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roots of multivariate polynomials using lattice-based Coppersmith tech-
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1 Introduction

Since Coppersmith introduced new ways of finding small modular and integer
roots of polynomials in 1996 [4,5,6], variations of these methods have been widely
used in the field of cryptanalysis. Let us give an example that demonstrates the
usefulness of computing small roots. In the case of RSA, the public variables
(N, e) and the secret variables (d, p, q) satisfy the relation

ed− 1 = k(N − (p + q − 1)), for some (unknown) k.

It is known that one can use Coppersmith techniques to try to find the integer
root (d, k, p + q− 1) of the polynomial f(x, y, z) = ex− yN + yz − 1, and hence
recover the factorization of N . Alternatively, one could look for the modular root
(k, p + q − 1) of fe(y, z) = y(N − z) + 1 modulo e.
?? The work described in this paper has been supported in part by the European Com-
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The success of the application of a Coppersmith technique depends on the
size of the root. More precisely, the analysis of the attack results in a bound on
the size of roots that can be found with this method in polynomial time. For the
case of finding the root (y(0), z(0)) = (k, p+q−1) of fe(y, z) = y(N−z)+1 modulo
e in the example above, Boneh and Durfee [1] used a Coppersmith technique to
obtain the bound

Y 2+3τZ1+3τ+3τ2
< e1+3τ , for |y(0)| < Y , and |z(0)| < Z,

where τ > 0 can be optimized once the sizes of Y , Z, and e are known. This led
Boneh and Durfee to show that for d < N0.284 the secret RSA parameters can
be recovered in polynomial time, which they later refined to d < N0.292 in the
same work [1].

Since the analysis of a polynomial f of which we wish to find a small root
heavily depends on the monomials that appear in f , each new polynomial has
to be analyzed anew. This is typically a tedious and non-trivial task. In 2005,
Blömer and May [3] showed how to find optimal bounds for small integer roots of
bivariate polynomials. In this paper we present a heuristic strategy that applies
to all multivariate polynomials; having either modular or integer roots.

We apply our strategy to derive new heuristic attacks on two RSA variants,
using a polynomial that arises in their cryptanalysis. In the first system, the
Chinese Remainder Theorem is used in the decryption phase, with the special
property that dp ≡ d mod (p−1) and dq ≡ d mod (q−1) have a fixed difference
dp−dq. This scheme was proposed in 1998 by Qiao and Lam [17] who suggested
to use the small difference dp − dq = 2. The benefit of the Qiao-Lam scheme is
that one has to store only one out of the two keys dq, dq and the small difference
itself. Up to now, the best attack on the Qiao-Lam scheme was a meet-in-the-
middle attack with time and space complexity Õ{√min{dp, dq}} [17].

Qiao and Lam proposed to use a 1024-bit modulus N with 128-bit dp, dq.
Moreover, they argued that in practice 96-bit private exponents should provide
sufficient security. Our results show that private exponents up to N0.099 can be
recovered in polynomial time. Hence, for 1024-bit RSA moduli one can recover
96-bit dp, dq in polynomial time. Furthermore, attacking 128-bit private expo-
nents should also be feasible with our attack by adding some brute force search
on the most significant bits. We confirm the validity of our heuristic attack
by providing several experiments. Although recovering 96-bit private exponents
can theoretically be done in polynomial time, in practice it turns out to be
a non-trivial task since it requires an LLL-lattice basis reduction [13] in large
dimension.

We would like to point out that our attack works whenever max{dp, dq} ≤
N0.099−ε for some arbitrarily small constant ε, and the difference dp−dq is known
to the attacker. We do not require that the difference dp − dq itself is a small
constant like in the Qiao-Lam scheme.

As a second application of our strategy, we give a new attack on an RSA
variant called Common Prime RSA. This variant was originally proposed by
Wiener [19] as a countermeasure for his attack on small secret exponents d ≤ N

1
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The suggestion is to choose p, q such that p− 1 and q − 1 share a large gcd. In
1995, Lim and Lee [12] used this Common Prime RSA variant in a server-aided
RSA protocol, which was attacked in 1998 by McKee and Pinch [15]. Recently,
Hinek [9] revisited the Common Prime RSA variant. He proposed several RSA
parameter settings with secret exponents less than N

1
4 . However, our second

heuristic attack shows that parts of the proposed key space lead to polynomial
time attacks on RSA. We demonstrate the practicality of our second attack by
providing several experiments that recover the RSA secret information.

2 Finding Small Roots

In this section we describe some tools that we use to solve the problem of finding
small roots, for both the modular and the integer case. Moreover, we present our
new strategy.

In [4,5,6], Coppersmith describes rigorous techniques to find small integer
roots of polynomials in a single variable modulo N , and polynomials in two
variables over the integers. The methods extend to more variables, making them
heuristical. Howgrave-Graham reformulated Coppersmith’s ideas of finding mod-
ular roots in [11], of which we use the following (generalized) lemma.

Lemma 1 (Howgrave-Graham). Let h(x1, . . . , xn) ∈ Z[x1, . . . , xn] be an
integer polynomial that consists of at most ω monomials. Suppose that

(1) h(x(0)
1 , . . . , x

(0)
n ) ≡ 0 mod N for some |x(0)

1 | < X1, . . . , |x(0)
n | < Xn, and

(2) ||h(x1X1, . . . , xnXn)|| < N√
ω
.

Then h(x(0)
1 , . . . , x

(0)
n ) = 0 holds over the integers.

