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Abstract. The design of secure compression functions is of vital im-
portance to hash function development. In this paper we consider the
problem of combining smaller trusted compression functions to build a
larger compression function. This work leads directly to impossibility
results on a range of block cipher-based hash function constructions.
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1 Introduction

Cryptographic hash functions are an important tool in cryptography. Informally,
a cryptographic hash function H takes an input of variable size and returns a
hash value of fixed length while satisfying the properties of preimage resistance,
second preimage resistance, and collision resistance [26]. For a secure hash func-
tion that gives an n-bit output, compromising these properties should require
2" 2" and 2"/2 operations respectively.

The pioneering work of Merkle and Damgéard [7,27] showed how to construct
a secure hash function from a compression function h that has a fixed-length
input, consisting of a chaining variable and a message extract, and gives a fixed-
length output. A variety of interesting results [8,12,13] have provided a greater
understanding of the Merkle-Damgérd approach to the serial application of such
a compression function.

Generally speaking, there are two popular approaches to building a com-
pression function for use in a crytographic hash function. The first is to use a
compression function of a dedicated design while the second is to build a com-
pression function around an established, and trusted, block cipher. While most
widely-deployed hash functions [30,37] use a compression function of dedicated
design, recent attacks [39,40] have demonstrated that there is much to learn.
Instead, there is now much renewed interest in using a block cipher as the basis
for a compression function.

It might be argued that the compression functions of common dedicated
hash functions such as MD5 [37] and SHA-1 [30] are built on block ciphers; by



removing the feed-forward from compression functions in the MD-family we are
left with a reversible component that can be used as a block cipher (such as
SHACAL [9] in the case of SHA-1). But these block ciphers cannot be afforded
the same level of trust as the leading standardised block ciphers [29,31], and
instead block cipher-based hash functions are traditionally viewed as techniques
to build a secure compression function from a trusted and standardised cipher.
Much progress on using block ciphers in this way has already been made. Black
et al [2] built on the work of Preneel [32] to present a range of secure 2n- to n-
bit compression functions built around an n-bit block cipher that takes an n-bit
key. Among these are the well-known Davies-Meyer, Matyas-Meyer-Oseas, and
Miyaguchi-Preneel constructions. We therefore have many secure compression
functions in hand whose chaining variable is the same size as the block size.
However, a hash function built on a compression function with n bits of output
can only offer a security level of at most 2"/ operations. Since a security level
of 2128 bits is often desired, we need to construct compression functions with
outputs of at least 256 bits, a requirement that cannot be immediately met by
the standardised block ciphers in hand.

Our difficulties begin, therefore, when we try to build secure compression
functions whose output size is greater than the block size of the underlying
block cipher. This is not a new problem and there has been mixed success in con-
structing 2n-bit hash functions from an n-bit block cipher [4,5,14,19,21,33,35].
While limitations have been identified in many constructions [14], Hirose [10] has
demonstrated the security of a family of double block-length hash functions us-
ing two independent block ciphers with key length twice the block length. This is
a property shared by AES-256 [29] and IDEA [20] among others with a particular
instance of this construction being the long-standing ABREAST-DM [19].

While the case of block ciphers provided the initial motivation for our work,
our results are essentially about compression functions. In this paper we explore
the problem of combining compression functions that we know to be secure.
These smaller compression functions can be of any type—dedicated, number
theoretic, block cipher-based—and our aim is to build a secure compression
function with a longer chaining variable. Thus the results are broader than block
cipher-based hashing, though this is where there is an immediate, practical, and
at times surprising, impact. The paper is organised as follows. In Section 2 we
establish the framework and we make some initial observations in Section 3. After
discussing some generic attacks in Section 4, we derive criteria for combining
compression functions in Section 5 and demonstrate a range of impossibility
results and potential constructions in Section 6. We then draw our conclusions
and highlight opportunities for future work.

