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Abstract. We introduce a primitive called Hierarchical Identity-Coupling
Broadcast Encryption (HICBE) that can be used for constructing effi-
cient collusion-resistant public-key broadcast encryption schemes with
extended properties such as forward-security and keyword-searchability.
Our forward-secure broadcast encryption schemes have small ciphertext
and private key sizes, in particular, independent of the number of users
in the system. One of our best two constructions achieves ciphertexts
of constant size and user private keys of size O(log2 T ), where T is the
total number of time periods, while another achieves both ciphertexts
and user private keys of size O(log T ). These performances are compara-
ble to those of the currently best single-user forward-secure public-key
encryption scheme, while our schemes are designed for broadcasting to
arbitrary sets of users. As a side result, we also formalize the notion of
searchable broadcast encryption, which is a new generalization of public
key encryption with keyword search. We then relate it to anonymous
HICBE and present a construction with polylogarithmic performance.

1 Introduction

Broadcast encryption (BE) scheme [16] allows a broadcaster to encrypt a message
to an arbitrarily designated subset S of all users in the system. Any user in S can
decrypt the message by using his own private key while users outside S should
not be able to do so even if all of them collude. Such a scheme is motivated
by many applications such as pay-TV systems, the distribution of copyrighted
materials such as CD/DVD. Public-key broadcast encryption is the one in which
the broadcaster key is public. Such a scheme is typically harder to construct than
private-key type ones. In what follows, we let n denote the number of all users.

The best BE scheme so far in the literature was recently proposed by Boneh,
Gentry, and Waters [7]. Their scheme, which is a public-key scheme, achieves
asymptotically optimal sizes, O(1), for both broadcast ciphertexts and user pri-
vate keys, with the price of O(n)-size public key. (To achieve some tradeoff, they



also proposed a generalized scheme, of which one parametrization gives a scheme
where both the public keys and the ciphertexts are of size O(

√
n)). The previ-

ously best schemes [20, 19, 18], along the line of the subset-cover paradigm by
Naor, Naor, and Lotspiech (NNL) [20], can only achieve a broadcast ciphertext
of size O(r) with each user’s private key being of size O(log n), where r = n−|S|
is the number of revoked users. Although these schemes are improved in [3] by
reducing the private key size to O(1), the ciphertext is still of size O(r).4 These
NNL derivatives are originally private-key schemes. Dodis and Fazio [15] gave
a framework to extend these schemes to public-key versions using Hierarchical
Identity-Based Encryption (HIBE) [17]. Instantiating this framework with a re-
cent efficient HIBE scheme by Boneh, Boyen, and Goh [5] gives a public-key
version of NNL-based schemes without loss in performance of ciphertext sizes.

Forward-Secure Broadcast Encryption. Unfortunately, a normal broadcast
encryption scheme offers no security protection for any user whatsoever once
his private key is compromised. As an extension to the normal variant in or-
der to cope with the vulnerability against key exposure, the notion of forward
security in the context of public-key broadcast encryption was first studied by
Yao et al. [22]. A forward-secure public-key broadcast encryption (FS-BE) al-
lows each user to update his private key periodically while keeping the public
key unchanged. Such a scheme guarantees that even if an adversary learns the
private key of some user at time period τ , messages encrypted during all time
periods prior to τ remain secret. Yao et al. also proposed a FS-BE scheme achiev-
ing ciphertexts of size O(r log T log n) while each user’s private key is of size
O(log3 n log T ), where T is the maximum allowed time period. Indeed, they pro-
posed a forward-secure HIBE scheme and then applied it to the NNL scheme in
essentially the same manner as done by [15], as mentioned above. Later, Boneh et
al. [5] proposed (at least two) more efficient forward-secure HIBE schemes, which
when applying to the NNL scheme gives a FS-BE scheme with ciphertexts of size
O(r) and private keys of size O(log3 n log T ) and another FS-BE scheme with
ciphertexts of size O(r log T ) and private keys of size O((log2 n)(log n + log T )).
These schemes are the best FS-BE schemes so far in the literature.

1.1 Our Contributions.

Towards constructing a more efficient FS-BE scheme, we introduce a new primi-
tive called Hierarchical Identity-Coupling Broadcast Encryption (HICBE), which
can be considered as a generalization either of BE that further includes hierarchi-
cal-identity dimension together with key derivation functionality or of HIBE that
further includes a user dimension together with broadcast functionality. Besides
forward security, HICBE can be used to construct BE with other extended prop-
erties such as keyword-searchability, which is another feature that we study as
a side result in this paper (see below).
4 Note that one advantage of these NNL-based schemes is that, in contrast to the BGW

scheme, all the other efficiency parameters, beside ciphertext sizes and private key
sizes, are also of sub-linear (in n) size.



FS-BE with Short Ciphertexts and Private Keys. Using HICBE as a
building block, we propose at least three new FS-BE schemes. One of our best two
schemes achieves ciphertexts of size O(1) and user private keys of size O(log2 T ).
The other best scheme achieves ciphertexts of size O(log T ) and user private
keys of size O(log T ). These outperform the previous schemes in terms of both
overheads. In particular, they are independent of the parameters in the user
dimension, namely n and r; moreover, the first scheme achieves the constant-
size ciphertext. These performances of our schemes are comparable to those of
the currently best single-user forward-secure public-key encryption scheme (cf.
[5]). The public keys for both schemes are of size O(n + log T ). Analogously
to [7], we can show that this amount can be traded off to O(

√
n + log T ) with

ciphertext size being increased to O(
√

n) and O(
√

n+log T ) respectively in both
schemes. Security of our systems is based on the Decision Bilinear Diffie-Hellman
Exponent assumption (BDHE), which is previously used in [7, 5]. We prove the
security in the standard model (i.e., without random oracle).

