y, y′)

Output whatever A outputs

Fig. 5. Intermediate games Gi and adversaries Bi

Table 5. Definition of (y, y′) in game Gi

n′ ≤ i n′ ≥ i + 1

n ≤ i y ← x y ← x
y′ ← x′ y′ ← Hx′(m

′
2i+1 · · ·m′

2n′)

n ≥ i + 1 y ← Hx(m2i+1 · · ·m2n) If m1 · · ·m2i = m′
1 · · ·m′

2i then
y′ ← x′ y ← Hx(m2i+1 · · ·m2n)

y′ ← Hx(m′
2i+1 · · ·m′

2n′)
Else (i.e., m1 · · ·m2i 6= m′

1 · · ·m′
2i)

y ← Hx(m2i+1 · · ·m2n)
y′ ← Hx′(m

′
2i+1 · · ·m′

2n′)

Table 6. Definition of (y, y′) in adversary Bi

n′ ≤ i n′ ≥ i + 1

n ≤ i y ← x y ← x
y′ ← x′ y′ ← Hx′(m

′
2i+3 · · ·m′

2n′)

n ≥ i + 1 y ← Hx(m2i+3 · · ·m2n) y ← Hx(m2i+3 · · ·m2n)
y′ ← x′ y′ ← Hx′(m

′
2i+3 · · ·m′

2n′)

Now for each i = 0, . . . , ` − 1 we define an adversary Bi that uses A as a
subroutine and attacks h in the ∆#∆′-2PRF sense, as described in Fig. 5. It
can be directly verified that Pr

[
Bh

i ⇒ 1
]

= Pr
[
AGi ⇒ 1

]
= Pi and Pr

[
B$

i ⇒
1
]

= Pr
[
AGi+1 ⇒ 1

]
= Pi+1. Hence

Advpf-2prf
H (A) =

`−1∑

i=0

(Pi − Pi+1)

=
`−1∑

i=0

(
Pr

[
Bh

i ⇒ 1
]− Pr

[
B$

i ⇒ 1
])

=
`−1∑

i=0

Adv∆#∆′-2prf
h (Bi)

≤
`−1∑

i=0

Adv∆#∆′-2prf
h (t′)

= ` ·Adv∆#∆′-2prf
h (t′).

ut
Next we reduce the condition that h be a ∆#∆′-2PRF to the condition that

h be a ∆∆′-2PRF, whose definition can be found in Table 7. The notion of

∆∆′-2PRF is simpler than that of ∆#∆′-2PRF, and it is also closer to that of
∆-2PRF.

Table 7. Real and random games for ∆∆′-2PRF

Real Random

A ⇒ (∆, m, ∆′, m′) A ⇒ (∆, m, ∆′, m′)

K
$← {0, 1}c x, x′

$← {0, 1}c

x ← hK⊕∆(m) If (∆, m) = (∆′, m′) then
x′ ← hK⊕∆′(m

′) x′ ← x EndIf
A ⇐ (x, x′) A ⇐ (x, x′)

Lemma 4. If a compression function h is ∆∆′-2PRF, then it is ∆#∆′-2PRF.
More concretely, we have

Adv∆#∆′-2prf
h (t) ≤ 2 ·Adv∆∆′-2prf

h (t′),

where t′ = t + Th.

Proof. Let B be a ∆#∆′-2prf adversary against h having time complexity at
most t. We create ∆∆′-2prf adversaries C and C ′, each using B as its subroutine,
as described in Fig. 6. It can be directly verified that Pr

[
Ch ⇒ 1

]
= Pr

[
C ′$ ⇒ 1

]
,

Pr
[
C$ ⇒ 1

]
= Pr

[
B$ ⇒ 1

]
and Pr

[
C ′h ⇒ 1

]
= Pr

[
Bh ⇒ 1

]
. Therefore

Adv∆#∆′-2prf
h (B) = Pr

[
Bh ⇒ 1

]− Pr
[
B$ ⇒ 1

]

= Pr
[
C ′h ⇒ 1

]− Pr
[
C ′$ ⇒ 1

]
+ Pr

[
Ch ⇒ 1

]− Pr
[
C$ ⇒ 1

]

= Adv∆∆′-2prf
h (C ′) + Adv∆∆′-2prf

h (C)

≤ 2 ·Adv∆∆′-2prf
h (t′).

ut
Finally, we are ready to reach the condition of ∆-2PRF. The last lemma

gives us straight-forward reduction of ∆∆′-2PRF to ∆-2PRF:

Lemma 5. If a compression function h is ∆-2PRF, then it is ∆∆′-2PRF. More
concretely, we have

Adv∆∆′-2prf
h (t) ≤ Adv∆-2prf

h (t).

Proof. Let C be a ∆∆′-2prf adversary against h having time complexity at most
t. We construct a ∆-2prf adversary D against h that uses C as its subroutine,
as follows.