2 Notation and Model

In this paper we consider building larger compression functions from smaller
trusted ones. We will assume that the underlying secure compression functions
have k inputs of n bits and that the output is n bits in length. Details on the



construction of secure compression functions will not be important to our results.
However, in the specific case of a block cipher with equal key and block size we
have k = 2, while for a key size twice the block size we have k = 3. We could also
use a compression function based on a tweaked block cipher [3,23] or a dedicated
design (if we were willing to claim their security as secure compression functions)
and we might then have k£ > 3 depending on the sizes of the chaining variable
and message input. This flexible approach was pursued by Knudsen and Preneel
in a series of papers [16,17,18].

This work is not a proof oriented paper, so we follow [18]: a collision resis-
tant hash function or compression function outputing n bits is called ideal if
the best algorithm to find a collision is a brute-force collision search; such an
attack requires on average 9(2"/ 2) evaluations of the hash function. Similarly, a
preimage (resp. 2"%-preimage) resistant hash function or compression function
with n-bit output is called ideal if the best algorithm to find a preimage (resp.
2"d_preimage) is a brute-force preimage (resp. 2"?-preimage) search; such an
attack requires on average ©(2") evaluations of the hash function.
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Fig. 1. The compression function h built from ¢ compression functions f(*) each taking
k inputs of n bits and delivering an n-bit output. m stands for message and cv for
chaining variable.

In our constructions we will use ¢ ideal n-bit compression functions to con-
struct a secure compression function h that compresses (m + ¢)n bits to cn bits.
One important aspect to what follows in this paper is that we require the ¢ in-
ternal ideal compression functions to act independently. Exactly how these are
instantiated is outside the scope of this paper, but it is an important issue in
practice. It is, however, an issue that has been addressed before and, under the



assumption that the underlying block cipher is good, we can enforce indepen-
dence of the fundamental compression functions by fixing bits of the underlying
“keys” to distinct values [18] or by using constants [11] to diversify the “keys”
used in the compression function.

We will describe the inputs (resp. outputs) to the internal component com-
pression functions as internal inputs (resp. internal outputs). These are distin-
guished from the ezternal inputs and external outputs to the larger compression
function A that we are trying to build. The m + ¢ inputs to h, each of n bits,
will be denoted by h¥in, ... pm-n pevin - o Cpcv-n and we denote the ¢ n-bit
output blocks by h§V-out, ... hSv-out,

The internal inputs will be derived as a linear combination of the external
inputs to h, and we will derive the output from A as a linear combination of the
internal outputs from the ¢ ideal compression functions. Thus, the kt inputs to
the internal compression functions fj@ (1<i<tand1l <j<k)wil be linear

functions of the external inputs and for each compression function f(*) we have
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where A; is a (k- n x (m + ¢) - n) binary matrix, consisting of (n x n) blocks
which are either zero or the identity matrix, corresponding to the compression
function f(). Taken together, such matrices define a mixing layer among the
inputs to the ¢t compression functions and we call this the input layer. Similarly,
the external outputs from h are any linear combination of the ¢ compression
function outputs. This is the output layer and for the external outputs h§V-out

(1 <i<c¢) we have
hcv.out
1
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where B is a (¢-nxt-n) binary matrix, consisting of (n xn) blocks which are either
zero or the identity matrix. This is illustrated in Figure 1. Note that we allow
the possibility of a feedforward of the external inputs around the compression
functions. We actually ignore this feature in the remainder of the paper, since
we observe that incorporating a feedforward according to Figure 1 does not help
prevent the attacks we consider in this paper.

We also recall the established fact [19,25] that

“...applying any simple (in both directions) invertible transformation
to the input and to the output of the hash round function yields a new
hash round function with the same security as the original one. ”

We accept that such invertible transformations may well be applied to the ex-
ternal inputs and outputs of i before the input layer and after the output layer.
But since they can have no cryptanalytic effect we ignore them.



Finally, we emphasize that we have restricted ourselves to parallel construc-
tions where we compute féfl)t as a linear combination of the external inputs. This
is a natural limitation that encompasses most previously established schemes
and offers obvious performance benefits in hardware implementation. We also
note that the structural observations of Joux [12], Dean [8], and Kelsey and
Schneier [13], do not relate to the task of building a larger compression function
from a layer of parallel compression functions, but only to the usual Merkle-
Damgard iteration of the final compression function that results.