Searchable Broadcast Encryption. Public-key BE can be applied naturally
to encrypted file systems, which enable file sharing among privileged users over
a public server, as already suggested in [7]. A file can be created by anyone using
the public key and the privileged subset can be arbitrarily specified by the creator
of the file. Due to a possible large amount of databases, a user Alice might want
to retrieve only those files that contain a particular keyword of interest (among
all the files in which Alice is specified as a privileged user), but without giving
the server the ability to decrypt the databases. Public-key Broadcast Encryption
with Keyword Search (BEKS) allows to do exactly this. It enables Alice to give
the server a capability (or a trapdoor) to test whether a particular keyword, w,
is contained in any (and only) file that includes Alice as a privileged user. This is
done in such a way that (1) the server is unable to learn anything else about that
file, besides the information about containment of w, and (2) all the other users
outside the privileged set cannot learn anything, in particular, cannot generate
such a trapdoor, even if they collude. BEKS is a new generalization of public key
encryption with keyword search (PEKS) [6] that we introduce in this paper. We
then relate that an anonymous ICBE (1-level HICBE) is sufficient to construct
BEKS, analogously to the relation between anonymous IBE and PEKS [1].

A trivial BEKS achieving ciphertexts of size O(n) can be constructed from the
concatenation of PEKS-encryption of the same keyword to each privileged user.
Our scheme achieves ciphertexts of size O(r log n), trapdoors of size O(log3 n),
and private keys of size O(log4 n). Before coming up with this result, we construc-
tively hint that even using the same technique as our FS-BE schemes (where a
non-anonymous HICBE is sufficient), it might not be easy to construct a BEKS
scheme with both ciphertext and private key of sizes independent of n. We refer
for most of the results in this part to the full paper [2] due to limited space here.

2 Preliminaries

Bilinear Maps. We briefly review facts about bilinear maps. We use the stan-
dard terminology from [8]. Let G,G1 be multiplicative groups of prime order p.



Let g be a generator of G. A bilinear map is a map e : G × G → G1 for which
the following hold: (1) e is bilinear; that is, for all u, v ∈ G, a, b ∈ Z, we have
e(ua, vb) = e(u, v)ab. (2) The map is non-degenerate: e(g, g) 6= 1. We say that
G is a bilinear group if the group action in G can be computed efficiently and
there exists G1 for which the bilinear map e : G × G → G1 is efficiently com-
putable. Although it is desirable to use asymmetric type, e : G×G′ → G1 where
G 6= G′, so that group elements will have compact representation, for simplicity
we will present our schemes by the symmetric ones. Indeed, our schemes can be
rephrased in terms of asymmetric maps.

Decision BDHE Assumption.5 Let G be a bilinear group of prime order p.
The Decision n-BDHE (Bilinear Diffie-Hellman Exponent) problem [7, 5] in G is
stated as follows: given a vector

(
g, h, gα, g(α2), . . . , g(αn), g(αn+2), . . . , g(α2n), Z

)
∈ G2n+1 ×G1

as input, determine whether Z = e(g, h)(α
n+1). We denote gi = g(αi) ∈ G for

shorthand. Let yg,α,n = (g1, . . . , gn, gn+2, . . . , g2n). An algorithm A that outputs
b ∈ {0, 1} has advantage ε in solving Decision n-BDHE in G if |Pr

[A(
g, h, yg,α,n,

e(gn+1, h)
)

= 0
]− Pr

[A(
g, h, yg,α,n, Z

)
= 0

]| ≥ ε, where the probability is over
the random choice of generators g, h ∈ G, the random choice of α ∈ Zp, the
random choice of Z ∈ G1, and the randomness of A. We refer to the distribution
on the left as PBDHE and the distribution on the right as RBDHE . We say
that the Decision (t, ε, n)-BDHE assumption holds in G if no t-time algorithm
has advantage at least ε in solving the Decision n-BDHE problem in G. We
sometimes drop t, ε and refer it as the Decision n-BDHE assumption in G.

3 Hierarchical Identity-Coupling Broadcast Encryption

Model. A HICBE system consists of n users, each with index i ∈ {1, . . . , n}.
In usage, a user index will be “coupled” with some additional arbitrary identity
tuple ID = (I1, . . . , Iz), for any Ij in some predefined identity space I and any
z = 1, . . . , L where L is a predetermined maximum depth of tuples. The user
i coupling with ID, which we will refer as a node (i, ID), will possess its own
private key di,ID. If ID = (I1, . . . , Iz), then for j = 1, . . . , z, let ID|j = (I1, . . . , Ij),
and let ID|0 be the empty string ε. A HICBE system enables a derivation from
di,ID|z−1 to di,ID. In particular, di,(I1) can be derived from di, the root private
keys of i. A HICBE system enables one to encrypt a message to a set of nodes
{(i, ID)|i ∈ S} for arbitrary S ⊆ {1, . . . , n}, where we say that it is encrypted
to multi-node (S, ID). If i ∈ S, the user i coupling with ID (who possesses di,ID)
can decrypt this ciphertext. When L = 1, we simply call it an ICBE.
5 This holds in the generic bilinear group model with the computational lower bound of

Ω(
p

p/n) on the difficulty of breaking (cf.[5]). Cheon [14] recently showed a concrete
attack with roughly the same complexity. It is recommended to either increase p (to
≈ 220-bit size for n = 264 to achieve 280 security) or use p of a special form where
p− 1 and p + 1 have no small divisor greater than log2 p to avoid the attack.



Formally, a HICBE system is made up of five randomized algorithms as
follows. For simplicity, we define it as a key encapsulation mechanism (KEM).

Setup(n,L): Takes as input the number of all users n and the maximum depth
L of the identity hierarchy. It outputs a public key pk and a master key msk.

PrivKeyGen(i, pk, msk): Takes as input a user index i, the public key pk, and the
master key msk. It outputs a root private key di of user i.

Derive(pk, i, ID, di,ID|z−1): Takes as input the public key pk, a user index i, an
identity ID of depth z, and the private key di,ID|z−1 of user i coupling with
the parent identity ID|z−1. It outputs di,ID. Here di,ID|0 = di.

Encrypt(pk, S, ID): Takes as input the public key pk, a subset S ⊆ {1, . . . , n},
and an identity tuple ID. It outputs a pair (hdr,K) where hdr is called the
header and K ∈ K is a message encryption key. We will also refer to hdr as
the broadcast ciphertext.