Adversary C Adversary C′

B ⇒ (∆, m, #, ∆′, m′) B ⇒ (∆, m, #, ∆′, m′)

If # = 1 then K
$← {0, 1}c; x ← hK⊕∆(m)

(x, x′) ← O(∆, m, ∆′, m′) If # = 1 then
Else (i.e., # = 2) x′ ← hK⊕∆′(m

′)
(x, x) ← O(∆, m, ∆, m) Else (i.e., # = 2)

x′
$← {0, 1}c EndIf (x′, x′) ← O(∆′, m′, ∆′, m′) EndIf

B ⇐ (x, x′) B ⇐ (x, x′)
Output whatever B outputs Output whatever B outputs

Fig. 6. Adversaries C, C′

D runs C and obtains the query (∆,m,∆′,m′). Then D asks its oracle a query
and receives (x, x′) ← O(m,∆⊕∆′, m′). D forwards (x, x′) to C and outputs
whatever C outputs.

Here observe that Pr
[
Dh ⇒ 1

]
= Pr

[
Ch ⇒ 1

]
and that Pr

[
D$ ⇒ 1

]
=

Pr
[
C$ ⇒ 1

]
. Hence we have

Adv∆∆′-2prf
h (C) = Adv∆-2prf

h (D)

≤ Adv∆-2prf
h (t),

neglecting the increase in D’s time complexity. ut
The above five lemmas prove Theorem 1. Recall that, without loss of gener-

ality we can estimate the time complexity of a cAU adversary to be 2 ·TH(`). So
for the time complexity t′ in Theorem 1 we get t′ = 2 · TH(`) + 2 · TH(`) + Th =
(4` + 1) · Th.

7 Single-Key Versions

Our BNMAC construction so far requires two independent keys K, K ′ ∈ {0, 1}c,
which may be an undesirable feature in some cases in practice. However, this
problem is easily resolved through the pseudo-randomness of h. We show two
solutions.

The first method is a trivial way of deriving two keys. Let K∗ ∈ {0, 1}c be a
master key. From K∗ derive two keys as K ← hK∗

(
0b

)
and K ′ ← hK∗

(
1b

)
. We

then use these two keys in place of K, K ′ ∈ {0, 1}c in the BNMAC construction.
See Fig. 7 for a pictorial description. The only difference between the original
double-key version and this single-key variant lies in the way how the two keys
K and K ′ are produced (in the former K, K ′ $← {0, 1}c, whereas in the latter

these keys are derived via h from K∗ $← {0, 1}c.) Hence distinguishing between
the two versions amounts to breaking the pseudo-randomness of h (with two
constant queries 0b and 1b to the oracle.) It should be noted that if we replace

the PRF assumption with that of pp-MAC in Lemma 1, then the pp-MAC
version of Theorem 1 still holds for this single-key variant. This is because the
2PRF requirement on h for key derivation is absorbed into ∆-2PRF of h, not
PRF (against q queries.)

⊕
m1

h h h

K∗ 0b m2 m2n−1 m2n

⊕
h

K∗ 1b

h

1b−c

‖ z

Fig. 7. Single-key version 1

The second method takes the idea from [22]. See Fig. 8 for the description
of this variant. While this version saves one extra block of invocation to the
compression function, there are two points to be attended to. One is that now
we need the condition b ≥ c + 1 (rather than b ≥ c.) The other is that the
pp-MAC version appears to be infeasible in this case.

⊕
m1

h h h

K∗ 0b m2 m2n−1 m2n

⊕
h

K∗ 1b−c

‖ z

Fig. 8. Single-key version 2

8 Using a Shorter Key

Recall that the size c of a chaining variable may be larger than one’s desired
security parameter, depending on a choice of compression functions. This means
that in practice the desired size k of the master key K∗ may be smaller than c,
disabling the above single-key construction.

This difficulty can be settled in several ways. One is to use only the first k
bits of c in the above single-key variant (and the remaining c − k bits may be
padded with zeros.) Another is to fill out the c bits by multiple copies of a k-bit
key, as K∗‖K∗‖ · · · . In either example, note that we still do not lose our formal
proofs of security with the first version of the single-key construction, assuming
additionally that the newly keyed function is a 2PRF against corresponding two
oracle queries.

9 Summary

This paper proposes a novel mode of operation of compression functions, called
hyper-Merkle-Damg̊ard, which can process a message faster than the conven-
tional Merkle-Damg̊ard iteration and can be used exclusively as a MAC/PRF.
The proofs of security are based on the assumption that the underlying com-
pression function satisfies some PRF properties. These PRF properties include
a new notion which we call ∆-2PRF. We carefully take a look at this property
and identify it as not a demanding condition. We first give proofs of security of a
double-key version, called BNMAC, and then show that single-key versions can
be easily derived, along with flexibility of the key size.