3 First Observations

Our model for combining compression functions is both natural and powerful.
To illustrate we might consider some of the more prominent block cipher-based
compression functions, and Appendix A shows how the compression function of
MDC-2 fits our framework with parameters c =2, ¢t =2, k = 2, and m = 1 (the
two internal compression functions being Matyas-Meyer-Oseas constructions),
while the schemes proposed by Nandi et al. [28] have (¢, ¢, k,m) parameter sets
(2,3,2,1) and (2,3,3,2). Other schemes with appropriate parameters are pro-
vided below.

| Name || c | t | k | m || Cryptanalysis |
MDC-2 Bl 2221 32
PBGV 33l 2]2]2]| 2 19
ABREAST-DM [19|| 2 | 2 | 3 1 -
PARALLEL-DM [21]|| 2 | 2| 2 | 2 [14]
Hirose family [10]|| 2 |2 | 3 | 1 -
Nandi et al. Ny [28]|| 2 |3 ]| 2 | 1 15
Nandi et al. No [28]|| 2 | 3| 3 | 2 15

Like other compression function-based work, we cover instances where the
underlying block cipher has different block and key lengths. However, unlike
many previous constructions, we consider using ¢ internal compression functions
to derive ¢ blocks of output with ¢ > ¢. This allows us to make a fundamental
distinction between previous work and that presented in this paper.

We identify the size of the output chaining variable that is required, and
hence the number of output blocks c. Then, by considering established attacks,
we achieve bounds on ¢ that give us the minimum number of compression func-
tions required to achieve the desired security level. We achieve this by a suitable
analysis of the output layer. Our goal is to derive schemes that offer an optimal
level of security of 2"¢ work effort for preimage attacks and 2 for collision
attacks. This nicely complements the work of Knudsen and Preneel [16,17,18§],
where the security of potentially non-optimal constructions is analysed via con-
sideration of the input layer.

First, we observe the following series of implications. Given a set of param-
eters (c,t,k,m) for some construction, we use (c,t,k,m) € S to denote that a



construction with ideal collision resistance with these parameters exists and we
use (¢, t,k,m) ¢ S to denote the fact that no such scheme can exist for this
parameter set.

Implications 1 Given c, t, k, and m all > 1, we have the following four sets
of pairwise equivalent implications:

(c,t,k,m) &S = (c,t,k,m+1) ¢S (c,t,k,m+1)eS=(c,t,k,m)e S
(¢,t,k,m)e S = (c,t,k+1,m)e S (¢,t,k+1,m) & S = (c,t,k,m) &S
(¢,t,k,m)e S = (c,t+1,k,m)e S (c,t+1,k,m) & S = (c,t,k,m) &S
(c,t,k,m) €S = (c+1,t,k,m) ¢S (c+1,t,k,m)e S=(c,t,k,m) e S.

Justification: Suppose that there exists a secure design with parameter set
(c,t,k,m). If we replace one message block by a constant then we still have a
secure scheme. Thus the first implications are true. If we can use one additional
input for every inner compression function, then we can use them so that none
has any influence over the output. Thus, the second set of implications are true.
If we have an additional compression function, we can still build a secure scheme
by simply ignoring it. Thus the third set of implications is true. The final im-
plications reflect the natural conjecture that constructing an ideal compression
function of output size ¢ + 1 blocks is harder than constructing an ideal com-
pression function of output size ¢ blocks. a

The above implications are simple but useful. For MDC-2 the corresponding
parameter set is (2,2,2,1); a double block-length construction using two com-
pression functions, each taking two equal-sized inputs (key and message) and pro-
cessing one message block at each iteration. As shown in Section 4, (2,2,2,1) € S.
Yet, there has been much effort in building schemes with a better rate, i.e. hash-
ing more than one message at each iteration, for which one corresponding param-
eter set would be (2,2,2,2). But we have that (2,2,2,1) ¢ S = (2,2,2,2) € S
and such efforts cannot succeed?.

4 Generic Attacks

In this section we consider two attacks that have been used in the literature. By
generalising these attacks we are able to make statements about the impossibility
of certain constructions. More importantly, we extract criteria for the successful
design of a compression function with an intended level of security.

