
Group Encryption

Aggelos Kiayias1, Yiannis Tsiounis2, and Moti Yung3

1 Computer Science and Engineering, University of Connecticut
Storrs, CT, USA. aggelos@cse.uconn.edu

2 BQuotes, New York, NY, USA. yiannis@bquotes.com.
3 Computer Science, Columbia University

New York, NY, USA. moti@cs.columbia.edu

Abstract. We present group encryption, a new cryptographic primitive
which is the encryption analogue of a group signature. It possesses similar
verifiability, security and privacy properties, but whereas a group signa-
ture is useful whenever we need to conceal the source (signer) within a
group of legitimate users, a group encryption is useful whenever we need
to conceal a recipient (decryptor) within a group of legitimate receivers.
We introduce and model the new primitive and present sufficient as well
as necessary conditions for its generic implementation. We then develop
an efficient novel number theoretic construction for group encryption of
discrete logarithms whose complexity is independent of the group size.
As part of achieving this we construct a new public-key encryption for
discrete logarithms that satisfies CCA2-key-privacy and CCA2-security
in the standard model (this gives the first Pailler-based system with the
above two properties proven in the standard model).
Applications of group encryption include settings where a user wishes to
hide her preferred trusted third party or even impose a hidden hierarchy
of trusted parties while being required to assure well-formed ciphertexts,
as well as oblivious storage settings where the set of retrievers need to be
verifiable but the storage distribution should be oblivious to the server.

1 Introduction

Group signatures were introduced in [22] and further developed in a line of works,
e.g., [23, 20, 17, 18, 11, 36, 4, 3, 14, 6, 33, 8, 16, 7, 34, 2, 43, 9, 35, 30]. In a nutshell a
group signature allows a registered member of a PKI (a.k.a. a group of registered
users) to issue a signature on behalf of the group so that the issuer’s identity
is assured to be valid but is hidden from the verifier. After its introduction, the
primitive has found numerous applications.

In this work we introduce a novel cryptographic primitive that is the en-
cryption analogue of a group signature; we call it group encryption (not to be
confused with group-oriented cryptography as in [26, 12], which is essentially
threshold cryptosystems). A group encryption scheme allows a sender to pre-
pare a ciphertext and convince a verifier that it can be decrypted by a member
of a given PKI group. As in group signature, in a group encryption there can be
an opening authority that can, reveal the identity of the group member who is

2 A. Kiayias, Y. Tsiounis and M. Yung

the recipient of the ciphertext when the appropriate circumstances are triggered.
Note that group encryption provides “receiver anonymity” in the same way that
group signature provides “sender anonymity.” Nevertheless, this primitive was
never considered in the group-signature literature before, even though public-key
encryption and signatures are typically dual primitives that have been developed
in parallel in many other settings.

A Motivating Typical Scenario: In many protocols that attempt to main-
tain privacy/ anonymity and employ trusted parties, it has been often naturally
advocated as a flexible service to allow a user to choose its recipient trustee
(e.g., a trusted third party for conditionally opening the ciphertext) among a
set of available authorized parties. However, the choice of a third party, while
increasing flexibility, might also reveal some preference of the user, thus reduc-
ing privacy. Group encryption is motivated by such applications. As observed
by Chaum [21] the fact that the trustee is hidden within a large set of trusted
parties makes attempts to bribe officials harder, thus contributing to secrecy of
individuals as well.

Let us investigate whether it is possible to implement the above typical sce-
nario by employing existing primitives. The notion of key-privacy was introduced
in [5] (also [31]) who showed that there exist encryption schemes where it is im-
possible for an adversary to distinguish what public-key has been used for the
message encryption. If we attempt to use these encryption schemes, a user may
make his own trustee’s public key (without even publishing this public key) and
use that one for encryption, thus faking an encryption to a trustee. Note that
this amounts to attacking the application, since this user’s encryption cannot be
opened by any valid trustee. Key privacy for users who encrypt with their own
key was given in [13], but this means that the user has to be his own trustee,
which, again, is insufficient for the application above. Finally, the notion of ver-
ifiable encryption allows the sender to prove certain properties of the encrypted
message (cf. e.g., [1, 12, 44, 19]). If we employ verifiable encryption for the above
application, it only assures verifiability when the public key employed is known
to the verifier. Knowledge of the public key employed, in turn, is an attack on
the anonymity of the trustee in the above application.

Our Major Contributions. In this work, motivated by the above examples,
we first contribute the definition, formalization and generic feasibility of group
encryption. We then construct an efficient concrete implementation and investi-
gate its related number theoretic properties.
– Definition and Model. The group encryption primitive (GE) involves a public-
key encryption scheme with special properties, a group joining protocol (in-
volving public-key certification) and a message space that may have a required
structure. Besides correctness, there are three security properties that pertain to
GE schemes. The first two of these properties, called Security and Anonymity
protect the sender from a hostile environment that tries to either extract infor-
mation about the message (security) or to extract information about who the
recipient is (anonymity). We require both properties to have the strongest notion
of immunity to attack, namely CCA2 [27, 41]. The third property, that we call

Group Encryption 3

Soundness protects the verifier from a hostile environment in which the sender,
the group manager and the recipients collude against him, so that he accepts a
ciphertext (e.g., an encrypted record to be stored) that either does not have the
required structure or cannot be decrypted by a registered group member.
– Necessary and Sufficient Conditions and Generic Design. We identify the nec-
essary cryptographic components of a GE scheme that include: a digital signa-
ture with adaptive chosen message security, a public-key encryption scheme that
satisfies both CCA2-key-privacy and CCA2-security, and zero-knowledge proofs
for NP statements. Using such components we demonstrate how a generic GE
scheme can be implemented and how, in turn, the scheme implies these compo-
nents (where encryption is derived directly with a relatively tight reduction).
– Efficient Design. We design a GE scheme for the discrete logarithm relation,
which is one of the most useful relations in cryptography. To this end we employ
the modular design as a guide. However, in order to get an efficient scheme,
we need to design, exploit and combine primitives that algebraically suit the
primitive’s structure so that the ciphertext and the interaction associated with
it has size independent of the size of the group of potential receivers. Given the
large multitude of strong security requirements the model possesses, we found
the task of designing and proving the properties to be quite challenging.
– Efficient Encryption of Discrete Logarithm with CCA2-Security and CCA2-
key-privacy. As our first step in the overall group encryption design, we point
out that no existing public-key encryption scheme is suitable for designing a
GE for discrete logarithm relations, since the compound set of the requirements
that include verifiability, CCA2-security and CCA2-key-privacy for anonymity
has not been achieved before and requires special attention. We then design a
public-key encryption with CCA2 key-privacy suitable for CCA2 secure verifiable
encryption of discrete-logarithms. The security of the scheme is based on the
Decisional Composite Residuosity (DCR) assumption of [40] (and its design is
motivated by earlier works of [24, 28, 19, 10]). We note that our encryption is the
first Paillier-based scheme proven to satisfy key-privacy, a fact which may be of
independent interest.
– Algebraic Structure and Intractability Assumption. A new intractability as-
sumption is required for proving the key-privacy property of our encryption
scheme: Decisional Diffie Hellman assumption for the subgroup of square (quadra-
tic) n-th residues (DDHSQNR). We explain why this is a natural variation of DDH
over a cyclic subgroup of Z∗

n2 that has order without small prime divisors and
moreover, to strengthen the claim of intractability, we prove that the DCR (which
is needed for arguing the security of the scheme anyway) implies the computa-
tional Diffie Hellman (CDH) assumption in this subgroup. Note that we know of
no arithmetic cyclic group without a partial discrete-log trapdoor, where CDH
holds but where DDH does not and thus the assumption seems reasonable.

