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Abstract. The complex multiplication (CM) method for genus 2 is cur-
rently the most efficient way of generating genus 2 hyperelliptic curves
defined over large prime fields and suitable for cryptography. Since low
class number might be seen as a potential threat, it is of interest to
push the method as far as possible. We have thus designed a new al-
gorithm for the construction of CM invariants of genus 2 curves, using
2-adic lifting of an input curve over a small finite field. This provides
a numerically stable alternative to the complex analytic method in the
first phase of the CM method for genus 2. As an example we compute
an irreducible factor of the Igusa class polynomial system for the quartic

CM field Q(i
p

75 + 12
√

17), whose class number is 50. We also introduce
a new representation to describe the CM curves: a set of polynomials in
(j1, j2, j3) which vanish on the precise set of triples which are the Igusa
invariants of curves whose Jacobians have CM by a prescribed field. The
new representation provides a speedup in the second phase, which uses
Mestre’s algorithm to construct a genus 2 Jacobian of prime order over
a large prime field for use in cryptography.

1 Introduction

In the late 1980’s, Koblitz proposed the use of hyperelliptic curves in cryptog-
raphy. Since then, significant progress has been made in turning this idea into
practice, and currently genus two cryptosystems present the same security ben-
efits as elliptic curves, together with potential benefits in terms of performance
and new protocols [31, 2, 17, 22].

The efficient generation of genus two groups of prime or nearly prime order
over finite fields of large characteristic, however, remains an important issue.
Random curve generation in characteristic 2 is amenable to efficient versions of
Kedlaya’s algorithm or Mestre’s AGM algorithm. In contrast, over large prime
fields the latest records for point counting (see [18]) still require about a week’s



computation time for each curve. In this case, the complex multiplication method
currently provides the only efficient approach to cryptographic curve construc-
tion. For genus one, several authors have introduced improvements to the CM
method using p-adic lifting [13, 7, 6, 24]. Our article generalizes such work to the
case of genus two. Furthermore, in the past few years, the elliptic CM method has
gained new interest as the key tool for building curves with a special structure,
in particular curves with a computable bilinear map [29]. Similar constructions
in genus two will also require explicit CM methods.

The first phase of the CM method constructs the Igusa class polynomials
for CM genus two curves, which determine the triples (j1, j2, j3) of invariants of
curves whose Jacobians have prescribed endomorphism ring. These polynomials
are determined by complex analytic techniques, or, in this work, by p-adic ana-
lytic construction. After solving for the roots of these polynomials over a chosen
finite field of large characteristic, the algorithm of Mestre [28] allows one to con-
struct a model of the curve for which the group order of its Jacobian has been
previously determined to be prime or nearly prime. In this article, we extend the
computational limit for Igusa class polynomials in genus two, addressing con-
cerns that a CM field of low class number might give rise to weak curves in a
cryptographic protocol.

Our first contribution is to use a 2-adic lifting method in place of the classical
floating point complex approach. We start with a binary curve over a field small
enough so that point counting is possible using naive methods. We determine not
only the number of points but also the endomorphism ring of the Jacobian and
therefore the CM field K associated to it. By computing the canonical 2-adic lift
with sufficiently high precision we are able to get the class polynomials which
we recognize as polynomials over the rationals. This bypasses the costly step of
evaluating theta functions. We also introduce a simple representation of the ideal
of CM invariants in terms of univariate polynomials. Prior authors focused on
finding the degree h∗

K minimal polynomials H1(X), H2(X), and H3(X) of the
invariants j1, j2, and j3. However in the second phase of the CM method, this re-
quires a combinatorial match of h∗

K
3 roots to find one of h∗

K valid triples, when
constructing a CM curve. For those small values of h∗

K previously attainable,
this was not particularly onerous, but with our 2-adic method, our largest ex-
amples computed have reached h∗

K = 100, for which this combinatorial matching
problem is undesirable.

Our Magma and C implementation of the 2-adic CM method allow us to com-
pute a degree 50 irreducible factor of Igusa class polynomials for the quartic CM

field K = Q(i
√

75 + 12
√

17). The class number of K is 50 and the Igusa class
polynomials for K have degree h∗

K = 100.