Decrypt(pk, S, i, di,ID, hdr): Takes as input the pk, a subset S, a user i, the private
key di,ID of user i coupling with ID, and the header hdr. If i ∈ S it outputs
K ∈ K else outputs a special symbol ‘/∈’.

The correctness consistency can be defined straightforwardly and is omitted here.

Confidentiality. We define semantic security of HICBE by the following game
between an adversary A and a challenger C; both are given n,L as input.

Setup. The challenger C runs Setup(n,L) to obtain a public key pk and the
master key msk. It then gives the public key pk to A.

Phase 1. A adaptively issues queries q1, . . . , qµ where each is one of two types:
- Private key query 〈i, ID〉. C responds by running algorithm PrivKeyGen and

Derive to derive the private key di,ID, corresponding to the node (i, ID), then
sends di,ID to A.

- Decryption query 〈S, ID, i, hdr〉 where i ∈ S. C responds by running algorithm
PrivKeyGen and Derive to derive the private key di,ID, corresponding to the
node (i, ID). It then gives to A the output from Decrypt(pk, S, i, di,ID, hdr).

Challenge. Once A decides that Phase 1 is over, it outputs (S?, ID?) which is
the multi-node it wants to attack, where S? ⊆ {1, . . . , n}. The only restriction is
that A did not previously issue a private key query for 〈i, ID〉 such that i ∈ S?

and that either ID = ID? or ID is a prefix of ID?. C then compute (hdr?,K) R←−
Encrypt(pk, S?, ID?) where K ∈ K. Next C picks a random b ∈ {0, 1}. It sets
Kb = K and picks a random K1−b in K. It then gives (hdr?, K0,K1) to A.

Phase 2. A issues additional queries qµ+1, . . . , qν where each is one of two types:
- Private key query 〈i, ID〉 such that if i ∈ S? then neither ID = ID? nor ID is

a prefix of ID?, else (i 6∈ S?) ID can be arbitrary.
- Decryption query 〈S, ID, i, hdr〉 where i ∈ S and S ⊆ S?.6 The only constraint

is that hdr 6= hdr? if either ID = ID? or ID is a prefix of ID?.
In both cases, C responds as in Phase 1. These queries may be adaptive.

6 It is WLOG that we just restrict S ⊆ S? since for S such that S 6⊆ S?, one can make
a private key query for some i ∈ S \ S? and perform the decryption oneself.



Guess Finally A outputs its guess b′ ∈ {0, 1} for b and wins the game if b = b′.
We refer to such an adversary A as an IND-aID-aSet-CCA adversary and the

above game as the IND-aID-aSet-CCA game. Weaker notions of security can be
defined by modifying the above game so that it is required that the adversary
must commit ahead of time to the target subset S? or the target identity ID?

or both. These notions are analogous to the notion of selective-identity secure
HIBE, defined in [12, 13]. We have 4 possible combinations: the game IND-xID-
ySet-CCA where (x, y) ∈ {(a, a), (a, s), (s, a), (s, s)}. If (x, y) = (s, ∗) then it is
exactly the same as IND-aID-aSet-CCA except that A must disclose to C the
target identity ID? before the Setup phase. Analogously, if (x, y) = (∗, s), A must
disclose the target subset S? before the Setup phase. For only the case of (s, s), it
is further required that the restrictions on private key queries from phase 2 also
hold in phase 1. Intuitively, s means selective while a means adaptive security.

We define the advantage of the adversary A in attacking the HICBE scheme
E in the game IND-xID-ySet-CCA as AdvHICBExy(E ,A) = |Pr[b = b′]− 1

2 |, where
the probability is over the random bits used by C and A in that game.

Definition 1. We say that a HICBE system E is (t, qP, qD, ε)-IND-xID-ySet-
CCA-secure if for any t-time IND-xID-ySet-CCA adversary A that makes at most
qP chosen private key queries and at most qD chosen decryption queries, we have
that AdvHICBExy(E ,A) < ε. We say that a HICBE system E is (t, qP, ε)-IND-xID-
ySet-CPA-secure if E is (t, qP, 0, ε)-IND-xID-ySet-CCA-secure.

Anonymity. Recipient anonymity is the property that the adversary be unable
to distinguish the ciphertext intended for a chosen identity from another one
intended for a random identity. We capture such a property via what we name
ANO-xID-ySet-CCA[∆] notion, where ∆ ⊆ {0, . . . , L} indicates a set of levels that
satisfy anonymity, with 0 corresponds to the anonymity of the set S. This is a
generalized notion from [1]. We refer to the full paper [2] for the details .

4 HICBE Constructions

In this section, we give our first two HICBE constructions. A HICBE system
must have both broadcast and hierarchical-identity-based derivation properties.
To achieve this we will combine some techniques from the BGW broadcast en-
cryption [7] with the BB and BBG HIBE systems by Boneh-Boyen [4] and Boneh-
Boyen-Goh [5] respectively. The reader is encouraged to refer to the full paper [2]
for the intuition into the design.

4.1 Our First HICBE Construction Based on BGW and BB

We first show how to combine the basic BGW scheme with the BB HIBE scheme.
We assume that the identity space I is Zp. Thus, if ID is of depth z then
ID = (I1, . . . , Iz) ∈ Z z

p . As in [4], we can later extend the construction to arbi-
trary identities in {0, 1}∗ by first hashing each Ij using a collision resistant hash
function H : {0, 1}∗ → Zp. We follow almost the same terminology from [7, 4].
This scheme, denoted by BasicHICBE1, works as follows.



Setup(n,L): Let G be a bilinear group of prime order p. It first picks a random
generator g ∈ G and a random α ∈ Zp. It computes gi = g(αi) ∈ G for
i = 1, 2, . . . , n, n + 2, . . . , 2n. Next, it picks a random γ ∈ Zp and sets v =
gγ ∈ G. It then picks random elements h1, . . . , hL ∈ G. The public key is:

pk = (g, g1, . . . , gn, gn+2, . . . , g2n, v, h1, . . . , hL) ∈ G2n+L+1.