Applications of Group Encryption. The combination of CCA2 security of
ciphertexts, CCA2 anonymity of receivers and verifiability is a strong one and
supports some enhanced properties of known constructions as well as opens the
door for new applications.

4 A. Kiayias, Y. Tsiounis and M. Yung

– Anonymous Trusted Third Party Applications. Many protocols such
as Fair Encryption, Escrow Encryption, Group Signatures, Fair Exchange, etc.
employ a trustee, namely a trusted third party who is off-line during the pro-
tocol and gets invoked in case something goes wrong. For these primitives it is
expected and has been advocated that there will be a multitude of these trustees.
In this case the identity of a chosen trustee may reveal certain aspects of the
user, whereas the user prefers to retain her privacy. For example, imagine an
“International Key Escrow” scenario where a user wants to deposit (decrypt)
a key with her own national trusted representative (and needs to do this in a
verifiable way). However, such a choice, if made public, may reveal the user’s
nationality (in violation of privacy). The new group encryption primitive enables
the user to trust her own representative, but without revealing its identity, yet
to assure others that indeed a designated trustee has been chosen (and not a
“faked trustee”). We believe this enhanced privacy while allowing flexibility of
choice of trustee is an important step forward in privacy primitives. In this new
setting two models are possible for taking keys off escrow: In the first one, each
trustee tries to retrieve all the keys from the available ciphertext repository, and
will be successful only when the ciphertext is his to open. In the second model,
there is an opening authority which can open the identity of the trustee (but
not the encrypted key, due to separation of duties). The opening authority, in
turn, directs the ciphertext to the chosen trustee to be decrypted. Our primitive
supports both opening models. Another scenario that is similar to the above, is
proxy voting where users deposit their votes encrypted under the public-key of
a proxy of their choice. A proxy is a designated trustee in this case and each
user may prefer (or even be required due to legislation) to hide her choice when
depositing her vote. In this manner, the proxies can be called upon later, in the
tallying phase, to recover the votes entrusted to them. Recall that, as motivated
above when contrasting the notion of group encryption with mere key privacy
or verifiable encryption, if any of the security properties of group encryption is
missing, the application loses its effectiveness, and only the combination of prov-
ability (soundness), CCA2 security and CCA2 key privacy delivers the desired
effect on the overall escrow system.

– Ad-Hoc Access Structure Group Signature. We may implement the
opening authority in group encryption as a multitude of trustees and use it to
encrypt a signing credential. In this way we can build a group signature where
signers can organize the set of trustees to open their signature by acting on it in a
predetermined order following an ad-hoc structure that is only partially revealed
to the verifier (e.g., a tree or other graph). This can be achieved by cascading
the group encryption primitive so that a sequence of hops (identity discoveries
and transfers) will be required to recover the identity of the signer in the sig-
nature opening step. This notion generalizes “hierarchical group signatures” a
primitive introduced in [43] where the trustee access structure was determined
as a fixed tree. This application demonstrates the power of our primitive in or-
ganizing hidden structures of decrypting parties with CCA2 hiding and securing
properties.

Group Encryption 5

– Secure Oblivious Retriever Storage. In the area of ubiquitous comput-
ing, secure and anonymous credentials may move between computing elements
(computer, mobile unit, embedded device, etc.). A user may want to pass a
credential secretly and anonymously between devices (either between her own
devices, or devices of her peers, all belonging to the same group). Asynchronous
transfer that does not require all devices to be present at the same time requires
a storage server (similar to a mail server). We can employ group encryption in
implementing such a storage server safely, where it is guaranteed that (1) the
server only stores valid credentials (i.e., well formed ones that can be delivered
to a legitimate retriever and avoid being tricked into storing garbage); (2) the
credentials are encrypted and thus the server (or anyone who may compromise
it) cannot employ them; and (3) the identity of retrievers of credentials is hidden
(even under active attacks, i.e. CCA2 security conditions are needed). A device
reading the storage can recover its credentials by scanning the storage sequen-
tially and being successful in decrypting the credentials directed to it (with or
without the aid of an opening authority).

We note that group encryption is naturally related to the notion of “custodian-
hiding verifiable encryption” that was investigated in [38, 37] and may apply in
similar application scenarios. From the construction point of view, the focus of
the present work is in attaining constant complexity in the group size as opposed
to linear that was the case in this previous work.

2 Group Encryption: Model and Definitions

The parties involved in a GE scheme are the sender, the verifier, a group manager
(GM) that manages the group of receivers and an opening authority (OA) that
is capable of discovering the identity of the receiver. Formally, a GE scheme that
is verifiable for a public-relation R is a collection of procedures and protocols
that are denoted as: SETUP, JOIN, 〈Gr,R, sampleR〉, ENC, DEC, OPEN, 〈P,V, recon〉
The functionality of the above procedures is as follows: the SETUP is a set of
intialization procedures for the system, one for the GM, one for the OA and one
to produce public-parameters (denoted by SETUPGM, SETUPOA, SETUPinit respec-
tively). Using their respective setup procedures, the GM and the OA will produce
their public/secret-key pairs 〈pkGM, skGM〉 and 〈pkOA, skOA〉; JOIN = 〈Juser, JGM〉
is a protocol between a prospective group member and the GM. After an exe-
cution of a JOIN protocol the group member will output his public/secret-key
pair (pk, sk); the new member’s public-key pk along with a certificate cert will be
published in the public directory database by the GM. We will denote by Lparam

pk

the language of all valid public-keys where param is a public parameter produced
by the SETUPinit procedure.

To employ GE in a transaction, it is assumed that the sender (call her
Alice) has obtained a pair (x,w) that is sampled according to the procedure
sampleR(pkR, skR), where pkR, skR are produced by the generation procedure
Gr(1ν) that samples the public/secret parameters for the relation R. We remark
that the secret-parameter skR may be empty depending on the relation (e.g., in

6 A. Kiayias, Y. Tsiounis and M. Yung

the case of discrete logarithm the relation is typically publicly samplable, hence
skR is empty – but this is not be the case in general). The polynomial-time
testing procedure R(x,w) returns true iff (x,w) belongs to the relation based
on the public-parameter pkR. We note that given the relation R(·, ·) it will be
useful that it is hard to extract a “witness” w given an instance x; however this
need not be included in the formal requirements for a GE scheme. Note that if
verifiability is not desired from the GE, the relation R will be set to be the trivial
relation that includes any string of a fixed size as a witness (and in such case x
will be simply equal to 1|w|).

Alice possessing the pair (x,w), she wishes to encrypt w for her chosen
receiver, call him Bob. She obtains Bob’s certified public-key 〈pk, cert〉 from
database, and employing the public-keys pkGM and pkOA she encrypts w as
ENC(pkGM, pkOA, pk, w, L) to obtain the ciphertext ψ with a certain label L (L is a
public string bound to the ciphertext that may contain some transaction related
data or be empty; we call it the “context” of ψ). Alice will give x, ψ, L to the
verifier. Subsequently, Alice and the verifier will engage in the proof of knowl-
edge 〈P,V〉 that will ensure the following regarding the ciphertext ψ and label L:
there exists a group member whose key is registered in the database (i.e., Bob in
this case) that is capable of decrypting ψ in context L and obtaining a value w′

for which it holds that if w ← recon(w′) we have that (x,w) ∈ R. Note that, for
P,V, the input to the verifier will be the values param, pkGM, pkOA, pkR, x, ψ, L,
whereas the prover (Alice) will have as additional input the values pk, cert, w
as well as the coin tosses used for the formation of ψ. The function recon(·)
reconstructs a witness based on the decryption of ψ and may be the identity
function.