In Lemma 1 the norm of a polynomial f(x1, . . . , xn) =
∑

ai1...inxi1
1 . . . xin

n is the
Euclidean norm of its coefficient vector: ||f(x1, . . . , xn)||2 :=

∑ |ai1...in |2.
Howgrave-Graham’s lemma is usually combined with LLL reduction of lattice

bases, designed by Lenstra, Lenstra, and Lovász [13]. A proof of the following
fact can be found in [14].

Fact 1 (LLL). Let L be a lattice of dimension ω. In polynomial time, the
LLL-algorithm outputs reduced basis vectors vi, 1 ≤ i ≤ ω that satisfy

||v1|| ≤ ||v2|| ≤ . . . ≤ ||vi|| ≤ 2
ω(ω−1)

4(ω+1−i) det(L)
1

ω+1−i .

Thus the condition 2
ω(ω−1)

4(ω+1−i) det(L)
1

ω+1−i < N√
ω

implies that the polynomials
corresponding to the shortest i reduced basis vectors match Howgrave-Graham’s
bound. This reduces to

det(L) ≤ 2
−ω(ω−1)

4 (
1√
ω

)ω+1−iNω+1−i.

In the analysis, we let terms that do not depend on N contribute to an error
term ε, and simply use the determinant condition det(L) ≤ Nω+1−i.
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2.1 Strategy for Finding Small Modular Roots

We will now describe our strategy to find small modular roots of polynomials.
Suppose we want to find a small root (x(0)

1 , . . . , x
(0)
n ) of a polynomial fN modulo

a known composite integer N of unknown factorization. We assume that we
know an upper bound for the root, namely |x(0)

j | < Xj for some given Xj , for
j = 1, . . . , n.

Let l be a leading monomial of fN , with coefficient al. That is, there is no
monomial in fN besides l that is divisible by l. Then gcd(N, al) is 1, or else we
have found a factor of N . Therefore, we can use f ′N = a−1

l fN mod N .
We start by explaining the basic strategy to find the small modular roots,

after which we extend it slightly to obtain the full strategy.

Basic Strategy: Let ε > 0 be an arbitrarily small constant. Depending on 1
ε ,

we fix an integer m. For k ∈ {0, . . . , m + 1}, we define the set Mk of monomials

Mk := {xi1
1 xi2

2 . . . xin
n | xi1

1 xi2
2 . . . xin

n is a monomial of fm
N

and
xi1

1 xi2
2 . . . xin

n

lk
is a monomial of fm−k

N }.
In this definition of Mk and throughout this paper, we assume that the monomi-
als of fN , . . . , fm−1

N are all contained in the monomials of fm
N . If this is not the

case, the definition can be slightly changed such that Mk contains all monomials

xi1
1 xi2

2 . . . xin
n of f j

N for j ∈ {1, . . . ,m} for which x
i1
1 x

i2
2 ...xin

n

lk
is a monomial of f i

N

for some i ∈ {0, . . . ,m − k}. Notice that by definition the set M0 contains all
the monomials in fm

N , whereas Mm+1 = ∅.
Next, we define the following shift polynomials:

gi1...in(x1, . . . , xn) :=
xi1

1 xi2
2 . . . xin

n

lk
f ′N (x1, . . . , xn)kNm−k,

for k = 0, . . . , m, and xi1
1 xi2

2 . . . xin
n ∈ Mk\Mk+1.

All polynomials g have the root (x(0)
1 , . . . , x

(0)
n ) modulo Nm. We define a

lattice L by taking the coefficient vectors of g(x1X1, . . . , xnXn) as a basis. We
can force the matrix describing L to be lower triangular, if we use the following
ordering of the columns of the matrix. A column corresponding to the mono-
mial xi1

1 . . . xin
n ∈ Mk\Mk+1 has smaller order than a column corresponding to

xj1
1 . . . xjn

n ∈ Mk′\Mk′+1 if k < k′. If k′ = k, then a lexicographical ordering
of the monomials is used. The columns in the lattice basis appear in increasing
order from left to right. The diagonal elements are those corresponding to the
monomial lk in (f ′N )k for each row. Therefore, the diagonal terms of the matrix
are Xi1

1 Xi2
2 . . . Xin

n Nm−k for the given combinations of k and ij .
The intuition behind the choice of the sets Mk can be explained as follows.

We aim to have a matrix with a low determinant. To keep the diagonal element
corresponding to the monomial xi1

1 xi2
2 . . . xin

n of fm
N as small as possible, we use

the largest possible powers of fN in the shifts. The condition that x
i1
1 x

i2
2 ...xin

n

lk
is

a monomial of fm−k
N ensures that no monomials appear that are not in fm

N .
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For a small example, consider the polynomial fN (x, y) = 1 + xy2 + x2y. Let
us take l = x2y as our leading term, and m = 2. We want to build a lattice whose
columns correspond to the monomials {1, xy2, x2y, x2y4, x3y3, x4y2} of f2

N . The
shifts given by our strategy are:

for 1 ∈ M0\M1: N2

for xy2 ∈ M0\M1: xy2N2

for x2y4 ∈ M0\M1: x2y4N2

for x2y ∈ M1\M2: fNN
for x3y3 ∈ M1\M2: xy2fNN
for x4y2 ∈ M2\M3: f2

N

Note that the monomial x2y4 is not in M1. Although x2y4 is divisible by l = x2y
and therefore we could obtain x2y4 also by using the shift y3fNN , the product
y3fN would produce the new monomials y3 and xy5, which are not in f2

N .
In general, we find that our condition det(L) < Nm(ω+1−n), derived from

Lemma 1 and Fact 1, reduces to

n∏

j=1

X
sj

j < NsN , for





sj =
∑

x
i1
n ...xin

n ∈M0
ij , and

sN =
∑m

k=0 k(|Mk| − |Mk+1|) =
∑m

k=1 |Mk|
(1)

If we follow this procedure for a given fN , then (1) will give us an upper bound
on the size of the root that we are trying to find. For Xj and N satisfying this
bound we obtain n polynomials hi such that hi(x

(0)
1 , . . . , x

(0)
n ) = 0. If the poly-

nomials hi are algebraically independent, i.e. they do not share a non-trivial gcd,
then resultant computations will reveal the root. Under Assumption 1 this will
lead us to finding (x(0)

1 , . . . , x
(0)
n ).