Acknowledgments. The author would like to thank ASIACRYPT 2007 anony-
mous reviewers for their valuable comments, insightful questions and useful sug-
gestions. The feedback helps the author improve the quality of the paper in its
various aspects.

References

1. An, J.H., Bellare, M.: Constructing VIL-MACs from FIL-MACs: Message authen-
tication under weakened assumptions. In: Wiener, M. (ed.) CRYPTO 1999. LNCS,
vol. 1666, pp. 252–269. Springer, Heidelberg (1999)

2. Bellare, M.: New proofs for NMAC and HMAC: Security without collision-
resistance. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 602–619.
Springer, Heidelberg (2006)

3. Bellare, M., Canetti, R., Krawczyk, H.: Pseudorandom functions revisited: The
cascade construction and its concrete security. IEEE Symposium on Foundations
of Computer Science, 514–523 (1996)

4. Bellare, M., Guérin, R., Rogaway, P.: XOR MACs: New methods for message
authentication using finite pseudorandom functions. In: Coppersmith, D. (ed.)
CRYPTO 1995. LNCS, vol. 963, pp. 15–28. Springer, Heidelberg (1995)

5. Bellare, M., Ristenpart, T.: Multi-property-preserving hash domain extension and
the EMD transform. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol.
4284, pp. 299–314. Springer, Heidelberg (2006)

6. Bellare, M., Ristenpart, T.: Hash functions in the dedicated-key setting: Design
choices and MPP transforms. In: Arge, L., Cachin, C., Jurdzinski, T., Tarlecki, A.
(eds.) ICALP 2007. LNCS, vol. 4596, pp. 399–410. Springer, Heidelberg (2007)

7. Bellare, M., Rogaway, P.: Collision-resistant hashing: Towards making UOWHFs
practical. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 470–484.
Springer, Heidelberg (1997)

8. Contini, S., Yin, Y.L.: Forgery and partial key-recovery attacks on HMAC and
NMAC using hash collisions. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006.
LNCS, vol. 4284, pp. 37–53. Springer, Heidelberg (2006)

9. Coron, J.S., Dodis, Y., Malinaud, C., Puniya, P.: Merkle-Damg̊ard revisited: How
to construct a hash function. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621,
pp. 430–448. Springer, Heidelberg (2005)

10. Damg̊ard, I.: A design principle for hash functions. In: Brassard, G. (ed.) CRYPTO
1989. LNCS, vol. 435, pp. 416–427. Springer, Heidelberg (1989)

11. den Boer, B., Bosselaers, A.: Collisions for the compressin function of MD5. In:
Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 293–304. Springer,
Heidelberg (1993)

12. Halevi, S., Krawcyzk, H.: Strengthening digital signatures via randomized hash-
ing. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 41–59. Springer,
Heidelberg (2006)

13. Kim, J., Biryukov, A., Preneel, B., Hong, S.: On the security of HMAC and NMAC
based on HAVAL, MD4, MD5, SHA-0 and SHA-1. In: Prisco, R.D., Yung, M. (eds.)
SCN 2006. LNCS, vol. 4116, pp. 242–256. Springer, Heidelberg (2006)

14. Lucks, S.: A failure-friendly design principle for hash functions. In: Roy, B.K. (ed.)
ASIACRYPT 2005. LNCS, vol. 3788, pp. 474–494. Springer, Heidelberg (2005)

15. Maurer, U.M., Sjödin, J.: Single-key AIL-MACs from any FIL-MAC. In Caires, L.,
Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS,
vol. 3580, pp. 472–484. Springer, Heidelberg (2005)

16. Merkle, R.C.: One way hash functions and DES. In: Brassard, G. (ed.) CRYPTO
1989. LNCS, vol. 435, pp. 428–446. Springer, Heidelberg (1989)

17. NIST: NIST brief comments on recent cryptanalytic attacks on secure hashing
functions and the continued security provided by SHA-1 (2004)

18. NIST: NIST brief comments on recent cryptanalytic attacks on SHA-1 (2004)
19. Patel, S.: An efficient MAC for short messages. In: Nyberg, K., Heys, H.M. (eds.)

SAC 2002. LNCS, vol. 2595, pp. 353–368. Springer, Heidelberg (2003)
20. Preneel, B., van Oorschot, P.C.: On the security of iterated message authentication

codes. IEEE Transactions on Information Theory 45(1), 188–199 (1999)
21. Shoup, V.: A composition theorem for universal one-way hash functions. In:

Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 445–452. Springer,
Heidelberg (2000)

22. Yasuda, K.: “Sandwich” is indeed secure: How to authenticate a message with just
one hashing. In: Pieprzyk, J., Ghodosi, H., Dawson, E. (eds.) ACISP 2007. LNCS,
vol. 4586, pp. 355–369. Springer, Heidelberg (2007)