The master key is msk = γ. For j = 1, . . . , L, we define Fj : Zp → G to be
the function: Fj(x) = gx

1hj . The algorithm outputs pk and msk.
PrivKeyGen(i, pk, msk): Set a root private key for i as di = (gi)γ = v(αi) ∈ G.
Derive(pk, i, ID, di,ID|z−1): To generate the private key for node (i, ID) where i ∈

{1, . . . , n} and ID = (I1, . . . , Iz) ∈ Z z
p of depth z ≤ L, pick random elements

s1, . . . , sz ∈ Zp and output

di,ID =


(gi)γ ·

z∏

j=1

Fj(Ij)sj , gs1 , . . . , gsz


 ∈ Gz+1.

Note that the private key for node (i, ID) can be generated just given a
private key for node (i, ID|z−1) where ID|z−1 = (I1, . . . Iz−1) ∈ Z z−1

p , as
required. Indeed, let di,ID|z−1 = (a0, . . . , az−1) be the private key for node
(i, ID|z−1). To generate di,ID, pick a random sz ∈ Zp and output di,ID =
(a0 · Fz(Iz)sz , a1, . . . , az−1, g

sz ).
Encrypt(pk, S, ID): Pick a random t ∈ Zp and set K = e(gn+1, g)t. The value

e(gn+1, g) can be computed as e(gn, g1). Let ID = (I1, . . . , Iz). It outputs
(hdr,K) where we let

hdr =


gt, (v ·

∏

j∈S

gn+1−j)t , F1(I1)t , . . . , Fz(Iz)t


 ∈ Gz+2.

Decrypt(pk, S, i, di,ID, hdr): Parse the header as hdr = (C0, C1, A1, . . . , Az) ∈
Gz+2. Also parse di,ID = (a0, . . . , az) ∈ Gz+1. Then output

K = e(gi, C1) ·
z∏

j=1

e(Aj , aj) / e(a0 ·
∏

j∈S
j 6=i

gn+1−j+i, C0).

The correctness verification is straightforward. The scheme inherits a good prop-
erty of the BGW scheme: the ciphertext size and user private key size are inde-
pendent of n. Indeed, when we let ID = ε, the corresponding algorithms become
those of the basic BGW scheme.

Theorem 1. Let G be a bilinear group of prime order p. Suppose the Decision
(t, ε, n)-BDHE assumption holds in G. Then the BasicHICBE1 system for n users
and maximum depth L is (t′, qP, ε)-IND-sID-sSet-CPA-secure for any n,L, qP, and
t′ < t−Θ(τexpLqP) where τexp is the maximum time for an exponentiation in G.

The security proof, although vaguely resembles those of BGW and BB, is not
straightforward as we have to simulate both sub-systems simultaneously. In-
tuitively, the implicit “orthogonality” of BGW and BB allows us to prove the
security of the combined scheme. We omit it here (and refer to [2]) and will focus
on a similar but somewhat more interesting proof of the second scheme.



4.2 Our Second HICBE Construction Based on BGW and BBG

Our method of integrating the BGW system can also be applied to the BBG
HIBE scheme analogously to the previous integration. In contrast, this time we
achieve a feature of “reusing” the public key from the BGW portion to be used
for the BBG portion. Consequently, the resulting scheme has exactly the same
public key as the BGW scheme except for only one additional element of G.

We will assume that L ≤ n, otherwise just create dummy users so as to be
so; a more efficient way will be discussed in the next subsection. As usual we can
assume that I is Zp. The scheme, denoted by BasicHICBE2, works as follows.

Setup(n,L): The algorithm first picks a random generator g ∈ G and a random
α ∈ Zp. It computes gi = g(αi) ∈ G for i = 1, 2, . . . , n, n + 2, . . . , 2n. Next, it
randomly picks y ∈ G, γ ∈ Zp and sets v = gγ ∈ G. The public key is:

pk = (g, g1, . . . , gn, gn+2, . . . , g2n, v, y) ∈ G2n+2.

The master key is msk = γ. It outputs (pk,msk). For conceptual purpose, let
hj = gn+1−j for j = 1, . . . , L; intuitively, the hj terms will be used to visually
indicate the BBG portion, while the gj terms are for the BGW portion.

PrivKeyGen(i, pk, msk): Set a root private key for i as di = (gi)γ = v(αi) ∈ G.
Derive(pk, i, ID, di,ID|z−1): To generate the private key for node (i, ID) where i ∈

{1, . . . , n} and ID = (I1, . . . , Iz) ∈ Z z
p of depth z ≤ L, pick a random element

s ∈ Zp and output

di,ID =
(
(gi)γ · (hI1

1 · · ·hIz
z · y)s , gs , hs

z+1 , . . . , hs
L

)
∈ G2+L−z.

Note that the private key for node (i, ID) can be generated just given a
private key for node (i, ID|z−1) where ID|z−1 = (I1, . . . Iz−1) ∈ Z z−1

p , as
required. Indeed, let di,ID|z−1 = (a0, a1, bz, . . . , bL) be the private key for
node (i, ID|z−1). To generate di,ID, pick a random δ ∈ Zp and output di,ID =(
a0 · bIz

z · (hI1
1 · · ·hIz

z · y)δ , a1 · gδ , bz+1 · hδ
z+1 , . . . , bL · hδ

L

)
. This key has

a proper distribution as a private key for node (i, ID) with the randomness
s = s′+δ ∈ Zp, where s′ is the randomness in di,ID|z−1 . Note that the private
key di,ID becomes shorter as the depth of ID increases.

Encrypt(pk, S, ID): Pick a random t ∈ Zp and set K = e(gn+1, g)t. The value
e(gn+1, g) can be computed as e(gn, g1). Let ID = (I1, . . . , Iz). It outputs
(hdr,K) where we let

hdr =


gt, (v ·

∏

j∈S

gn+1−j)t , (hI1
1 · · ·hIz

z · y)t


 ∈ G3.