Assumption 1 The resultant computations for the polynomials hi yield non-
zero polynomials.

All methods for n ≥ 2 have a similar assumption concerning the algebraic inde-
pendence of the polynomials hi. Therefore one has to keep in mind that (most)
attacks using Coppersmith techniques are heuristical, and experiments must be
done for specific cases to justify the assumption.

Extended Strategy: For many polynomials, it is profitable to use extra shifts
of a certain variable. For instance, if we use extra shifts of x1, then we can extend
our basic strategy by using

Mk :=
⋃

0≤j≤t

{xi1+j
1 xi2

2 . . . xin
n | xi1

1 xi2
2 . . . xin

n is a monomial of fm
N

and
xi1

1 xi2
2 . . . xin

n

lk
is a monomial of fm−k

N }.
Moreover, extra shifts of several variables, or combined shifts should be consid-
ered to obtain an optimal bound.

Using this new definition of Mk, the rest of the strategy conforms to the basic
strategy as described before. In Appendix A, we show how the known results on
small modular roots from [1,2,6] are all special cases of our basic or extended
strategy.
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2.2 Strategy for Finding Small Integer Roots

Coron reformulated Coppersmith’s method of finding small integer roots in [7].
Essentially, Coron picks a ’suitable’ integer R and transforms the situation into
finding a small root modulo R, after which one can apply Howgrave-Graham’s
lemma. Analogous to Coron, we will now present our heuristic strategy for finding
small integer roots of multivariate polynomials. The result is an extension of the
result given by Blömer and May [3], that was meant for the provable special case
of bivariate polynomials.

We note that one could also use Coppersmith’s original technique instead
of Coron’s reformulation. The advantage to do so is that in the original Cop-
persmith technique, lattices of smaller dimension are required. The asymptotic
bounds obtained by both methods are equivalent, but the difference is in the size
of the error term ε. For this paper, we have chosen to use Coron’s method for
the sake of a simpler notation, an easier implementation and for its similarity to
the modular approach.

Suppose we want to find the small integer root (x(0)
1 , . . . , x

(0)
n ) of an irre-

ducible polynomial f . We know that the root is small in the sense that |x(0)
j | <

Xj , for j = 1, . . . , n.
Analogous to Section 2.1, we fix an integer m depending on 1

ε . We call dj the
maximal degree of xj in f , and W the maximal coefficient of f(x1X1, . . . , xnXn).
We will use W = ‖f(x1X1, . . . , xnXn)‖∞, with ‖f(x1, . . . , xn)‖∞ := max |ai1...in |
for f(x1, . . . , xn) =

∑
ai1...inxi1

1 . . . xin
n as a notation. Moreover, we define R =

W
∏n

j=1 X
dj(m−1)
j . To work with a polynomial with constant term 1, we define

f ′ = a−1
0 f mod R, where a0 is the constant term of f . This means that we should

have a0 6= 0 and gcd(a0, R) = 1. The latter is easy to achieve, analogous to [7,
Appendix A], since any Xj with gcd(a0, Xj) 6= 1 can be changed into an X ′

j such
that Xj < X ′

j < 2Xj and gcd(a0, X
′
j) = 1. The same holds for W .

Let us now consider the case a0 = 0. In [7, Appendix A], Coron discussed this
case for bivariate polynomials, and showed a simple way to transfer a polynomial
f with zero constant term into a polynomial f∗ with non-zero constant term.

A general way to do this for multivariate polynomials would be the following.
First, we find a non-zero integer vector (y1, . . . , yn) such that f(y1, . . . , yn) 6= 0.
This can be constructed in polynomial time since there are only polynomially
many roots within the given bounds. Then we define f∗(x1, . . . , xn) := f(x1 +
y1, . . . , xn + yn), and look for roots of f∗. Since f∗(0, . . . , 0) = f(y1, . . . , yn), f∗

has a non-zero constant term.
We would like to point out that the switch to f∗ will affect the set of mono-

mials, and new monomials may appear in f∗ that were not in f . This may affect
the analysis and lead to a different Coppersmith-type bound. This issue already
appears with bivariate polynomials, but it did not affect Coron’s analysis since
in his case the set of monomials stayed the same.

Let us now describe our strategy for finding integer roots. As before, we start
with the basic strategy, that we extend later to obtain the full strategy.
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Basic Strategy: Let us first fix an arbitrarily small error term ε. We define
an integer m depending on 1

ε . Furthermore, we define the sets S and M of
monomials that represent the monomials of fm−1 and fm respectively. We de-
note by lj the largest exponent of xj that appears in the monomials of S, i.e.
lj = dj(m− 1).

Next, we define the following shift polynomials

g : xi1
1 xi2

2 . . . xin
n f ′(x1, . . . , xn)

∏n
j=1 X

lj−ij

j , for xi1
1 xi2

2 . . . xin
n ∈ S,

g′ : xi1
1 xi2

2 . . . xin
n R , for xi1

1 xi2
2 . . . xin

n ∈ M\S.