4.1 Attack method: DF

The first generic attack depends on what we term the number of degrees of
freedom. Tt resembles the classic divide-and-conquer strategy from other crypt-
analytic fields and can be applied to many proposals. The idea is to isolate, and

3 To avoid any confusion we emphasize that the double block-length construction of
Hirose [10] has parameter set (2,3,2,1) since it uses a block cipher with a key that
is twice the block size.



attack, a linear combination of the output blocks but to keep at least one external
input block free from conditions. Then, the free input can be determined sepa-
rately at the end of the attack. Attacks on MDC-2 provide a good example [32]
and an equivalent representation of MDC-2 is provided in Figure 3. To find a
preimage, one can attack the two branches independently. Finding a preimage
for one branch will fix two inputs to the overall compression function and since
we have three external inputs M, H;, and Hs there remains one external input
free, i.e. one degree of freedom. Thus, we can independently use the free input
to obtain a preimage for the other branch by brute force. The attack has work
effort proportional to 2" operations instead of the intended 22". A collision at-
tack works in a corresponding way. Consideration of this attack gives some of
the bounds in [16,17,18]. We use it again here.

4.2 Attack method: MUL

The second attack uses multi-collisions and multi-preimages and is described
in [36,15]. Similar considerations were used in a different way in [18]. For the
attack to be successful, the compression function must satisfy several structural
conditions. First, the attacker identifies a linear combination Z of the external
outputs of h that depends on a non-empty set Gz of compression functions
{f®}. Next, the attacker identifies two external input blocks X and Y. The
external input X should influence the internal inputs to a subset Gx of the
compression functions in G'z. Similarly the external input block Y should influ-
ence the internal inputs to a subset, Gy, of the compression functions in Gz. It
is important to identify X and Y (and hence Gx and Gy) so that Gx NGy = 0.

We now describe the attack in terms of finding preimages. The attacker fixes
values to all the external input blocks except the previously identified inputs X
and Y. Then, each value of X (resp. Y) is used to generate an internal output
value for each f() in Gx (resp. Gy). Thus, the attacker effectively compiles two
lists Lx and Ly each containing 2" elements where, for every possible value of
X and Y, all the internal outputs of the set of {f (i)} in Gx and Gy are stored.
Using Wagner’s technique [38] these two lists can be joined in 2™ operations to
obtain a third list L, that contains all (X,Y) (with X € Lx and Y € Ly)
yielding the target image for the external output block. Since Lx and Ly both
have almost 2™ elements, we expect Lz to contain almost 2" elements.

At this stage we have found 2" preimages to one external output block at
a cost proportional to 2" operations. If i has ¢ output blocks, then an entry
in the list L, will give a good preimage for all ¢ external output blocks with a
probability of 2=(¢=D"_ Thus, we repeat this procedure for 2(c=2)" allocations
of the m + ¢ — 2 input variables distinct from = and y in order to find a valid
preimage with a probability close to 1. The attack requires 2(°~1" operations
instead of 2™ in the ideal case. The collision attack works in a similar fashion.



5 Security Criteria

The compression function h that we wish to build takes m + ¢ external input
blocks and each internal compression function f(?) takes k internal input blocks,
defined by input matrices A;. Since we can apply any invertible transformation
to the inputs of h, the important criteria for the input layer is the dimension
of the vector space generated by columns of the matrices 4;. This is already
explored in existing work [14]. Considering the results in Section 4, we can make
the following observations.

— To prevent attack DF, every external output block h$V-°"* must depend on
all external input blocks A", ... RI-R p§v-n. GRSV ng matter which
invertible transformations of the external inputs and outputs are used.

— We say that an identified pair of external input blocks is a pair (A, B) where
A and B both appear within the internal inputs to some f(*). (For example,
with f()(A, B® C), the identified pairs (A4, B), (A, C), and (B, C) appear in
f® .) Then, in order to prevent attack MUL, every possible pair of external in-
put blocks must appear as an identified pair for every invertible combination
of external output blocks h$¥-°U*. This applies, no matter which invertible
transformations of the external inputs and outputs are used.