In the remaining of the section we give four definitions, correctness and
the three security related properties of GE, security, anonymity, and soundness.
For simulating two-party protocols we use the following notation: 〈outputA |
outputB〉 ← 〈A(inputA), B(inputB)〉(common input).

Definition 1. (Correctness) A GE scheme is correct if the following “correct-
ness game” returns 1 with overwhelming probability.

1. param← SETUPinit(1ν); 〈pkR, skR〉 ← Gr(1ν); (x,w)← sampleR(pkR, skR).
2. 〈pkGM, skGM〉 ← SETUPGM(param); 〈pkOA, skOA〉 ← SETUPOA(param);
3. 〈pk, sk, cert | pk, cert〉 ← 〈Juser, JGM(skGM)〉(pkGM). If pk 6∈ Lparam

pk then abort;
4. ψ ← ENC(pkGM, pkOA, pk, cert, w, L).
5. out1 ← w

?= recon(DEC(sk, ψ, L)).
6. out2 ← pk

?= OPEN(skOA, [ψ]oa, L).
7. 〈done | out3〉 ← 〈P(w,ψ, coinsψ),V〉(param, pkGM, pkOA, pkR, x, ψ, L).
8. if (out1 = out2 = out3 = true) return 1.

As shown above the opening procedure OPEN may not operate on the cipher-
text ψ but on a substring of the ciphertext ψ that is denoted by [ψ]oa; we make
the distinction explicit as it is relevant in terms of chosen ciphertext security.

Group Encryption 7

There are three “security notions” for GE schemes: security, anonymity and
soundness (that includes verifiability). Security and anonymity are properties
that protect Alice (the prover) against a system that acts against her.
Formulation of the Security Property. In our definitions we use a number
of traditional oracles that express the nature of the interaction of the adversary
and the system. Accordingly, we employ oracles that are stateless (those that
maintain no state across queries) and those that are stateful. Next, we introduce
the decryption oracle, the challenge procedures and the prover simulator oracle.
DEC(sk, ·): This is a decryption oracle for the GE decryption function DEC. The
value sk is a secret-key that will be clarified from the context. If ψ is some
“forbidden” ciphertext with label L that the oracle must reject we will write
DEC¬〈ψ,L〉(sk, ·).
CHbror(1

ν , pk, w, L): This a real-or-random challenge procedure for the GE encryp-
tion scheme. It returns two values denoted as 〈ψ, coinsψ〉 so that if b = 1 then
ψ ← ENC(pkGM, pkOA, pk, cert, w, L), whereas if b = 0, ψ ← ENC(pkGM, pkOA, pk,
cert, w′, L) where w′ is a plaintext sampled at random from the space of all pos-
sible plaintexts of length 1ν for the encryption function (it is assumed at least
two plaintexts exist). In either case coinsψ are the random coin tosses that are
used for the computation of ψ.
PROVEbP,P′(pkGM, pkOA, pk, cert, pkR, x, w, ψ, L, coinsψ): this is an oracle that if
b = 1, it simulates an execution of the prover procedure of P of the GE scheme
(i.e., Alice), on pkGM, pkOA, pk, cert, pkR, x, w, ψ, L, coinsψ. On the other hand,
if b = 0, it simulates the protocol P ′ that takes the same input as P with the
exception of the values of w and coinsψ (the design of P ′ is part of proving the
security property).

Based on the above three procedures we are ready to give the security def-
inition, which is reminiscent of a real-or-random attack on the underlying en-
cryption scheme. In the game below the adversary controls the GM and OA and
all group members except the member that Alice chooses as her recipient, i.e.,
Bob. In fact, the adversary is the entity that introduces Bob into the group and
issues a certificate for his public-key. Moreover, the adversary has CCA2 access
to Bob’s secret-key. The adversary also selects some public relation R based on
pkR as well as a pair (x,w). Subsequently a coin is tossed and the adversary
either receives the encryption of w and engages with Alice in the proof of ci-
phertext validity or the adversary receives an encryption of a random plaintext
and engages in a simulated proof of validity. A GE would satisfy security if the
adversary is unable to tell the difference. More formally (note that negl(ν) is a
function that for any c, is less than ν−c for sufficiently large ν):

Definition 2. A GE scheme satisfies security if there exists a protocol P ′ s.t.
the “security game” below when instantiated by any PPT A, returns 1 with
probability less or equal to 1/2 + negl(ν).

1. param← SETUPinit(1ν); 〈aux, pkGM, pkOA〉 ← A(param);
2. 〈pk, sk, cert | aux〉 ← 〈Juser,A(aux)〉(pkGM);
3. 〈aux, x, w, L, pkR〉 ← ADEC(sk,·)(aux); if (x,w) 6∈ R then abort;

8 A. Kiayias, Y. Tsiounis and M. Yung

4. b
r← {0, 1}; 〈ψ, coinsψ〉 ← CHbror(1

ν , pk, w, L);
5. b∗ ← APROVEbP,P′ (pkGM,pkOA,pk,cert,pkR,x,w,ψ,L,coinsψ),DEC¬〈ψ,L〉(sk,·)(aux, ψ)
6. if b = b∗ return 1 else 0.

Formulation of the Anonymity Property. In the anonymity attack the
adversary controls the system except the opening authority. Anonymity can be
thought of as a CCA2 attack against the encryption system of the OA. The ad-
versary registers the two possible recipients into the PKI database and provides
the relation and the witness to Alice. Alice will encrypt the same witness always
as provided by the adversary but will use the key of one of the two recipients
at random. The adversary, who has CCA2 decryption access to both recipients
as well as the OA, will have to guess which one of the two is Alice’s choice. We
define the following procedures:
CHbanon(pkGM, pkOA, pk0, pk1, w, L): The challenge procedure receives a plaintext
w and two public-keys pk0, pk1, and returns two values, 〈ψ, coinsψ〉 so that ψ ←
ENC(pkGM, pkOA, pkb, certb, w, L) and coinsψ are the random coin tosses that are
used for the computation of ψ.
USER(pkGM): this is an oracle that simulates two instantiations of Juser, i.e., it is
given pkGM and simulates two users that wish to become members of the group;
the oracle has access to a string denoted by keys in which USER will write the
output of the two Juser instances.
OPEN(skOA, ·): this is an oracle that simulates the OPEN operation of the opening
authority; recall that OPEN may not operate on the whole ciphertext ψ but rather
on substring of it that will be denoted by [ψ]oa.

Definition 3. A GE scheme satisfies anonymity if the following game instanti-
ated for any PPT A, it returns 1 with probability less or equal 1/2 + negl(ν).