All g and g′ have the root (x(0)
1 , . . . , x

(0)
n ) modulo R. The coefficient vectors

of g(x1X1, . . . xnXn) and g′(x1X1, . . . xnXn) form a lattice basis of a lattice L.
Using lexicographical ordering of the monomials, we can order the basis ma-

trix such that it is upper triangular. The diagonal elements of the rows of g are
those corresponding to the constant term in f ′. Therefore, the diagonal entries of
the matrix are

∏n
j=1 X

dj(m−1)
j for the polynomials g and W

∏n
j=1 X

dj(m−1)+ij

j

for the polynomials g′.
From Section 2, we know that the determinant condition det(L) < Rω+2−n

ensures that the n− 1 smallest vectors in an LLL reduced basis of L correspond
to n− 1 polynomials hi(x1, . . . xn) with hi(x

(0)
1 , . . . , x

(0)
n ) = 0.

We find that the condition det(L) < Rω+2−n reduces to

n∏

j=1

X
sj

j < W sW , for sj =
∑

x
i1
1 ...xin

n ∈M\S
ij , and sW = |S|. (2)

So if (2) holds, we obtain n− 1 polynomials hi such that hi(x
(0)
1 , . . . , x

(0)
n ) = 0.

The choice of R ensures that the hi are independent of f . This is because all hi

are divisible by
∏n

j=1 X
dj(m−1)
j . According to a generalization by Hinek/Stinson

[10, Corollary 5] of a lemma of Coron [7], a multiple h(x1, . . . , xn) of f(x1, . . . , xn)
that is divisible by

∏n
j=1 X

dj(m−1)
j has norm at least

2−(ρ+1)n+1
n∏

j=1

X
dj(m−1)
j W = 2−(ρ+1)n+1R,

where ρ is the maximum degree of the polynomials f, h in each variable sepa-
rately. If we let terms that do not depend on R contribute to ε, it follows that
if hi satisfies Howgrave-Graham’s bound ||hi(x1X1, . . . , xnXn)|| < R√

ω
, then it

also cannot be a multiple of f . Since we assume that f is irreducible, it follows
that f and hi must be algebraically independent. However we cannot prevent
that the hi are pairwise algebraically dependent. So the resultant computations
of f and hi (for i = 1, . . . , n− 1) will only reveal the root under Assumption 1.
This makes the techniques heuristical for n ≥ 3.
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Extended Strategy: As in the modular case, our strategy is not finished be-
fore exploring the possibilities of extra shifts of a certain variable (or more
variables). Suppose we use extra shifts of the variable x1. Then, instead of
S = {monomials of fm−1}, and M = {monomials of fm}, we use

S =
⋃

0≤j≤t{xi1+j
1 xi2

2 . . . xin
n | xi1

1 xi2
2 . . . xin

n is a monomial of fm−1},
M = {monomials of xi1

1 xi2
2 . . . xin

n · f | xi1
1 xi2

2 . . . xin
n ∈ S}.

With the new definitions, the rest of the strategy conforms to the basic strat-
egy as described above, except for the value of R. It is necessary to change
R = W

∏n
j=1 X

dj(m−1)
j into R = W

∏n
j=1 X

lj
j , where lj is the largest exponent

of xj that appears in the monomials of S. In Appendix B, we show that the
known results on small integer roots from [3,6,8] are special cases of our basic
or extended strategy. Moreover, a detailed example for a specific polynomial is
treated in the next section.

3 A Bound Obtained with the New Strategy

In this section we will give a novel analysis of a trivariate polynomial that will
be used in two new attacks on RSA variants in the subsequent sections.

Let f(x, y, z) = a0+a1x+a2x
2+a3y+a4z+a5xy+a6xz+a7yz be a polynomial

with a small root (x(0), y(0), z(0)), with |x(0)| < X, |y(0)| < Y , |z(0)| < Z. We
show that under Assumption 1 for every fixed ε, all sufficiently small roots can
be found in time polynomial in log W provided that

X7+9τ+3τ2
(Y Z)5+

9
2 τ < W 3+3τ−ε,

where we can optimize τ > 0 after the substitution of values for X, Y, Z, and W .
Let us follow the extended strategy described in Section 2.2 to show how this

bound can be obtained. Our goal is to construct two polynomials h1, h2 with the
root (x(0), y(0), z(0)) that are not multiples of f . To do so, we fix an integer m
depending on 1

ε , and an integer t = τm that describes the number of extra x-
shifts. We define R = WX2(m−1)+t(Y Z)m−1 and f ′ = a−1

0 f mod R. The shift
polynomials g and g′ are given by:

g : xi1yi2zi3f ′(x, y, z)X2(m−1)+t−i1Y m−1−i2Zm−1−i3 for xi1yi2zi3 ∈ S,
g′ : Rxi1yi2zi3 for xi1yi2zi3 ∈ M\S,

for
S =

⋃
0≤j≤t{xi1+jyi2zi3 | xi1yi2zi3 is a monomial of fm−1},

M = {monomials of xi1yi2zi3 · f | xi1yi2zi3 ∈ S}.
It follows that

xi1yi2zi3 ∈ S ⇔ i2 = 0, . . . , m− 1 ; i3 = 0, . . . ,m− 1 ;
i1 = 0, . . . , 2(m− 1)− (i2 + i3) + t.

xi1yi2zi3 ∈ M ⇔ i2 = 0, . . . , m ; i3 = 0, . . . ,m ; i1 = 0, . . . , 2m− (i2 + i3) + t.
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All polynomials g and g′ have the root (x(0), y(0), z(0)) modulo R. Let h1

and h2 be linear combinations of the polynomials g and g′. As was explained in
Section 2.2, if h1 and h2 satisfy Howgrave-Graham’s bound ||hi(xX, yY, zZ)|| <
R√
ω
, then we can assume that h1 and h2 both have the root (x(0), y(0), z(0)) over

the integers, and also that they are algebraically independent of f .
Using the coefficient vectors of g(xX, yY, zZ) and g′(xX, yY, zZ) as a basis,

we build a lattice L. We order the vectors such that the matrix is triangular,
with the diagonal entries of g equal to X2(m−1)+t(Y Z)m−1, and those of g′ equal
to RXi1Y i2Zi3 = X2(m−1)+t+i1Y m−1+i2Zm−1+i3W .