We now consider the secure combination of independent compression functions.

5.1 Deriving valid parameter sets

Rather than using the identified attacks and their generalisations to break spe-
cific proposals, we use them to derive general lower bounds on the number of
smaller ideal compression functions needed to derive a larger ideal compres-
sion function. More precisely, for a set of k-input secure compression functions,
i.e. compressing kn to n bits, we ascertain the minimum number ¢, of com-
pression functions required to build a secure compression function producing cn
bits, since they must resist DF and MUL attacks. To do this, we adopt a two-phase
approach. First we establish a bound d on the number of compression functions
we require when considering any single linear combination of the ¢ output blocks.
We then derive a bound t,;, on the minimum number of compression functions
that are required when simultaneously considering all ¢ output blocks in the
chaining variable (see Table 1).

Initial bounds on d. First, we consider attack DF and we observe that since
each compression function takes k input blocks, and that there are m+ c external
input blocks to h, then we must have at least [ 2] compression functions. Thus,
every external output block depends on at least [2+¢] internal output blocks.
This is required for every linear combination of the external outputs and so we
have d > [2E<].




Table 1. The minimum number ¢, of compression functions required to resist DF
and MUL attacks, for parameter set (¢, tmin, k, m).

Parameters Basic Bounds Improved
| k | d | tmin d | tmin
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Improved bounds on d. By considering attack DF we can derive the basic
bounds on d given above. However a generic analysis allows us to improve on this
bound by ensuring that a proposed configuration of compression functions also
resists attack MUL. While the style of analysis is generic and can be reused for
different parameter sets, it is most easily described by reference to one particular
instance.

Suppose that we consider the parameter set given by m +c =3 and k = 2
with A, B, and C denoting the three n-bit inputs to the compression function.
Our basic bound gives d > 2, so here we assume that d = 2. Suppose that an
external output block h$V-°") or more generally a linear combination Z of one
or more output blocks, is bound to only two compression functions f; and fs.
Then we have that Z = fl(Xl,XQ) D fQ(Xg, X4) where Xl, XQ, X3, and X4 are
linear combinations of A, B, and C.

The rank of the vector space (X1, X2, X3, X4) spanned by X7, ..., X4 must be
equal to three since otherwise attack DF would apply. Therefore, one can extract
from (X7, Xo, X3, X4) three elements which together form a basis of (A4, B, C).
Without loss of generality, we assume that (X7, X2, X3) = (A, B,C) and there
exist binary coefficients a; so that X4y = a1 A ® asB ® a3C. We cannot have
a1 or ag equal to zero, since otherwise the pairs (A, C) and (B, C) would not
be encountered in either f; or fo and the attack MUL would apply. So we can
assume without loss of generality, that a3 = 1 and ay = 1. If we now apply
the invertible change of variables A’ = A® B, B’ = B, and C' = C, Z can
be rewritten as Z = f1(A’ ® B, B") @ f2(C', A’ ® a3C’). Since (B’, ") is not
encountered in either f; or fo, then the attack MUL applies. Thus d > 3. Note
that such reasoning also applies when m + ¢ > 3, thus if m+c¢ > 3 and k = 2
we have d > 3.



This style of reasoning allows us to improve most of the bounds on d by
considering the applicability of the second generic attack MUL. The sole exception
is the parameter set ¢ = 2, kK = 3, and m = 1 which corresponds to the provably
secure scheme of Hirose and will be discused in Section 6.2.

Initial bounds on ¢t. We now turn bounds on d into bounds on the minimum
number of compression functions that must be used, t,,;,- While any linear com-
bination of the ¢ external outputs must depend on at least d inner compression
functions, a bound on the minimal number #.,;, of compression functions is not
immediate. Here we derive a value for ¢ independently of the analysis needed to
derive d.

In the simple case that ¢ = 2 a combinatorial style of reasoning can be used
and this shows that ty,n > 3—2”{ if d is even and tnin > @ + 2 otherwise.
However a more flexible approach, scaling better to larger parameters, uses an
analogy with coding theory.