1. param← SETUPinit(1ν); 〈pkOA, skOA〉 ← SETUPOA(param);
2. 〈pkGM, skGM〉 ← SETUPGM(param); aux← AUSER(pkGM),OPEN(skOA,·)(skGM);
3. if keys 6= 〈pk0, sk0, cert0, pk1, sk1, cert1〉 then abort;
4. 〈aux, x, w, L, pkR〉 ← AOPEN(skOA,·),DEC(sk0,·),DEC(sk1,·)(aux);
5. if (x,w) 6∈ R then abort; b r← {0, 1};
6. 〈ψ, coinsψ〉 ← CHbanon(pkGM, pkOA, pk0, pk1, w, L);
7. tb ← 〈pkGM, pkOA, pkR, pkb, certb, x, w, ψ, L, coinsψ〉;
8. b∗ ← AP(tb),OPEN¬〈[ψ]oa,L〉(skOA,·),DEC¬〈ψ,L〉(sk0,·),DEC¬〈ψ,L〉(sk1,·)(aux, ψ);
9. if b = b∗ return 1 else 0;

This completes the security definition as far as Alice is concerned. From the
point of view of the verifier, the goal of a malicious environment in which the
verifier operates is to provide him with a ciphertext that encrypts a witness for
a public relation that does not open to a witness even if all the group members
apply their decryption function to it. Immunity to this attack, which we call
soundness, guarantees that at least one group key will open to a valid witness.
Formulation of the Soundness Property. A soundness attack proceeds as
follows: the adversary will create adaptively the group of recipients communi-
cating with the GM. In this attack game, the adversary wins if, while playing

Group Encryption 9

the role of Alice, she convinces the verifier that a ciphertext is valid with re-
spect to a public-relation R of the adversary’s choice, but it holds that either
(1) if the opening authority applies skOA to the ciphertext the result is a value
that is not equal to a public-key of any group member, or (2) the revealed key
satisfies pk 6∈ Lparam

pk . To formalize soundness we introduce the following group
registration oracle:
REG(sik, ·): this is an oracle that simulates JGM, i.e., it is given skGM and registers
users in the group; the oracle has access to a string database that stores the
public-keys and their certificates.

Definition 4. A GE scheme satisfies soundness if the following “soundness
game”, when instantiated with any PPT adversary A, the probability it returns
1 is negligible.

1. param← SETUPinit(1ν); 〈pkOA, skOA〉 ← SETUPOA(param);
2. 〈pkGM, skGM〉 ← SETUPGM(param);
3. 〈pkR, x, ψ, L, aux〉 ← AREG(skGM,·)(param, pkGM, pkOA, skOA);
4. 〈aux, out〉 ← 〈A(aux),V〉(param, pkGM, pkOA, pkR, x, ψ, L);
5. pk← OPEN(skOA, [ψ]oa, L) ;
6. if pk 6∈ database or pk 6∈ Lparam

pk or ψ 6∈ Lx,L,pkR,pkGM,pkOA,pk
ciphertext then ret. 1 else 0;

Note that Lx,L,pkR,pkGM,pkOA,pk
ciphertext = {ENC(pkGM, pkOA, pk, cert, w, L) | w : (x,w) ∈

R, 〈pk, cert〉 ∈ Valid}. This means that the soundness adversary wins if the key
obtained by OA after opening is either not in the database, or is invalid, or the
ciphertext ψ is not a valid ciphertext under pk encrypting a witness for x under
R.

A GE scheme should satisfy correctness, security, anonymity and soundness.
Note that: (1) By defining the oracles USER and REG one can allow concurrent
attacks or force sequential execution of the group registration process. (2) CPA
variants of the security and anonymity definition w.r.t. either group members
or the OA can be obtained by dropping the corresponding DEC oracles. (3)
Soundness and security assume a trusted setup; extension to malicious setup
can be done by enforcing trustworthy initialization by standard methods (e.g.
threshold cryptography or ZK proofs).

3 Necessary and Sufficient Conditions for GE schemes

Given that a GE scheme is a complex primitive it would be helpful to break down
its construction to more basic primitives and provide a general methodology for
constructing GE schemes. The necessary components for building a GE scheme
will be the following:
1. Adaptively Chosen Message Secure Digital Signature. It will be used to gen-
erate the public-key certificates by the GM during the JOIN procedure.
2. Public-key Encryption with CCA2 Security and Key-Privacy. We will em-
ploy an encryption scheme 〈Ge, E ,D〉 that satisfies (1) CCA2-security and (2)

10 A. Kiayias, Y. Tsiounis and M. Yung

CCA2-Key-privacy. We note that in public-key encryption with key-privacy
the key-generation has two components, one called Ze that produces public-
parameters shared by all key-holders and the key-generation Ge that given the
public-parameter of the system produces a public/secret-key pair. Note that us-
ing Ze is mandatory since some agreement between the receivers is necessary
for key-privacy (at minimum all users should employ public-keys of the same
length).

3. Proofs of Knowledge. Such protocols in the zero-knowledge setting satisfy
three properties: completeness, soundness with knowledge extraction and zero-
knowledge. These proofs exist for any NP language assuming one-way functions
by reduction, e.g., to the graph 3-colorability proof of knowledge [29]. In certain
settings, zero-knowledge proofs can be constructed more efficiently by starting
with a honest-verifier zero-knowledge (HVZK) proof of language membership
protocol (i.e., a protocol that requires no knowledge extraction and it is only
zero-knowledge against honest verifiers) and then coupling such protocol with
an extractable commitment scheme (to achieve knowledge extraction) and with
an equivocal commitment (to enforce zero-knowledge against dishonest verifiers,
cf. [25]).

Modular Design of GE schemes. Consider an arbitrary relation R that
has an associated paramter generation procedure Gr and a witness sampler
sampleR. In the modular construction we will employ: (1) a digital signature
scheme 〈Gs,S,Vs〉 that is adaptively chosen message secure; (2) a public-key en-
cryption scheme 〈Ze,Ge, E ,D〉 that satisfies CCA2 security and Key-privacy; (3)
two zero-knowledge proofs of language membership (defined below); to facilitate
knowledge extraction we will employ also an extractable commitment scheme
〈Zc,1, C1, T1〉. Without loss of generality we will assume that all employed primi-
tives operate over bitstrings. The construction of a GE scheme 〈SETUP, JOIN, 〈Gr,
R, sampleR〉, ENC, DEC, OPEN, 〈P,V〉, recon〉 is as follows:

SETUP. The SETUPinit procedure will select the parameters param by performing
a sequential execution of Ze,Zc,1. The SETUPGM procedure will be the signature-
setup Gs and the SETUPOA will be the encryption-setup Ge.

JOIN. Each prospective user will execute Ge to obtain pk, sk and then engage in a
protocol 〈Ppk,Vpk〉 which is proof of language membership with the GM for the
language Lparam

pk = {pk | ∃sk, ρ : 〈pk, sk〉 ← Ge(param; ρ)}. The GM will respond
with the signature cert← S(skGM, pk).
ENC. The procedure ENC, given a witness w for a value x such that (x,w) ∈
R and a label L, it will return the pair ψ =df 〈ψ1, ψ2, ψ3, ψ4〉 where ψ1 ←
E(pk, w, L1), ψ2 ← E(pkOA, pk, L2), ψ3 ← C1(cpk, pk) ψ4 ← C1(cpk, cert) where
L1 = ψ2||ψ3||ψ4||L and L2 = ψ3||ψ4||L.

DEC. Given sk, a ciphertext 〈ψ1, ψ2, ψ3, ψ4〉 and a label L, it will return D(sk, ψ1,
ψ2||ψ3||ψ4||L).

OPEN. Given skOA, a ciphertext 〈ψ2, ψ3, ψ4〉 =df [ψ]oa and a label L it will return
D(skOA, ψ2, ψ3||ψ4||L).

Group Encryption 11

Finally, the protocol 〈P,V〉 is a zero-knowledge proof of language membership
for the language:

{〈param, pkGM, pkOA, pkR, x, ψ1, ψ2, ψ3, ψ4, L〉 | ∃ (coinsψ1 , coinsψ2 ,

coinsψ3 , coinsψ4 , pk, cert, w) :

∧(C1(cpk, pk; coinsψ3) = ψ3)∧(C1(cpk, cert; coinsψ4) = ψ4)∧(Vs(pk, cert) = true)

∧(E(pk, w, (ψ2||ψ3||ψ4||L); coinsψ1) = ψ1)

∧(E(pkOA, pk, (ψ3||ψ4||L); coinsψ2) = ψ2) ∧ ((x,w) ∈ R)

Note that the reconstruction procedure recon will be set to simply the identity
function.