Now by (2), provided that
∏n

j=1 X
sj

j < W |S| with sj =
∑

x
i1
1 ...xin

n ∈M\S ij
holds, the polynomials h1 and h2 corresponding to the shortest two LLL-reduced
basis vectors satisfy Howgrave-Graham’s bound. This reduces to

X( 7
3+3τ+τ2)m3+o(m2)(Y Z)(

5
3+ 3

2 τ)m3+o(m2) ≤ W (1+τ)m3+o(m2).

If we let all terms of order o(m2) contribute to ε, the condition simplifies to

X7+9τ+3τ2
(Y Z)5+

9
2 τ < W 3+3τ−ε.

4 Attack on RSA-CRT with Known Difference

In this section, we explain how a small root of a polynomial f(x, y, z) = a0 +
a1x+a2x

2 +a3y +a4z +a5xy +a6xz +a7yz results in a new attack on a variant
of RSA-CRT proposed by Qiao/Lam [17]. We show the following result.

Theorem 1 (RSA-CRT with Fixed Known Difference dp − dq).
Under Assumption 1, for every ε > 0, there exists n0 such that for every n > n0,
the following holds: Let N = pq be an n-bit RSA modulus, and p, q primes of
bitsize n

2 . Let ed ≡ 1 mod φ(N), and dp and dq be such that dp ≡ d mod (p−1)
and dq ≡ d mod (q−1). Assume that dp and dq are chosen such that dp = dq + c̄
for some known c̄ and bitsize(dp), bitsize(dq) ≤ δn for some 0 < δ < 1

2 . Then N
can be factored in time polynomial in log N provided that

δ <
1
4
(4−

√
13)− ε.

Notice that 1
4 (4−√13) ≈ 0.099. Hence, our attack applies whenever dp or dq is

smaller than N0.099−ε and the difference c̄ = dp − dq is known to an attacker.

4.1 RSA-CRT with Known Difference dp − dq

In 1990, Wiener [19] showed that choosing d < N
1
4 makes RSA insecure. As an

alternative, Wiener suggested to use the Chinese Remainder Theorem (CRT) for
the decryption phase of RSA: Instead of computing m ≡ cd mod N for some
ciphertext c, compute m1 ≡ cdp mod p and m2 ≡ cdq mod q and then combine
these results using CRT to obtain m. Wiener pointed out that both exponents
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dp ≡ d mod (p− 1) and dq ≡ d mod (q − 1) could be chosen small to obtain a
fast decryption. Then usually e is of the same size as the modulus N .

Qiao and Lam [17] proposed to use dp and dq such that dp − dq = 2 in
their method for fast signature generation on a low-cost smartcard. For the size
of dp and dq, they suggest 128 bits to counteract the birthday attack that they
describe in [17]. Moreover, they state that 96 bits should be enough to counteract
this attack in practice. In current proposals, a minimum of 160 bits is advised
for the private exponents to counteract the birthday attack.

4.2 Description of the New Attack

When dp − dq = c̄, the public and private variables of RSA-CRT satisfy the
following relations.

{
edp = 1 + k(p− 1),

e(dp − c̄) = 1 + l(q − 1), or equivalently
{

edp − 1 + k = kp,
edp − c̄e− 1 + l = lq.

Multiplying the two equations results in

(1 + c̄e)− (2e + c̄e2)dp + e2d2
p − (c̄e + 1)k − l + edpk + edpl + (1−N)kl = 0,

in which the unknowns are dp, k, and l. We can extract from this equation that

f(x, y, z) = (1+ c̄e)− (2e+ c̄e2)x+ e2x2− (c̄e+1)y− z + exy + exz +(1−N)yz

has a small root (d, k, l). From (d, k, l), the factorization of N can easily be found.
Suppose max{dp, dq} is of size N δ for some δ ∈ (0, 1

2 ). Then k and l are both
bounded by N δ+ 1

2 (here we omit constants and let these contribute to the error
term ε). Therefore, we put X = N δ, Y = Z = N δ+ 1

2 , and W = N2+2δ.
In Section 3 we showed that for this polynomial, the asymptotic bound is

X7+9τ+3τ2
(Y Z)5+

9
2 τ < W 3+3τ ,

where τ > 0 can be optimized. Substituting the values for X, Y , Z, and W , we
obtain

(7 + 9τ + 3τ2)δ + (5 + 9
2τ)(2δ + 1)− (3 + 3τ)(2δ + 2) < 0, or

3δτ2 + 3(4δ − 1
2 )τ + (11δ − 1) < 0.

For the optimal value τ =
1
2−4δ

2δ , this reduces to δ < 1
4 (4−√13) ≈ 0.099.

Therefore, for a 1024 bit modulus N , the system should be considered unsafe
when dp is at most 0.099 · 1024 ≈ 101 bits. This breaks the system of Qiao and
Lam for the proposed 96 bit exponents in time polynomial in the bit-size of N .