Consider vectors of ¢ elements (corresponding to the number of internal com-
pression functions) and attach to each external output block h$°' a vector v;
whose value is determined by whether an internal compression function influ-
ences h$V-°", If compression function f\) is active in h$V°"* then set the ;'
entry of v; to 1, otherwise it has the value 0. For example, if ¢ = 3 and for
some proposed construction only f() and f®) are involved in h$v-out | then we
set v; = (1,0, 1).

In turning our result on d into a constraint on ¢,,;,, we consider the problem
of looking for a binary code of length ¢ with minimal distance d and dimension
c. The Singleton bound yields ¢ <t —d+ 1 and so t > ¢+ d — 1. The Hamming
bound is tighter, but is more involved and given in Appendix B.

Improved bounds on t. It is interesting to note that configurations with
particular features might allow a dedicated, and potentially tighter, analysis
for the bounds on t. An example is given in Appendix C. However since such
analysis does not apply to the general model we have established, (it relies on
a particular form to the input layer), we do not use it in the derivation of the
bounds in Table 1.

6 Constructions

Given a set of parameters (c,t,k,m) it is easy to use the newly established
bounds to check whether, according to our criteria, the scheme is necessarily
insecure. Turning this around, if one wants to build a scheme with some pre-
defined ¢, k, and m then one can compute a lower bound t.,;, on the number
of internal compression functions that must be used, in a parallel configuration
that we consider in Figure 1.



6.1 Impossible constructions

Using the bounds established in Section 5 we first consider interesting parameter
sets such as ¢ € {2,3,4}, k € {2,3}, and m € {1,2}. These correspond to cases
where we aim to obtain double, triple, or quadruple block-length constructions,
using a block cipher with key size the same or twice the block size, and processing
either one or two blocks of message.

We use the bounds on d and once ¢, k, and m are chosen we search for
the smallest ¢ that satisfy our bounds. We thus derive an integer t,,;, for the
minimum number of independent compression functions that must be used in the
specified construction. Note that a given ¢,,,;, does not mean that secure schemes
with ¢, inner compression functions necessarily exist. Rather, no secure scheme
can exist with fewer independent compression functions of the stated type.

Immediately there are interesting results and we note that secure schemes
with (c,t, k,m) parameters (2,3,2,1) or (2,3,3,2) are impossible. These cor-
respond to the schemes of Nandi et al. [28]. Since our bounds are derived by
generalising attacks on [28] we expect this to be the case. However, construc-
tions using four inner compression functions, would still be insecure.

Indeed, for the most natural case with ¢ = 2, £k = 2, and m = 1, the case
of DES and AES-128, one must use at least five inner compression functions in a
parallel framework to obtain a secure hash function offering 64-bit and 128-bit
security respectively. This is more than one might have expected. The case of a
quadruple block-length output is even more dramatic. If one wished to design a
compression function that used AES-128 as a building block but offered 256-bit
security, then one would be required to use at least eight parallel instantiations
of AES-128 to produce a secure compression function.

6.2 Proposed constructions

Figure 2 shows a (2,5, 2, 1)-scheme that is secure against the attacks consid-
ered in this paper. Further research will determine whether other attacks apply.
However, this scheme is one from a range of double block-length hash function
constructions that might be instantiated with AES-128 or other block ciphers
with identical block and key sizes. Note that this is the only such construction
that remains uncompromised. Figure 2 also depicts a (2, 5, 3, 2)-construction that
resists our generic attacks, meets our bound, and could be instantiated with AES-
256 or a cipher like IDEA (or even TWO-KEY TRIPLE-DES) with a key length twice
the block length. The parameter set (2,2,3,1) is covered by Hirose.

A particularly simple set of parameters satisfies £ > m + ¢ when all exter-
nal inputs can be accommodated within each internal compression function and
d = 1. Thus, we derive a secure compression function with ¢ = ¢ without re-
quiring additional internal compression functions. We only need to ensure that
all external input blocks are used directly in every internal compression func-
tion with any free internal inputs fixed to a constant value. Then every external
output needs to be bound to one, and only one, internal compression function.
Hirose [10] has already studied members of this family of block cipher based
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Fig.2. A (2,5,2,1) and a (2,5, 3,2) construction. For the first cosntruction each (in-
dependent) inner compression function can be instantiated using a block cipher with
equal key and block size. For the second construction, the key size is double the block
size. M1, M> are n-bit message blocks; Hi, H2 are n-bit incoming chaining variable
blocks and Hi, H5 are n-bit output chaining variable blocks.

hash functions and proved their security in both the random oracle model and
in the ideal cipher model when the compression functions are instantiated using
a Davies-Meyer construction.