Theorem 1. The GE scheme above satisfies (i) Correctness, given that all in-
volved primitives are correct and 〈Ppk,Vpk〉, 〈P,V〉 satisfy completeness. (ii)
Anonymity, given that the encryption scheme for users satisfies CCA2-key-
privacy, the encryption scheme for OA satisfies CCA2-security, the commitment
scheme C1 is hiding and 〈Ppk,Vpk〉 and 〈P,V〉 are zero-knowledge. (iii) Security,
given that the employed encryption scheme for users satisfies CCA2-security, the
commitment scheme C1 is hiding and 〈Ppk,Vpk〉, 〈P,V〉 are zero-knowledge. (iv)
Soundness, given that the employed digital signature scheme satisfies adaptive
chosen message security, the commitment scheme C1 is binding and extractable
and 〈Ppk,Vpk〉 and 〈P,V〉 satisfy soundness.

Necessity of the basic primitives. We consider the reverse of the above
results: the existence of GE would imply public-key encryption that is CCA2
secure and private as well as digital signature and zero-knowledge proofs for any
NP-language. More details are given in the full version [32].

4 Efficient GE of Discrete-Logarithms

In this section we will consider the discrete-logarithm relation 〈Gdl,Rdl, sampledl〉:
Gdl given 1ν samples a description of a cyclic group of ν-bits order and a generator
γ of that group; R contains pairs of the form (x,w) where x = γw; note that
pkR = 〈desc(G), γ〉 and skR is empty. Finally sampledl on input pkR selects a
witness w and returns the pair (x = γw, w). In this section we will present a GE
scheme for the above relation. Note that the results of this section can be easily
extended to other relations based on discrete-logs such as a commitment to w.
Design of a public-key encryption for discrete-logarithms with key-
privacy and security. One of the hurdles in designing a GE for discrete-
logarithms is finding a suitable encryption scheme for the group members. In this
section we will present a public-key encryption scheme that is suitable for veri-
fiable encryption of discrete-logarithms while it satisfies CCA2-key-privacy and
CCA2-security. The scheme is related to previous public-key encryption schemes
of [24, 40, 28, 19, 10] and it is the first Paillier-based public-key encryption that

12 A. Kiayias, Y. Tsiounis and M. Yung

is proven to satisfy key-privacy and security against chosen ciphertext attacks.
Below we give a detailed description of our public-key encryption 〈Ze,Ge, E ,D〉
and of the accompanying intractability assumptions that ensure its properties.

Public-parameters. The parameter selection function Ze, given 1ν selects a com-
posite modulus n = pq so that n is a ν-bit number, p = 2p′ + 1, q = 2q′ + 1 and
p, p′, q, q′ are all prime numbers with p, q of equal size at least bν/2c+1. Then it
samples g ← Z∗

n2 and computes g1 ← g2n(modn2). Observe that 〈g1〉 with very
high probability is a subgroup of order p′q′ within Z∗

n2 . In such case 〈g1〉 is a
group that contains all square n-th residues of Z∗

n2 and we will call this group
Xn2 . We note further that all elements of Z∗

n2 can be written in a unique way
in the form gr1(1 + n)v(−1)α(p2p − q2q)β where r ∈ [p′q′], v ∈ [n], α, β ∈ {0, 1}
(in this decomposition, p2, q2 are integers that satisfy p2p

2 ≡q2 1, q2q2 ≡p2 1).
We will denote by Qn2 the subgroup of quadratic residues modulo n2 which can
be easily seen to contain all elements of the form gr1(1 + n)v with r ∈ Zp′q′ and
v ∈ Zn and has order np′q′ (precisely one fourth of Z∗

n2 and is generated by
g1(1 + n)). Note that we will use the notation h =df 1 + n. Finally, a second
value g2 is selected as follows: w is sampled at random from [n4] =df {0, . . . , bn4 c}
and we set g2 ← gw1 . A random member H of a universal one-way hash function
family UOWHF is selected [39]; the range of H is assumed to be [0, 2ν/2−2). The
global parameters of the cryptosystem that will be shared by all recipients are
equal to param = 〈n, g1, g2,descH〉, where descH is the description of H.
Key-Generation. The key-generation algorithm Ge receives the parameters 〈n,
g1, g2,descH〉, samples x1, x2, y1, y2 ←R [n

2

4] and sets pk = 〈c, d, y〉 where c =
gx1
1 gx2

2 , d = gy11 gy22 and y = gz1 ; the secret-key is sk = 〈x1, x2, y1, y2, z〉. Note that
below we may include the string param as part of the pk and sk strings to avoid
repeating it, nevertheless it should be recalled in all cases that n, g1, g2,descH
are global parameters that are available to all parties.
Encryption. The encryption function E operates as follows: given the pk, a mes-
sage w and a label L it samples r ←R [n4] and outputs the triple 〈u1, u2, e, v〉
computed as follows: u1 ← gr1 mod n2, u2 ← gr2 mod n2, e← yr(1+n)w mod n2,
v ← ||crdrH(u1,u2,e,L) mod n2|| where || · || : Z∗

n2 → Z∗
n2 is defined as follows

||x|| = x if x ≤ n2/2 and ||x|| = −x if x > n2/2. We note that the “absolute
value” function || · || is used to disallow the malleability of a ciphertext with
respect to multiplication with −1 (cf. the decryption test below). To summarize,
encryption works as follows:

r ←R

[n
4

]
: u1 ← gr1 u2 ← gr2 e← yrhm v ← ||crdrH(u1,u2,e,L)||

Decryption. The decryption function D given a ciphertext (u1, u2, e, v) and a
label L it performs the following checks:

v
?= ||v|| ∧ v2 ?= (ux1

1 ux2
2)2(uy11 u

y2
2)2H(u1,u2,e,L)

if all tests pass it computes m′ = e2u1
−2z−1(mod n2) and returns (m′ ·2−1 mod

n)/n, otherwise it returns ⊥.

Group Encryption 13

This completes the description of the cryptosystem. Observe that the cryp-
tosystem is correct, i.e., encryption inverts decryption: indeed, assuming that
〈u1, u2, e, v〉 ← E(pk, w, L), we have that m′ = e2u−2z

1 − 1 ≡n2 h2w − 1 and due
to the fact that hx ≡n2 1+xn for all x ∈ Zn we have that w′ ≡n2 (2m mod n) ·n.
It follows that (w′ · 2−1 mod n)/n = w.

We will next argue about the security of the cryptosystem. We note that the
above cryptosystem has a “double trapdoor” property: for each public-key, c, d, y,
based on parameters n, g1, g2,descH, one trapdoor is the discrete-logarithm of y
base g1, whereas the the other trapdoor is the factorization of n. Indeed given
the factorization of n, one can easily decrypt any ciphertext 〈u1, u2, e, v〉 by
computing ep

′q′ ≡n2 hp
′q′m. Subsequently m can be computed easily similarly to

the regular decryption function. In GE the global trapdoor will not be used and
the factorization of n will be assumed unknown by all parties. The intractability
assumption that will be employed is the following:

Definition 5. The Decisional Composite Residuosity DCR assumption [40]: It
is computationally hard to distinguish between: (i) tuples of the form (n, un mod
n2) where n is a composite RSA modulus and u ←R Z∗

n2 , and (ii) tuples of the
form (n, v) where v ←R Z∗

n2 .