We can add an exhaustive search on the most significant bits of dp and try
the attack for each candidate for d̃p. Here, dp = d̃p +d0, where the unknown part
of d is d0. The corresponding polynomial f will change, but it will still have the
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same monomials. Therefore, the analysis will follow easily. The proposal of Qiao
and Lam to use 128 bit private exponents can also be considered unsafe when
applying such an extra exhaustive search, although performing such an attack
may be costly in practice.

We performed several experiments to test the validity of Assumption 1 and
to show which results can be achieved with relatively small lattices. We imple-
mented the new attacks on a 2.4GHz Pentium running Linux. The LLL lattice
reduction was done using Shoup’s NTL [18]. For the attack on RSA-CRT with
known difference described in Section 4, the parameters dp, dq were chosen with
difference dp − dq = 2 as suggested in the Qiao-Lam scheme. For m = 2 the
choice t = 8 maximizes the size of the attackable dp.

N dp lattice parameters LLL-time
1000 bit 10 bit m = 2, t = 3, dim = 54 32 min
2000 bit 22 bit m = 2, t = 3, dim = 54 175 min
3000 bit 42 bit m = 2, t = 3, dim = 54 487 min
4000 bit 60 bit m = 2, t = 3, dim = 54 1015 min
5000 bit 85 bit m = 2, t = 3, dim = 54 1803 min
500 bit 9 bit m = 2, t = 8, dim = 99 105 min

1000 bit 18 bit m = 2, t = 8, dim = 99 495 min
500 bit 13 bit m = 3, t = 3, dim = 112 397 min

In each experiment we obtained two polynomials h1(x, y, z), h2(x, y, z) with
the desired root (x(0), y(0), z(0)). Solving g(z) = Resy(Resx(h1, f),Resx(h2, f)) =
0 yielded the unknown z(0). The parameters y(0) and x(0) could be obtained by
back substitution. The resultant heuristic of Assumption 1 worked perfectly in
practice. For every instance, we could recover the secrets and hence factor N .

One should note that our experiments are quite far from solving the proposed
96-bit dp, dq instances of the Qiao-Lam scheme. Theoretically, the smallest m for
which one obtains the 96-bit bound is m = 61 together with t = 36, resulting in
a lattice dimension of 376712. Reducing lattice bases in this dimension is clearly
out of reach.

However, we would like to point out that we did not optimize the performance
of our attack. For optimization of the running-time, one should combine brute-
force guessing of most significant bits of dp with the described lattice attack.
Moreover, one should apply faster lattice reduction methods like the recently
proposed L2-method of Nguyen, Stehlé [16]. Additionally, a significant practi-
cal improvement should be obtained by implementing Coppersmith’s original
method instead of Coron’s method, since in Coppersmith’s method one has to
reduce a lattice basis of smaller dimension.

5 New Attack on Common Prime RSA

In this section, we explain how a small root of a polynomial f(x, y, z) = a0 +
a1x+a2x

2 +a3y +a4z +a5xy +a6xz +a7yz results in a new attack on a variant
of RSA called Common Prime RSA. We show the following result.
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Theorem 2 (Common Prime RSA).
Under Assumption 1, for every ε > 0, there exists n0 such that for every n > n0,
the following holds: Let N = pq be an n-bit RSA modulus, and p, q primes of
bitsize n

2 such that p − 1 = 2ga and q − 1 = 2gb, for some prime g of bitsize
γn, with 0 < γ < 1

2 . Let ed ≡ 1 mod 2gab, with bitsize(e) = (1 − γ)n and
bitsize(d) = δn, with 0 < δ < (1− γ)n. Then d can be found in time polynomial
in log N provided that

δ <
1
4
(4 + 4γ −

√
13 + 20γ + 4γ2)− ε.

5.1 Common Prime RSA

In Section 4, we mentioned that a small d is unsafe in Wiener’s attack [19].
Therefore, RSA-CRT is often used when efficient decryption is needed. However,
there is also a possibility to choose d < N

1
4 in RSA while avoiding Wiener’s

attack. There is a variant of RSA where Wiener’s attack works less well, as was
already shown by Wiener, namely when gcd(p−1, q−1) has a large prime factor.
Lim and Lee used this fact in a proposal [12], which was attacked a few years
later by McKee and Pinch [15]. Recently Hinek [9] revisited this variant, calling
it Common Prime RSA, and investigated its potential and its weaknesses.

In Common Prime RSA, we have N = pq for primes p and q such that
p = 2ga + 1 and q = 2gb + 1, for g a large prime, and a, b coprime integers. The
exponents e and d are mutually inverse modulo lcm(p− 1, q − 1) = 2gab:

ed = 1 + k · 2gab, with 0 < e, d < 2gab.

The goal is to safely choose an exponent d < N
1
4 , which enables a fast

RSA decryption process. We set g = Nγ and d = N δ for some 0 ≤ γ < 1
2 ,

0 < δ < 1− γ. Then, e is of size N1−γ , k is of size Nδ, and a and b are both of
size N

1
2−γ .

A large number of security issues were addressed in [9]. After excluding all
parameter choices of Common Prime RSA that should be considered unsafe by
the known attacks, Hinek concludes that there are still plenty of safe choices for
d = N δ with δ < 1

4 (see Fig. 1).

5.2 Description of the New Attack

An improved attack can be obtained by treating the equation in Hinek’s second
lattice attack in a different way. In his attack, Hinek starts by multiplying the
following two equations:

ed = 1 + k(p− 1)b, ed = 1 + k(q − 1)a.