Decrypt(pk, S, i, di,ID, hdr): Let hdr = (C0, C1, C2) ∈ G3 and let di,ID = (a0, a1,
bz+1, . . . , bL) ∈ G2+L−z. Then output

K = e(gi, C1) · e(C2, a1) / e(a0 ·
∏

j∈S
j 6=i

gn+1−j+i, C0).



The scheme inherits good properties from both the BGW scheme: the ciphertext
size and user private key size are independent of n, and the BBG scheme: the
ciphertext size is constant. One difference from the BBG system is that we let the
hj terms be of special forms, namely hj = gn+1−j , instead of random elements
in G as in [5]. This allows us to save the public key size since those gj terms are
already used for the BGW system. Indeed, suppose that the BGW BE system has
been already established, it can be augmented to a HICBE version by just once
publishing one random element, namely y ∈ G, as an additional public key. Note
that defining hj terms in this way is also crucial to the security proof. We prove
the security under the Decision n-BDHE assumption. This strong assumption is
already necessary for both the (stand-alone) BGW and BBG systems.7

Theorem 2. Let G be a bilinear group of prime order p. Suppose the Decision
(t, ε, n)-BDHE assumption holds in G. Then the BasicHICBE2 scheme for n users
and maximum depth L is (t′, qP, ε)-IND-sID-sSet-CPA-secure for arbitrary n,L
such that L ≤ n and qP, and any t′ < t−Θ(τexpLqP) where τexp is the maximum
time for an exponentiation in G.

Proof. Suppose there exists an adversary, A, that has advantage ε in attacking
the HICBE scheme. We build an algorithm B that solves the Decision n-BDHE
problem in G. B is given as input a random n-BDHE challenge (g, h, yg,α,n, Z),
where yg,α,n = (g1, . . . , gn, gn+2, . . . , g2n) and Z is either e(gn+1, h) or a random
element in G1 (recall that gj = g(αj)). Algorithm B proceeds as follows.

Initialization. The selective (identity, subset) game begins with A first out-
putting a multi-node (S?, ID?) where S? ⊆ {1, . . . , n} and ID? = (I?1, . . . , I

?
z) ∈

Z z
p of depth z ≤ L that it intends to attack.

Setup. To generate pk, algorithm B randomly chooses u, σ ∈ Zp and sets

v = gu · (
∏

j∈S?

gn+1−j)−1, y = gσ ·
z∏

j=1

g
−I?

j

n+1−j .

It gives A the pk = (g, yg,α,n, v, y). Since g, α, u, σ are chosen randomly and
independently, pk has an identical distribution to that in the actual construction.

Phase 1. A issues up to qP private key queries. Consider a query for the private
key corresponding to node (i, ID), of which ID = (I1, . . . , Iw) ∈ Z w

p where w ≤ L.
We distinguish two cases according to whether i is in S? or not.

If i 6∈ S? then B responds to the query by first computing a root private
key di from which it can then construct a private key di,ID for the request node
(i, ID). In this case, B computes di as di = gu

i · (
∏

j∈S? gn+1−j+i)−1. Indeed, we

have di = (gu(
∏

j∈S? gn+1−j)−1)(α
i) = v(αi), as required.

If i ∈ S? then from the restriction of the private key query, it must be that ID
is neither ID? nor any prefix of ID?. We further distinguish two cases according
to whether ID? is a prefix of ID or not.
7 It was later shown in [5, full] that a truncated form of Decision n-BDHE, namely the

Decision n-wBDHI∗, indeed suffices for BBG. This assumption is defined exactly the
same as the former except that we change the vector yg,α,n to y∗g,α,n := (g1, . . . , gn).



Case 1: ID? is not a prefix of ID. Then there must exist k ≤ z such that it is the
smallest index satisfying Ik 6= I?k. B responds to the query by first computing
a private key for node (i, ID|k) from which it then constructs a private key
for the request node (i, ID). B picks random elements s ∈ Zp. We pose s̃ =
s+αk/(Ik− I?k). Note that s̃ is unknown to B. Next, B generates the private key

(a0, a1, bk+1, . . . , bL) =
(
v(αi) · (hI1

1 · · ·hIk

k · y)s̃ , gs̃ , hs̃
k+1 , . . . , hs̃

L

)
(1)

which is a valid random private key for node (i, ID|k) by definition. We show that
B can compute all elements of this private key given the values that it knows.
Recall that hj = gn+1−j . To generate a0, we first assume that k < z, and observe

a0 = gu
i

( ∏

j∈S?

gn+1−j+i

)−1

· (gσ ·
k−1∏

j=1

g
Ij−I?

j

n+1−j

︸ ︷︷ ︸
=1

·gIk−I?
k

n+1−k ·
z∏

j=k+1

g
−I?

j

n+1−j)
s̃

= gu
i

( ∏

j∈S?

j 6=i

gn+1−j+i

)−1

· g−1
n+1 · g(Ik−I?

k)s̃
n+1−k︸ ︷︷ ︸

T1

· gσs̃

︸︷︷︸
T2

·
z∏

j=k+1

g
−I?

j s̃

n+1−j

︸ ︷︷ ︸
T3

.

The term T1 can be computed by B since

T1 = g−1
n+1 · g

(Ik−I?
k)(s+ αk

Ik−I?
k

)

n+1−k = g−1
n+1 · g(Ik−I?

k)s
n+1−k · gαk

n+1−k = g
(Ik−I?

k)s
n+1−k ,

where the unknown term gn+1 is canceled out. The term T2 can be computed by
using gk, which is not gn+1 since k ≤ z ≤ L ≤ n. Each term in the product T3 is
computable since gs̃

n+1−j = gs
n+1−j ·g1/(Ik−I?

k)
n+1−j+k and for j = k+1, . . . , z, the terms

gn+1−j , gn+1−j+k are not equal to gn+1 hence can be computed. It is left to
consider the case k = z. In this case, a0 is exactly the same as above except that
the last product term, i.e., T3, does not appear. The analysis of computability
by B thus follows from the same argument.