Next, we prove IND-CCA2 security under the DCR.

Theorem 2. The cryptosystem 〈Ze,Ge, E ,D〉 defined above satisfies CCA2 secu-
rity under the DCR assumption and the target collision resistance of the employed
UOWH family.

Interestingly, it is not clear whether the DCR can be used for proving the
key-privacy of the cryptosystem. To see why this is the case consider the follow-
ing: Consider the CPA version of the cryptosystem using only a single generator
over Xn2 : in the CPA case the cryptosystem is similar to ElGamal, with cipher-
texts pairs of the form 〈gr mod n2, yrhm mod n2〉. Note that IND-CPA security
can be easily shown under the DCR assumption. On the other hand, to show
CPA-key-privacy one has to (essentially) establish the indistinguishability of the
distributions 〈g, y0, y1, gr, yr0hm〉 and 〈g, y0, y1, gr, yr1hm〉. It is not apparent how
to apply DCR to prove this indistinguishability; ultimately this is because the
message m is the same in both of these distributions and its randomization (eas-
ily provided by DCR) appears to be immaterial to the indistinguishability of the
two distributions. It should be noted that since the adversary is not interested in
the hm portion of the ciphertext he can easily cancel it out by raising everything
to n. For this reason the power of DCR seems of little use in this case, and a
Diffie-Hellman-like assumption in Xn2 would seem more appropriate.

Based on the above we employ the Decisional Diffie Hellman assumption over
the group Xn2 , denoted as DDHSQNR. Regarding the relationship between Diffie
Hellman type of problems and the DCR we show the following theorem:

Theorem 3. DCR =⇒ CDHSQNR

14 A. Kiayias, Y. Tsiounis and M. Yung

Based on the above we formulate our key-privacy theorem for the cryptosys-
tem:

Theorem 4. The cryptosystem 〈Z,Ge, E ,D〉 defined above satisfies CCA2-key-
privacy under the DDHSQNR assumption and the target collision resistance of the
employed UOWH family.

Proof of Public-Key Validity. We will employ the public-key encryption
scheme above to build the public-key database of the GE scheme. When a user
joins the group he will be allowed to generate a public-key and he will be re-
quired to show that the public-key is valid. For our new cryptosystem the lan-
guage of valid public-keys is Lparam

pk = {〈c, d, y〉 | c, d, y ∈ Xn2} where param =
〈n, g1, g2,H〉. It follows that joining will require three instances of a proof of lan-
guage membership to the subgroup Xn2 of Z∗

n2 . The validity of an element y can
be performed by executing the following steps where k0, k1 ∈ IN are parameters
that affect the soundness and zero-knowledge properties of the proof of language
membership below:

1. [User:] Select t r← {0, 1}k0 and transmit a← gt mod n2.

2. [GM:] Select c r← {0, 1}k1 and transmit c.

3. [User:] Compute s← t− cz ∈ Z and transmit s.

4. [GM:] Verify a2 ≡n2 (g2
1)sy2c.

It is easy to verify that given any prover that produces a value y and then
executes the proof above, it must be the case that y2 ∈ Xn2 with probability
1 − 2−k1 . Note that this still allows for a slight misbehavior on the part of the
user as he can multiply y with an element of order 2 inside Z∗

n2 ; while it is easy
to add an additional step in the above proof to avoid this slight misbehavior we
will not do so as we will show the security properties of our GE scheme without
such guarantee.

Construction of GE of Discrete-logarithms. We proceed to the description
of the GE scheme SETUP, JOIN, 〈Gdl,Rdl, sampledl〉, ENC, DEC, OPEN, 〈P,V, recon〉.
First recall that from the discrete-logarithm relation, Gdl given 1ν samples a
description of a cyclic group of ν-bits order and a generator γ of that group;
Rdl contains pairs of the form (x,w) where x = γw. Finally sampledl on input
pkR = 〈desc(G), γ〉 selects a witness w and returns the pair (x = γw, w).
Parameter Selection. The procedure SETUP selects the following parameters:

◦ Integer values k0, k1.

◦ A safe composite n of `n bits and generators g, ğ, g1, g2 of the group Xn2 .

◦ The description of a hash function H drawn at random from a UOWH family.

◦ A prime number Q of the form λ · n2 + 1 and F,H generators of the order n2

subgroup of Z∗
Q.

◦ A safe composite n̂ of `N bits and two generators ĝ, ŷ of the group Xn̂2 .

◦ A sequence of integers G, Y1, Y2, Y3 ∈ IN of length `N .

Group Encryption 15

We stress that the above parameters are part of the trusted setup of the
system (also referred to as the common reference string, and no participant of
the system, including the GM, OA, or any user will know any private information
about these values).

SETUPOA. The procedure selects x1, x2, y1, y2, z←R [n
2

4] and set pkOA = 〈y̆, c̆, d̆〉 =
〈gz, gx1 ğx2 , gy1 ğy2〉.

SETUPGM. The GM will employ a digital signature 〈Gs,S,Vs〉 that must satisfy
adaptive chosen message security and be suitable for engaging in proofs of knowl-
edge of signed messages when the signature is committed. In our design will em-
ploy the block signature of Camenisch and Lysyanskaya [15] as the underlying
digital signature scheme (hence referred to as CL-signature). The choice of the
digital signature is not unique to our design and other signature schemes can be
employed as well. The key-generation procedure Gs (that will be used by GM in
SETUPGM) samples a pair 〈skGM, pkGM〉 where pkGM = 〈A0, A1,c, A1,d, A1,y, A2, N〉
with N a safe composite of `N bits and A0, A1,c, A1,d, A1,y, A2 ∈ Z∗

N are random
quadratic residues in QN . The signing key skGM is the factorization of N . In
addition to `N we have the parameters `m where [0, 2`m)× [0, 2`m)× [0, 2`m) will
be the message space for the signature such that n2 < 2`m (this is because we
want to use the signature to sign public-keys of the encryption scheme).
JOIN. The prospective group member submits c, d, y as generated by the en-
cryption system 〈Ge, E ,D〉 given in the beginning of the section. In particu-
lar, recall that 〈c, d, y〉 is defined as c ← gx1

1 gx2
2 mod n2, d ← gy11 gy22 mod n2,

y ← gz1 and x1, x2, y1, y2, z ←R [n
2

4]. The secret key of the user is set to the
values x1, x2, y1, y2, z. The user engages with the GM in a proof of membership
for the validity of c, d, y. Upon acceptance the GM will use the signing proce-
dure S for CL-signatures that is as follows: given the message M = 〈c, d, y〉,
the GM will sample R ← [0, 2`N+`m+`) where ` is a security parameter and
a random prime E > 2`m+1 of length `m + 2 bits; then it will compute A =
(A0A

c
1,cA

d
1,dA

y
1,yA

R
2)1/E(modN) (recall that the factorization of N is the sign-

ing key). Finally the signature to M is the triple 〈A,E,R〉.
Finally, the GM will enter 〈c, d, y〉 into the public database followed by the

signature. Note that the GM should not allow a user to enter into database a key
〈c, d, y〉 such that there is some 〈ci, di, yi〉 in the database already for which it
holds that c2 = c2i , or d2 = d2

i or y2 = y2
i . Recall that the verification algorithm Vs

given a message M = 〈c, d, y〉 and a signature 〈A,E,R〉 on it, checks whether it
holds that AE = A0A

c
1,cA

d
1,dA

y
1,yA

R
2 mod N and verifies all the range constraints

on c, d, y, E,R as stated above.