This can be written as e2d2 + ed(ka+ kb− 2)− (N − 1)k2ab− (ka+ kb− 1) = 0.
Next, he uses the fact that the polynomial f(x, y, z, u) = e2x+ey− (N −1)z−u
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has a small root (d2, d(k(a+ b−2)), k2ab, (ka+kb−1)). This leads to the bound
δ < 2

5γ, for which the secret information can be revealed.
Now let us take another look at the equation

e2d2 + ed(ka + kb− 2)− (ka + kb− 1)− (N − 1)k2ab = 0,

in which the unknowns are d, k, a and b. We can extract from this equation that
the polynomial f(x, y, z) = e2x2 + ex(y + z − 2)− (y + z − 1)− (N − 1)yz has
a small root (d, ka, kb) with X = Nδ, Y = Nδ+ 1

2−γ , Z = N δ+ 1
2−γ . Moreover,

W = N2+2δ−2γ .
Substituting these in the asymptotical bound X7+9τ+3τ2

(Y Z)5+
9
2 τ < W 3+3τ

from Section 3 yields

3δτ2 + 3(4δ − 1
2
− γ)τ + (11δ − 1− 4γ) < 0.

For the optimal τ =
1
2+γ−4δ

2δ , this reduces to δ < 1
4 (4 + 4γ −

√
13 + 20γ + 4γ2).

Fig. 1 shows the new attack region as well as the known attacks, for any size
of modulus N . Combinations of d and g that should be considered unsafe by
the new attack are in the dark shaded area, whereas the lighter shaded area was
already unsafe by the known attacks. It can be seen that the number of ’safe’
combinations {d, g} with d < N

1
4 has significantly decreased.

0.1 0.2 0.3 0.4 0.5
Γ =logNHgL

0.05

0.1

0.15

0.2

0.25

∆ = logNHdL

Known attacks

New attack

0.1 0.2 0.3 0.4 0.5
Γ =logNHgL

0.05

0.1

0.15

0.2

0.25

∆ = logNHdL

Fig. 1. New attack region

We note that for ’small’ N (such as the regular 1024 bits), other attacks such
as factoring attacks may apply, see [9]. Also, depending on the size of N , the
attacks in the figure could be extended by an additive exhaustive search.

We performed experiments to check the validity of Assumption 1 and to
demonstrate the practicality of our attack. We have implemented the new at-
tack for the parameter setting m = 2, t = 0 (without the possible additional
exhaustive search), to give an impression on what a realistic bound is for the
smallest lattice possible. Of course, extending to m = 3, m = 4, etc. and using
x-shifts will give results closer to the theoretical attack bound δ < 1

4 (4 + 4γ −√
13 + 20γ + 4γ2), but will also result in a longer time needed for the lattice

basis reduction. For m = 2, t = 0 the reduction time (the longest part of the
attack) is about one minute.

The following table summarizes the experimental results performed for m =
2, t = 0, and log2(N) = 1024. As one can see, the results are already outside the
asymptotical range of the two other lattice attacks described in [9].
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maximal δ obtained δ maximal δ
γ (asymptotic) (m = 2, t = 0) (asymptotic)

new attack new attack known attacks
0.10 0.130 0.07 0.20
0.20 0.164 0.10 0.15
0.30 0.200 0.13 (∗) 0.12
0.40 0.237 0.17 (∗) 0.16
0.50 0.275 0.2 0.25

The resultant heuristic of Assumption 1 worked perfectly in most cases. How-
ever, in the rare situation that both δ and γ were very small (e.g. γ = 0.1 and
δ = 0.05), we encountered cases where some of the polynomials hi were alge-
braically dependent. In these cases, we could still recover the secret information
in two different ways. One way was to use combinations of h1 and the somewhat
’larger’ hi for i > 2, instead of only h1 and h2. The other way was by examining
the cause of the zero resultant. In essence, Resy(Resx(h1, f),Resx(h2, f)) = 0
because Resx(h1, f) and Resx(h2, f) have a common polynomial factor, whose
coefficients immediately reveal the secrets.

Acknowledgements: We thank Benne de Weger, Arjen Lenstra, Jason Hinek,
and the anonymous reviewers for their helpful comments.
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A Small Modular Roots, Known Results

In this appendix, we give the known results for finding small modular roots
[1,2,6] that can also be obtained by following the new strategy. Due to limited
space, we only give the definitions of Mk that reproduce the known bounds. In
all cases where the extended strategy is used, we use the notation t = τm for
some τ > 0 that can be optimized later.

Boneh/Durfee [1]: fN (x1, x2) = a0 + a1x1 + a2x1x2

The bound X2+3τ
1 X1+3τ+3τ2

2 < N1+3τ can be found with the extended strategy
using xi1

1 xi2
2 ∈ Mk ⇔ i1 = k, . . . ,m; i2 = k, . . . , i1 + t

Blömer/May [2]: fN (x1, x2, x3) = a0 + a1x1 + a2x2 + a3x2x3

The bound X1+4τ
1 X2+4τ

2 X1+4τ+6τ2

3 < N1+4τ can be found with the extended
strategy, with xi1

1 xi2
2 xi3

3 ∈ Mk⇔ i1= k, . . . ,m; i2 = 0, . . . , m−i1; i3 = 0, . . . , i2+t.