The component a1 can be generated since a1 = gs̃ = gs · g1/(Ik−I?
k)

k . For
j = k + 1, . . . , L, the value bj can be computed as bj = hs̃

j = hs
j · g1/(Ik−I?

k)
n+1−j+k.

Case 2: ID? is a prefix of ID. Then it holds that z+1 ≤ w. B responds to the query
by first computing a private key for node (i, ID|z+1) from which it then construct
a private key for the request node (i, ID). B picks random elements s ∈ Zp. We
pose s̃ = s + αz+1/Iz+1. Note that s̃ is unknown to B. Next, B generates the
private key in exactly the same form as Eq.(1) (change k to z + 1, of course).
From a similar observation as above, one can show that B can compute this key.

Challenge. To generate the challenge, B computes hdr? as (h, hu, hσ). It then
randomly chooses a bit b ∈ {0, 1} and sets Kb = Z and picks a random K1−b in
G1. B then gives (hdr?,K0,K1) to A.

We claim that when Z = e(gn+1, h) (that is, the input to B is a n-BDHE
tuple) then (hdr?,K0,K1) is a valid challenge to A as in a real attack game. To



see this, write h = gt for some (unknown) t ∈ Zp. Then, we have that

hu = (gu)t = (gu(
∏

j∈S?

gn+1−j)−1(
∏

j∈S?

gn+1−j))t = (v
∏

j∈S?

gn+1−j)t,

hσ =
( z∏

j=1

g
I?
j

n+1−j · (gσ ·
z∏

j=1

g
−I?

j

n+1−j)
)t

= (hI?
1

1 · · ·hI?
z

z · y)t.

Thus, by definition, (h, hu, hσ) is a valid encryption of the key e(gn+1, g)t. Also,
e(gn+1, g)t = e(gn+1, h) = Z = Kb and hence (hdr?,K0,K1) is a valid challenge.

On the other hand, when Z is random in G1 (that is, the input to B is a
random tuple) then K0, K1 are just random independent elements of G1.
Phase 2. A continues to ask queries not issued in Phase 1. B responds as before.
Guess. Finally, A outputs b′ ∈ {0, 1}. If b = b′ then B outputs 1 (meaning
Z = e(gn+1, h)). Otherwise, it outputs 0 (meaning Z is random in G1).

We see that if (g, h,yg,α,n, Z) is sampled from RBDHE then Pr[B(g, h, yg,α,n,
Z) = 0] = 1

2 . On the other hand, if (g, h, yg,α,n, Z) is sampled from PBDHE then
|Pr[B(g, h, yg,α,n, Z) = 0]− 1

2 | ≥ ε. It follows that B has advantage at least ε in
solving n-BDHE problem in G. This concludes the proof of Theorem 2. ut

4.3 Extensions

Modification. Recall that for BasicHICBE2 when L > n, we created dummy
users so that the effective number of users is L. The resulting pk contained 2L+2
elements of G. We now give a more efficient scheme in this case (L > n). First,
we change ‘n’ in all appearances in the description of BasicHICBE2 to ‘L’ except
that the user indexes are as usual: {1, . . . , n}. Then we modify the public key to
pk = (g, g1, . . . , gL, gL+2, . . . , gL+n, v, y) ∈ GL+n+2, which is of smaller size than
that of the above method. This modified scheme is secure under the Decision
L-BDHE assumption. However, it can be shown to be secure under a weaker one
which is a new assumption that we call Decision 〈L, n〉-BDHE. (Two values are
specified instead of only one). It is defined exactly the same as the Decision L-
BDHE except that we change yg,α,L to yg,α,〈L,n〉 := (g1, . . . , gL, gL+2, . . . , gL+n).

Generalizations. Without going into details, we can also combine the BGW
system with the Hybrid BB/BBG scheme [5, full §4.2], which can trade off the
public key and private key sizes with the ciphertext size. We denote this scheme
by BasicHICBE(ω) for parameter ω ∈ [0, 1]. It becomes BasicHICBE1 when ω = 1
and BasicHICBE2 when ω = 0. In this scheme, the public key, the private key,
and the ciphertext contains Lω + max(L1−ω, n) + n + 1, ≤ L1−ω + Lω + 1, and
≤ Lω+2 elements in G respectively. It can also be further generalized in the other
dimension, namely the user dimension, in the same manner as the generalized
BGW scheme [7], which can trade off the public key size with the ciphertext
size while the private key size remains fixed. In the resulting scheme, denoted by
GenHICBE(ω, µ), for µ ∈ [0, 1], the public key, the private key, and the ciphertext
contains Lω + max(L1−ω, nµ) + nµ + n1−µ, ≤ L1−ω + Lω + 1, ≤ Lω + n1−µ + 1
elements in G respectively. Note that it becomes BasicHICBE(ω) when µ = 1.



Chosen-Ciphertext and Adaptive-ID Security. We use the conversion due
to Canetti et al. [13] or its derivatives [9, 10] (adapted to the case of HICBE
appropriately) to obtain IND-sID-sSet-CCA-secure schemes. An IND-aID-sSet-
CCA-secure scheme can be constructed by combining the BGW system with
Waters’ HIBE [21] in essentially the same way as our previous two schemes.

5 Forward-Secure Public-key Broadcast Encryption

Model for FS-BE. The syntax of a forward-secure public-key broadcast encryp-
tion (FS-BE) scheme is introduced in [22]. Following [7], for simplicity we define it
as a KEM. A key-evolving broadcast encryption is made up of six randomized al-
gorithms. Via (pk,msk0)

R←− Setup(n, T ), where n is the number of receivers and T
is the total number of time periods, the setup algorithm produces a public key pk

and an initial master private key msk0; via mski,τ
R←− MasUpdate(pk, τ, mskτ−1)

the master key update algorithm outputs a new private key mski,τ of user i

for time period τ ; via ski,τ
R←− Regist(i, τ, pk, mskτ ) the center outputs a pri-

vate key ski,τ of user i for time period τ ; via ski,τ
R←− Update(pk, i, τ, ski,τ−1)

the user i updates his private key to ski,τ for the consecutive time period;
via (hdr,K) R←− Encrypt(pk, S, τ), where S is the set of recipients, a sender
outputs a pair (hdr,K), a header and a message encryption key; via K

R←−
Decrypt(pk, S, i, ski,τ , hdr) a recipient i ∈ S outputs K ∈ K. A scheme is cor-
rect if (1) when pk,mskτ , ski,τ−1 are correctly generated, the distributions of
private keys output from Regist(i, τ, pk, mskτ ) and from Update(pk, i, τ, ski,τ−1)
are the same; (2) Encrypt and Decrypt are consistent (in the standard way).