ENC, DEC and recon. Following our modular design methodology of section 3
the GE encryption function consists of the encryption of the witness w under
a recipient’s public-key 〈c, d, y〉 and a sequence of commitments to the public-
key used and commitments to the certificate of this public-key. More specifically
when Alice wants to encrypt her witness w for her public-value x = γw under
label L she computes the following:

16 A. Kiayias, Y. Tsiounis and M. Yung

1. Commitment to Certificate of Public-key. The commitment to the certificate
of the public-key of the recipient that Alice selected is formed as follows: for
the certificate 〈A,E,R〉 the following values are computed B̃ = G2u mod N ,
Ã = Y 2u

1 A mod N , Ẽ = Y 2u
2 G2E mod N , R̃ = Y 2u

3 G2R mod N .

2. Bridge Commitments. The “bridge commitments” will assist in the efficient
proof of ciphertext validity. In particular Alice includes the commitments Ê =
ĝE(l1)n̂ mod n̂2, R̂ = ĝR(l2)n̂ mod n̂2 and lj

r← Zn for j = 1, 2. Moreover she in-
cludes the commitments ỹ = Hu′

y F
y mod Q, c̃ = Hu′

c F
c mod Q, d̃ = Hu′

d F
d mod

Q.

3. Encryption of the recipient’s public-key. Encryption of the public-key that Al-
ice selected is formed as three ciphertexts: 〈fc, f̆c, ḟc, f̈c〉, 〈fd, f̆d, ḟd, f̈d〉, 〈fy, f̆y, ḟy,

f̈y〉, where each is selected as 〈gua , ğua , y̆uaa, c̆ua d̆uaH(L′a)〉 where ua
r← [n4], a ∈

{y, c, d}, a ∈ {y, c, d} and L′a = 〈fa, f̆a, ḟa, f̈a, L〉.
4. Encryption of the witness. The encryption of witness w is as follows: 〈u1, u2, e,

v〉 ← 〈gr1, gr2, yrhw, ||crdrH(u1,u2,e,L
′
c,L

′
d,L

′
y)||〉.

DEC is the decryption process as defined in the beginning of the section for the
new encryption scheme. recon is simply the identity function.
OPEN. The opening procedure applies to the three ciphertext excluding the wit-
ness ciphertext (item 4, above). In particular, it returns 〈c, d, y〉 = 〈fcḟ

−z
c , ḟdf

−z
d ,

ḟyf
−z
y 〉 or ⊥ depending on the outcome of the tests f x1+y1

a f̆
(x2+y2)H(L′)
a

?= f̈a for
a ∈ {y, c, d}. The owner of the public-key is identified by comparing 〈c2, d2, y2〉
to all entries 〈c2i , d2

i , y
2
i 〉 that are inside the database database.

The proof of validity 〈P,V〉. This protocol will be constructed as an AND com-
position of four sub-protocols that due to lack of space presented in the full
version [32]. These protocols belong to a class of efficient proofs for discrete log
relations that are very common in the design of cryptographic primitives and
their concrete and efficient instantiation has become quite standard in the liter-
ature. An exception perhaps is protocol # 2 which is a more complex protocol
and is related to the “double-decker” proof of knowledge for discrete-logarithms
[42, 20]. This protocol is the least efficient as it requires parallel repetition for
decreasing the knowledge-error. Still, we stress that the overall communication
is independent of the size of the group and well within practical limits.

Based on the above, the theorem below follows as a corollary of theorem 1:

Theorem 5. The GE scheme for discrete-logarithms defined above satisfies (i)
Correctness; (ii) Anonymity and (iii) Security, under the DDHSQNR, DDH over
QN , DCR and the collision resistance of the UOWH family; (iv) Soundness,
under the Strong-RSA and the DLOG assumptions.

References

1. N. Asokan, V. Shoup, and M. Waidner. Optimistic fair exchange of digital signa-
tures (extended abstract). In EUROCRYPT, pages 591–606, 1998.

Group Encryption 17

2. G. Ateniese, J. Camenisch, S. Hohenberger, and B. de Medeiros. Practical group
signatures without random oracles. Cryptology ePrint Archive, Report 2005/385,
2005. http://eprint.iacr.org/.

3. G. Ateniese, J. Camenisch, M. Joye, and G. Tsudik. A practical and provably secure
coalition-resistant group signature scheme. In M. Bellare, editor, Advances in
Cryptology – CRYPTO ’ 2000, volume 1880 of Lecture Notes in Computer Science.
International Association for Cryptologic Research, Springer, 2000.

4. G. Ateniese and G. Tsudik. Some open issues and new directions in group signa-
tures. In M. Franklin, editor, Financial cryptography: Third International Confer-
ence, FC ’99, Anguilla, British West Indies, February 22–25, 1999: proceedings,
volume 1648 of Lecture Notes in Computer Science, pages 196–211. Springer-Ver-
lag, 1999.

5. M. Bellare, A. Boldyreva, A. Desai, and D. Pointcheval. Key-privacy in public-key
encryption. In C. Boyd, editor, ASIACRYPT, volume 2248 of Lecture Notes in
Computer Science, pages 566–582. Springer, 2001.

6. M. Bellare, D. Micciancio, and B. Warinschi. Foundations of group signatures: For-
mal definitions, simplified requirements, and a construction based on general as-
sumptions. In E. Biham, editor, Advances in Cryptology – EUROCRYPT 2003, vol-
ume 2656 of Lecture Notes in Computer Science, Warsaw, Poland, 2003. Springer.

7. M. Bellare, H. Shi, and C. Zhang. Foundations of group signatures: The case of
dynamic groups. In A. Menezes, editor, CT-RSA, volume 3376 of Lecture Notes
in Computer Science, pages 136–153. Springer, 2005.

8. D. Boneh, X. Boyen, and H. Shacham. Short group signatures. In M. Franklin,
editor, Advances in Cryptology – CRYPTO 2004, volume 3152 of Lecture Notes in
Computer Science, pages 41–55. Springer, 2004.

9. X. Boyen and B. Waters. Compact group signatures without random oracles. In
S. Vaudenay, editor, EUROCRYPT, volume 4004 of Lecture Notes in Computer
Science, pages 427–444. Springer, 2006.

10. E. Bresson, D. Catalano, and D. Pointcheval. A simple public-key cryptosystem
with a double trapdoor decryption mechanism and its applications. In C. S. Laih,
editor, Proc. of Asiacrypt ’03, volume 2894 of LNCS, pages 37–54, Taipei, TW,
November-December 2003. IACR, Springer-Verlag.

11. J. Camenisch. Efficient and generalized group signatures. In W. Fumy, editor, Ad-
vances in Cryptology - EUROCRYPT ’97, International Conference on the Theory
and Application of Cryptographic Techniques, Lecture Notes in Computer Science,
pages 465–479. International Association for Cryptologic Research, Springer, 1997.

12. J. Camenisch and I. Damg̊ard. Verifiable encryption, group encryption, and their
applications to separable group signatures and signature sharing schemes. In
T. Okamoto, editor, ASIACRYPT, volume 1976 of Lecture Notes in Computer
Science, pages 331–345. Springer, 2000.

13. J. Camenisch and A. Lysyanskaya. An efficient system for non-transferable anony-
mous credentials with optional anonymity revocation. In B. Pfitzmann, editor,
EUROCRYPT, volume 2045 of Lecture Notes in Computer Science, pages 93–118.
Springer, 2001.