Generalized Rectangle (generalization of a bound of Coppersmith[6]):
fN (x1, . . . , xn) is a polynomial such that the degree of xi is λiD.
The bound Xλ1

1 · . . . ·Xλn
n < N

2
(n+1)D can be obtained with the basic strategy

using xi1
1 · . . . · xin

n ∈ Mk ⇔ ij = λjDk, . . . , λjDm (for j = 1, . . . , n)

Generalized Lower Triangle (generalization of a bound of Coppersmith[6]):
fN (x1, . . . , xn) is a polynomial with monomials xi1

1 . . . xin
n for i1 = 0, . . . , λ1D,

i2 = 0, . . . , λ2D − λ2
λ1

i1, . . . , in = 0, . . . ,≤ λnD −∑n−1
r=1

λnD
λr

ir.
The bound Xλ1

1 · . . . ·Xλn
n < N

1
D can be obtained with the basic strategy, with

xi1
1 · . . . · xin

n ∈ Mk ⇔ i1 = λ1Dk, . . . , λ1Dm; ij = 0, . . . , λjDm−∑j−1
r=1

λj

λr
ir (for

j = 2, . . . , n).
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B Small Integer Roots, Known Results

In this appendix, we give the known results for finding small integer roots [3,8,6]
that can also be obtained with the basic or extended strategy. Due to limited
space, we only give the definitions of S and M that reproduce the known bounds.
In all cases where the extended strategy is used, we use the notation t = τm for
some τ > 0 that can be optimized later.

Blömer/May, Upper Triangle [3]:
f(x1, x2) is a polynomial with monomials xi1

1 xi2
2 for i1 = 0 . . . D, i2 = 0 . . . λi2.

The bound X
(λ+τ)2

1 X
2(λ+τ)
2 < W

1
D (λ+2τ) can be obtained with the extended

strategy, with xi1
1 · . . . · xin

n ∈ S ⇔ i2 = 0, . . . , D(m− 1); i1 = 0, . . . , λi2 + t, and
xi1

1 · . . . · xin
n ∈ M ⇔ i2 = 0, . . . , Dm; i1 = 0, . . . , λi2 + t.

Blömer/May, Extended Rectangle [3]:
f(x1, x2), with monomials xi1

1 xi2
2 for i2 = 0, . . . , D, i1 = 0, . . . , γD+λ(D−i2), e.g.

f(x1, x2) = a0 +a1x1 +a2x
2
1 +a3x

3
1 +a4x2 +a5x1x2 (where D = 1, γ = 1, λ = 2).

The bound Xλ2+3γλ+2τλ+4τγ+τ2+3γ2

1 Xλ+3γ+2τ
2 < W

1
D (λ+2γ+2τ) can be obtained

with the extended strategy, using xi1
1 xi2

2 ∈ S ⇔ i2 = 0, . . . , D(m − 1); i1 =
0, . . . , γD(m−1)+λ(D(m−1)− i2)+ t, and xi1

1 xi2
2 ∈ M ⇔ i2 = 0, . . . , Dm; i1 =

0, . . . , γDm + λ(Dm− i2) + t.

Ernst et al. 1 [8]: f(x1, x2, x3) = a0 + a1x1 + a2x2 + a3x2x3.

The bound X1+3τ
1 X2+3τ

2 X1+3τ+3τ2

3 < W 1+3τ can be found with the extended
strategy, with xi1

1 xi2
2 xi3

3 ∈ S ⇔ i1 = 0, . . . , m − 1; i2 = 0, . . . ,m − 1 − i1;
i3 = 0, . . . , i2 + t, and xi1

1 xi2
2 xi3

3 ∈ M ⇔ i1 = 0, . . . ,m; i2 = 0, . . . , m − i1; i3 =
0, . . . , i2 + t.

Ernst et al. 2 [8]: f(x1, x2, x3) = a0 + a1x1 + a2x2 + a3x3 + a4x2x3.

The bound X2+3τ
1 X3+3τ

2 X3+6τ+3τ2

3 < W 2+3τ can be found with the extended
strategy, using xi1

1 xi2
2 xi3

3 ∈ S ⇔ i1 = 0, . . . ,m− 1; i2 = 0, . . . , m− 1− i1 + t; i3 =
0, . . . , m−1− i1, and xi1

1 xi2
2 xi3

3 ∈ M ⇔ i1 = 0, . . . ,m; i2 = 0, . . . , m− i1 + t; i3 =
0, . . . , m− i1.

Generalized Rectangle (generalization of a bound of Coppersmith [6]):
f(x1, . . . , xn) is a polynomial where the degree of xi is λiD.
The bound Xλ1

1 · . . . ·Xλn
n < W

2
(n+1)D can be found with the basic strategy, with

xi1
1 xi2

2 . . . xin
n ∈ S ⇔ ij = 0, . . . , λjD(m − 1), and xi1

1 xi2
2 . . . xin

n ∈ M ⇔ ij =
0, . . . , λjDm (for j = 1, . . . , n).

Generalized Lower Triangle (generalization of a bound of Coppersmith [6]):
f(x1, . . . , xn) is a polynomial monomial are xi1

1 . . . xin
n for 0 ≤ i1 ≤ λ1D, 0 ≤

i2 ≤ λ2D − λ2
λ1

i1, . . . , 0 ≤ in ≤ λnD −∑n−1
r=1

λn

λr
ir.

The bound Xλ1
1 · . . . · Xλn

n < W
1
D can be found with the basic strategy, with

xi1
1 xi2

2 . . . xin
n ∈ S ⇔ ij = 0, . . . , λjD(m − 1) − ∑j−1

r=1
λj

λr
ir, and xi1

1 xi2
2 . . . xin

n ∈
M ⇔ ij = 0, . . . , λjDm−∑j−1

r=1
λj

λr
ir (for j = 1, . . . , n).