Security Notions. We define semantic security of a key-evolving BE in essen-
tially the same way as in the case of HICBE system. Such a notion is introduced
by Yao et al. [22]. We reformalize and briefly state it here. (See the full paper [2]
for details). We define eight combinations of notions called IND-xFSi-ySet-CCA
security where (x, y) ∈ {(a, a), (a, s), (s, a), (s, s)}, corresponding to whether the
target time τ? and/or the target set of recipients S? must be disclosed before
the Setup phase or not, and i ∈ {1, 2}, where when i = 2 the adversary is al-
lowed to ask also master key queries for mskτ of time τ while when i = 1 it
is not. Note that the notion in [22] corresponds to IND-aFS1-aSet-CCA security.
We note that a IND-sFSi-ySet-CCA-secure scheme is also secure in the sense
IND-aFSi-ySet-CCA, albeit with the security degradation by factor T . For most
applications, FS1 security is sufficient. In this case, it is useful to consider the
MasUpdate as a trivial algorithm as we let mskτ = msk0 for all τ (and denote it
by msk). Note that it is trivial to convert a scheme with FS1 security to a new
one achieving FS2 security by letting mskτ contains all user keys of time τ .

Conversion C [HICBE⇒FS-BE]. Given a HICBE scheme, we construct a FS-
BE scheme using the “time tree” technique of [12], which was used to construct
a forward-secure encryption from a binary tree encryption. Our conversion is
essentially the same as that of [12] except that the user dimension is introduced.



For a forward-secure BE with T time periods, we image a complete balance
binary tree of depth L = log2(T +1)− 1. Let each node be labeled with a string
in {0, 1}≤L. We assign the root with the empty string. The left and right child
of w is labeled w0 and w1 respectively. From now, to distinguish the abstract
‘node’ of a HICBE system from nodes in the binary tree, we refer to the former as
h-node and the latter as usual. Following the notation in [12], we let wτ to be the
τ -th node in a pre-order traversal of the binary tree.8 WLOG, we assume that
0, 1 ∈ I, the identity space. Hence, we can view a binary string of length z ≤ L
as an identity tuple of length z. Encryption in time τ for a set S of recipients
uses the encryption function of the HICBE scheme to the multi-node (S, wτ ).
At time τ the private key also contains, beside the private key of h-node (i, wτ )
of the HICBE scheme, all the keys of h-nodes (i, y) where y is a right sibling of
the nodes on the path from the root to wτ in the binary tree. When updating
the key to time τ + 1, we compute the private key of h-node (i, wτ+1) and erase
the one of (i, wτ ). Since wτ+1 is a left child of wτ or one of the nodes whose
keys are stored as the additional keys at time τ , the derivation can be done, in
particular, using at most one application of Derive. We denote this conversion
as C(·) and write its formal description and its security proof in [2].

Theorem 3. Suppose that the scheme HICBE for L levels is (t, qP, qD, ε)-IND-
xID-ySet-CCA-secure (resp., (t, qP, ε)-IND-xID-ySet-CPA-secure) for some (x, y) ∈
{(a, a), (a, s), (s, a), (s, s)}. Then the scheme C(HICBE) for T time periods is (t, q′P,
qD, ε)-IND-xFS1-ySet-CCA-secure (resp., (t, q′P, ε)-IND-xFS1-ySet-CPA-secure) for
q′P ≤ qP/L, where L = log(T + 1)− 1.

Resulting FS-BE Schemes. It is easy to see that in the resulting scheme, the
private key size is expanded by the factor O(log T ) while the other parameters are
unchanged from the original HICBE scheme (instantiated for log(T +1)−1 levels
of identities). We have that the C(BasicHICBE1) scheme achieves ciphertext of
size O(log T ) and user private keys of size O(log2 T ) while the C(BasicHICBE2)
scheme achieves ciphertexts of size O(1) and user private keys of size O(log2 T ).

We also directly construct a more efficient but specific FS-BE scheme, de-
noted by DirFSBE, which is not built via the generic conversion. It can be consid-
ered as a redundancy-free version of C(BasicHICBE1) which can reduce private
key size to O(log T ) without affecting other parameters. This can be seen as a
reminiscent of the “Linear fs-HIBE” scheme in [5, full §C]. Its generalized scheme,
denoted by DirFSBE(µ), can be constructed as in §4.3. It trades off the public
keys of size O(nµ + n1−µ + log T ) with the ciphertexts of size O(n1−µ + log T ).

Efficiency Comparisons. We draw comparisons among FS-BE schemes by
wrapping up in Table 1. We name the three previous schemes intuitively from
their approaches, where ‘×YFDL’ is the “cross-product” approach by Yao et al. [22],
‘⊥BBG’ is the orthogonal integration approach by Boneh et al. [5, full §C], and
the two operands indicate the underlying HIBEs, which include GS (the Gentry-
Silverberg HIBE [17]), BB, and BBG. (See more details in [2]).
8 The pre-order traversal is started from the root, w1 = ε. From w it goes to w0 if w

is not a leaf otherwise it goes to v1 if v0 is the largest string that is a prefix of w.



Table 1. Comparison among previous and our FS-BE schemes (upper and lower table
resp.). T = |total time periods|. n = |all users|. r = |revoked users|. The time com-
plexity is expressed in terms of number of operations where [e] is exponentiation, [p] is
bilinear pairing, and [m] is group multiplication, while [o] indicates the time complexity
for some other process. ‘⇐’ means that it has the same value as the entry on its left.