14. J. Camenisch and A. Lysyanskaya. An identity escrow scheme with appointed ver-
ifiers. In J. Kilian, editor, Advances in Cryptology – CRYPTO ’ 2001, volume 2139
of Lecture Notes in Computer Science, pages 388–407. International Association
for Cryptologic Research, Springer-Verlag, Berlin Germany, 2001.

15. J. Camenisch and A. Lysyanskaya. A signature scheme with efficient protocols. In
International Conference on Security in Communication Networks – SCN, volume
2576 of Lecture Notes in Computer Science, pages 268–289. Springer Verlag, 2002.

18 A. Kiayias, Y. Tsiounis and M. Yung

16. J. Camenisch and A. Lysyanskaya. Signature schemes and anonymous credentials
from bilinear maps. In M. K. Franklin, editor, CRYPTO, volume 3152 of Lecture
Notes in Computer Science, pages 56–72. Springer, 2004.

17. J. Camenisch and M. Michels. A group signature scheme with improved efficiency.
In K. Ohta and D. Pei, editors, ASIACRYPT: Advances in Cryptology – ASI-
ACRYPT: International Conference on the Theory and Application of Cryptology,
volume 1514 of Lecture Notes in Computer Science, pages 160–174. International
Association for Cryptologic Research, Springer-Verlag, 1998.

18. J. Camenisch and M. Michels. Separability and efficiency for generic group sig-
nature schemes (extended abstract). In M. j. Wiener, editor, 19th International
Advances in Cryptology Conference – CRYPTO ’99, volume 1666 of Lecture Notes
in Computer Science, pages 413–430. Springer, 1999.

19. J. Camenisch and V. Shoup. Practical verifiable encryption and decryption of
discrete logarithms. In CRYPTO 2003. Springer-Verlag, 2003.

20. J. Camenisch and M. Stadler. Efficient group signature schemes for large groups.
In B. S. K. Jr., editor, Advances in Cryptology – CRYPTO ’ 1997, volume 1294 of
Lecture Notes in Computer Science, pages 410–424. International Association for
Cryptologic Research, Springer, 1997.

21. D. Chaum. Private communication, 2006.

22. D. Chaum and E. van Heyst. Group signatures. In D. W. Davies, editor, Ad-
vances in Cryptology, EUROCRYPT 1991 (Lecture Notes in Computer Science
547), pages 257–265. Springer-Verlag, April 1991. Brighton, U.K.

23. L. Chen and T. P. Pedersen. New group signature schemes (extended abstract).
In A. D. Santis, editor, Advances in Cryptology—EUROCRYPT 94, volume 950
of Lecture Notes in Computer Science, pages 171–181. Springer-Verlag, 1995, 9–
12 May 1994.

24. R. Cramer and V. Shoup. A practical public key cryptosystem provably secure
against adaptive chosen ciphertext attack. In H. Krawczyk, editor, CRYPTO 1998,
pages 13–25. Springer-Verlag, 1998. Lecture Notes in Computer Science No. 1462.

25. I. Damg̊ard. Efficient concurrent zero-knowledge in the auxiliary string model. In
EUROCRYPT, pages 418–430, 2000.

26. Y. Desmedt. Society and group oriented cryptography: A new concept. In
C. Pomerance, editor, CRYPTO, volume 293 of Lecture Notes in Computer Sci-
ence, pages 120–127. Springer, 1987.

27. D. Dolev, C. Dwork, and M. Naor. Non-malleable cryptography (extended ab-
stract). In Proceedings of the Twenty Third Annual ACM Symposium on Theory
of Computing, pages 542–552, New Orleans, Louisiana, 6–8May 1991.

28. R. Gennaro and Y. Lindell. A framework for password-based authenticated key
exchange. In E. Biham, editor, Advances in Cryptology – EUROCRYPT 2003, vol-
ume 2656 of Lecture Notes in Computer Science, Warsaw, Poland, 2003. Springer.

29. O. Goldreich. The Foundations of Cryptography - Volume 1. Cambridge University
Press, 2004.

30. J. Groth. Simulation-sound nizk proofs for a practical language and constant size
group signatures. In X. Lai and K. Chen, editors, ASIACRYPT, volume 4284 of
Lecture Notes in Computer Science, pages 444–459. Springer, 2006.

31. S. Halevi. Sufficient condition for key privacy. Cryptology ePrint Archive, Report
2005/005, 2005. http://eprint.iacr.org/.

32. A. Kiayias, Y. Tsiounis, and M. Yung. Group encryption. Cryptology ePrint
Archive, Report 2007/015, 2007. http://eprint.iacr.org/.

Group Encryption 19

33. A. Kiayias and M. Yung. Extracting group signatures from traitor tracing schemes.
In E. Biham, editor, Advances in Cryptology – EUROCRYPT 2003, volume 2656
of Lecture Notes in Computer Science, pages 630–648, Warsaw, Poland, 2003.
Springer.

34. A. Kiayias and M. Yung. Group signatures with efficient concurrent join. In
R. Cramer, editor, EUROCRYPT, volume 3494 of Lecture Notes in Computer
Science, pages 198–214. Springer, 2005.

35. A. Kiayias and M. Yung. Secure scalable group signature with dynamic joins and
separable authorities. Int. J. Security and Networks, 1(1/2):24–45, 2006.

36. J. Kilian and E. Petrank. Identity escrow. In H. Krawczyk, editor, Advances in
Cryptology – CRYPTO 1998, volume 1462 of Lecture Notes in Computer Science,
pages 169–185. International Association for Cryptologic Research, Springer, 1998.

37. J. K. Liu, P. P. Tsang, D. S. Wong, and R. W. Zhu. Universal custodian-hiding
verifiable encryption for discrete logarithms. In D. Won and S. Kim, editors, ICISC,
volume 3935 of Lecture Notes in Computer Science, pages 389–409. Springer, 2005.

38. J. K. Liu, V. K. Wei, and D. S. Wong. Custodian-hiding verifiable encryption. In
C. H. Lim and M. Yung, editors, WISA, volume 3325 of Lecture Notes in Computer
Science, pages 51–64. Springer, 2004.

39. M. Naor and M. Yung. Universal one-way hash functions and their cryptographic
applications. In STOC, pages 33–43. ACM, 1989.

40. P. Paillier. Public-key cryptosystems based on composite degree residuosity classes.
In Advances in cryptology—EUROCRYPT 1999, volume 1592 of Lecture Notes in
Computer Science, pages 223–238, 1999.

41. C. Rackoff and D. R. Simon. Non-interactive zero-knowledge proof of knowledge
and chosen ciphertext attack. In J. Feigenbaum, editor, Advances in Cryptology
– CRYPTO ’ 91, volume 576 of Lecture Notes in Computer Science, pages 433–
444. International Association for Cryptologic Research, Springer-Verlag, Berlin
Germany, 1992.

42. M. Stadler. Publicly verifiable secret sharing. In U. Maurer, editor, Advances in
Cryptology – EUROCRYPT ’ 96, volume 1070 of Lecture Notes in Computer Sci-
ence, pages 190–199. International Association for Cryptologic Research, Springer,
1996.

43. M. Trolin and D. Wikström. Hierarchical group signatures. In L. Caires, G. F.
Italiano, L. Monteiro, C. Palamidessi, and M. Yung, editors, ICALP, volume 3580
of Lecture Notes in Computer Science, pages 446–458. Springer, 2005.

44. A. Young and M. Yung. A pvss as hard as discrete log and shareholder separability.
In K. Kim, editor, Public Key Cryptography, volume 1992 of Lecture Notes in
Computer Science, pages 287–299. Springer, 2001.