7 Conclusions

In this paper we have analyzed techniques to construct a larger compression
function by combining smaller, trusted, compression functions. By generalising
attacks in the literature, we are able to establish conditions on the type and
number of components that are required to ensure that the constructions are
not vulnerable to a range of powerful and general attacks.

This work has a direct and immediate application to the construction of block
cipher-based hash functions for which the length of the hash output is greater
than the block size of the underlying block cipher. The most important conclu-
sion to draw is that it is actually rather difficult to use multiple instantiations
of a block cipher to build a secure compression function; or at least to do so in
a particularly efficient way. For example, when using AES-128 for double block-



length hashing, one must use at least five parallel instantiations of AES-128 to
derive a compression function offering 128-bit security respectively. To achieve
256-bit security, one must use eight. This is a surprisingly high number of block
cipher calls, particularly so when we consider that this is merely to avoid the
application of generic attacks.

While there are many possible generalisations to the framework used in this
paper, we have provided a natural and broad framework for the analysis of
schemes of this type. Extensions to this work, including identifying schemes that
achieve the most efficient permissible bounds, is the subject of ongoing research.
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Appendix A: Some Established Constructions
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Fig. 3. Mapping the compression functions of MDC-2 and Nandi et al. to our frame-
work. Recall that simple invertible transformations such as a swap can be ignored [19].
My, Ms are n-bit message blocks; Hi, H> are n-bit incoming chaining variable blocks
and Hj, Hj are n-bit output chaining variable blocks.

Appendix B: The Hamming Bound

While it is more difficult to exploit, the Hamming bound is tighter than the
Singleton bound. Here we give an improved version of the Hamming bound [24]:

c<t-log, (S () if d is odd, and
c<t—log, ((é__ll) + Zi%;()l (f)) if d is even.

This can be used to give a bound on ¢ in terms of ¢ and d. The table below allows
us to compare the Singleton and the Hamming bound for some parameter sets
used in Table 1.



Parameters Bounds

c | d Singleton | Hamming
2 1 2 2
2 2 3 3
2 3 4 5
3 2 4 4
3 3 5 6
3 4 6 7
4 2 5 5
4 3 6 7
4 4 7 8

Appendix C: Preferred bounds on ¢ in a restricted model

While the bounds derived in this appendix do not apply to the general model,
it is interesting to see what can be achieved with some minor restrictions to the
general framework. Here we consider the impact of a simplified input layer and
we assume that each of the kt internal inputs is one of the m + ¢ external inputs.
This is far more restrictive than the general case of a linear combination of the
external inputs and so it is not surprising that we can derive better bounds.
From the previous analysis we know that every possible pair of external
inputs must be present in at least one of the internal compression functions
involved in any linear combination of the external output blocks. We have N¢o =
(m+-c)-(m+c—1)/2 different pairs. In each internal compression function, we can
have at most Nx = k- (k—1)/2 pairs present. Each of the V. pairs must appear
in at least ¢ different internal compression functions since otherwise there would
exist a linear combination of the external outputs which would involve none of
these internal compression functions and attack MUL would apply. We thus have:

c-(m+c)-(m+c—1)
b= ke (k—1)

This reasoning can also be applied to attack DF since we have at most m + ¢
different vectors as input to the internal compression functions. Each external
input block must appear in at least ¢ different internal compression functions,
otherwise some linear combinations of the external outputs would not depend
on this external input block. We can put & blocks in one inner function and thus
we have:
i & (m+c¢) .
- k

These bounds are often much better than the general case and illustate the
importance of the input layer. A weak input layer can dramatically increase the
minimum number of compression functions required for a secure construction.