Params↓ GS(NNL)×YFDLGS BBG(NNL)×YFDLBBG BBG(NNL)⊥BBG BB
[22] [5, full §5.2] [5, full §C]

Reg time O(log3 n log T ) [e] ⇐ O((log2 n)(log n + log T )) [e]
Enc time O(r log n log T ) [e] ⇐ O(r(log n + log T )) [e]
Dec time O(log n log T ) [p] + O(r) [o] ⇐ O(log T ) [p] + O(r) [o]
Upd time O(log3 n) [e] ⇐ O(log2 n log T ) [e]
|Pub key| O(log n + log T ) ⇐ ⇐
|Pri key| O(log3 n log T ) ⇐ O((log2 n)(log n + log T ))
|Cipher| O(r log n log T ) O(r) O(r log T )

Params↓ C(BasicHICBE1) DirFSBE C(BasicHICBE2) C(GenHICBE(0.5, 0.5))

Reg time O(log T ) [e] ⇐ ⇐ O(
√

log T ) [e]
Enc time O(n) [m] + O(log T ) [e] ⇐ ⇐ O(

√
n) [m] + O(

√
log T ) [e]

Dec time O(n) [m]9+ O(log T ) [p] ⇐ O(n) [m]9+O(1) [p]O(
√

n) [m] + O(
√

log T ) [p]
Upd time O(1) [e] ⇐ ⇐ ⇐
|Pub key| O(n + log T ) ⇐ ⇐ O(

√
n +

√
log T )

|Pri key| O(log2 T ) O(log T ) O(log2 T ) O(log1.5 T )
|Cipher| O(log T ) ⇐ O(1) O(

√
n +

√
log T )

6 Public-key Broadcast Encryption with Keyword Search

6.1 Definitions and Relation to Anonymous ICBE

Model for BEKS. A public-key BE with keyword search (BEKS) consists of
four algorithms. Via (pk, {sk1, . . . , skn}) R←− Setup(n) the setup algorithm pro-
duces a public key and n user keys; via C

R←− BEKS(pk, S, w) a sender encrypts
a keyword w to get a ciphertext (C, S) intended for recipients in S ⊆ {1, . . . , n};
via ti,w

R←− Td(i, w, ski) the receiver i computes a trapdoor (ti,w, i) for keyword
w and provides it to the gateway (the server); via b ← Test(pk, i, ti,w, C, S) for
i ∈ S the gateway can test whether C encrypts w where b = 1 means “positive”
and b = 0 means “negative”. Here if i 6∈ S it always outputs ‘/∈’. We describe
the right-keyword consistency (correctness), the computational consistency (in
the sense of [1]), and the security notion, which we name IND-xKW-ySet-CPA,
in the full paper [2]. The security captures the property that the adversary be
unable to distinguish the encryption of chosen keyword with a random one.

Conversion K [ICBE⇒BEKS]. The conversion of [1] that compiles any anony-
mous IBE into a PEKS can be generalized to a broadcast version straightfor-
wardly. More concretely, we construct BEKS from ICBE as follows. SetupBEKS(n)
can be constructed from SetupICBE and PrivKeyGenICBE by relating the same pub-
lic key pk and relating the private key ski = di. The remaining algorithms work as
9 This is due to the computation of

Q
j∈S,j 6=i gn+1−j+i, which indeed can be pre-

computed. This is useful when S is incrementally changed (cf. [7]).



follows: ti,w
R←− Td(i, w, ski) = DeriveICBE(i, w, di); (C1, C2)

R←− BEKS(pk, S, w) =
EncryptICBE(pk, S, w); Test(pk, i, tw, (C1, C2), S) outputs ‘/∈’ if i 6∈ S, else outputs
1 if DecryptICBE(pk, S, i, tw, C1) = C2, else outputs 0. Denote this conversion
by K(·). Its correctness is immediate from that of ICBE. Indeed, ti,w, C1, C2 are
related to di,w, hdr,K in the ICBE scheme respectively. We remark that our con-
version is a little bit different from (and simpler than) that of [1], in particular,
since we have formalized the ICBE as a KEM.

Theorem 4. (Informal) If the scheme ICBE is ANO-xID-ySet-CPA[{1}]-secure,
then the BEKS scheme K(ICBE) is IND-xKW-ySet-CPA-secure. Further, if ICBE
is semantically secure, then K(ICBE) is computationally consistent.

6.2 Constructing Anonymous (H)ICBE

Attempts. As one may expect, the first attempt is to use our integration
method to combine the BGW system with the anonymous HIBE, BW, by Boyen-
Waters [11], which has a BB/BBG-like structure. Somewhat surprisingly and un-
fortunately, the resulting HICBE scheme is not ANO-sID-sSet-CPA-secure. Es-
sentially, this is precisely due to the implicit orthogonality of BGW and BW.
Such a property enables any user i 6∈ S? to use the independent part of private
keys corresponding to the BW portion to easily distinguish whether a cipher-
text is intended for (S?, ID?) or (S?, R) for random R, thus breaking anonymity.
Dilemmatically, on the one hand, this orthogonality enables us to prove the con-
fidentiality of the combined scheme; on the other hand, this very property gives
an attack to the anonymity. We also remark that the approach BB(NNL)⊥BBG BW
and BBG(NNL)⊥BBG BW (where notations are borrowed from the end of §5) also
do not preserve the anonymity of BW due to a similar reason. See details in [2].

The Construction. From the above discussion, it is then natural to imple-
ment both the broadcast and identity dimensions from two non-orthogonal sub-
systems. Therefore, we construct our scheme in [2], denoted by AnonHICBE, from
the YFDL (cross-product) approach instantiated to two copies of the BW hierar-
chies, or in our terminology, BW(NNL)×YFDLBW.10 The resulting anonymous ICBE
system achieves ciphertext of size O(r log n) and private key of size O(log4 n) for
the user level (level 0) and private key of size O(log3 n) for level 1. These translate
to the sizes of ciphertext, private key, and trapdoor in BEKS respectively.
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