The paper is organized as follows. In section 2 we introduce the mathematical
objects we need to explain the 2-adic CM method and the generation of hyper-
elliptic curves suitable for cryptography. In section 3 we deal with Igusa class
polynomials, our new representation of the ideal of invariants. In section 4 we
give details about the 2-adic CM method. In section 5 we analyze its complexity
and compare it with previous methods [35, 40, 9, 16].



2 Mathematical background

In this section, we briefly present the mathematical tools that we need. The first
part deals with complex multiplication theory. We give theoretical results applied
to our genus two case. Then we recall Lubin-Serre-Tate theorem for genus two
and finally we deal with the reduction of the variety of j-invariants.

2.1 Complex multiplication theory

We begin with some definitions and results from the theory of complex multi-
plication (see [33] for further details). The central notion is that of a CM field,
defined to be a totally imaginary quadratic extension K of a totally real number
field K0.

For the study of genus two curves we will be interested in quartic CM fields
K. We define a type of such a field as a pair of non-conjugate embeddings Φ =
(φ1, φ2) of K in C. If I is an ideal in the ring of integers OK of K, we consider
Φ(I) = {(φ1(α), φ2(α)) ⊂ C2, α ∈ I}. The set Φ(I) is a lattice in C2 and C2/Φ(I)
is an abelian variety A such that K ⊂ End(A) ⊗ Q. We furthermore make the
following restrictions:

1. We assume that K is cyclic or non-Galois. The abelian variety A (for which
End(A) ⊗ Q = K) is then absolutely simple. This is a good condition for
cryptographic applications since we want #A(Fq) to be almost prime.

2. We assume that hK0
= 1, which implies that the abelian surface A has a

principal polarization. As A is absolutely simple, it follows there exists a
genus two curve C such that A = Jac(C).

3. We assume moreover that End(Jac(C)) = OK . The above conditions imply
End(Jac(C)) ⊆ OK , but for sake of simplicity of both theory and computa-
tions, we restrict to the case where this inclusion is an equality. This requires
us to address the issue of testing effectively this hypothesis for a given curve
C, but we will not treat these algorithms in this article (see however [16]).

Definition 1 Let C be a hyperelliptic curve of genus two and K a quartic CM
field. We say that C has complex multiplication by OK if the endomorphism ring
of the Jacobian of the curve is isomorphic to the ring of integers OK of K.

Example 1. As an example we consider K = Q(i
√

2 +
√

2). The real subfield of

K is Q(
√

2) since (i
√

2 +
√

2)2 + 2 = −
√

2. Then there exists a curve defined
over Q with model y2 = −x5 + 3x4 + 2x3 − 6x2 − 3x + 1, whose Jacobian has
endomorphism ring OK . Further details on this example can be found in [38]
or [35].

We first recall basic notions of CM theory in genus one, for which we re-
fer to [3]. We begin with a positive squarefree integer D, and compute the
class group of K = Q(i

√
D), which we denote by ClK . For complex numbers

(τi)i∈[1,hK ], representing the classes in ClK , we associate an elliptic curve with



period lattice Z + τiZ. Finally we compute the j-invariant ji = j(τi) using η-
functions and recover the classical Hilbert class polynomial from the definition
H(X) =

∏hK

i=1(X − ji) ∈ Z[X ], as a monic polynomial over the integers.
The analogous theory for genus two presents several additional technical chal-

lenges. The first question is to determine how many isomorphism classes of CM
curves are associated to a CM order OK . We denote this number by h∗

K . In genus
one, this number equals the class number hK , but in higher genus there is no
longer a one-to-one correspondence between the ideal classes and the principally
polarized abelian surfaces with endomorphism ring OK , each of which gives rise
to an isomorphism class of CM curves. However, for a quartic CM field K with
real subfield of class number one, we can make the following statement.

Theorem 1 Let K be a quartic CM field with real quadratic subfield K0 of class
number 1. If K is cyclic over Q then there are hK isomorphism classes and if K
is not normal over Q then there are 2hK isomorphism classes with hK classes
associated to each CM type.

Remark 1. The Cohen-Lenstra heuristics [11] predict that the class number of
the real quadratic field K0 has class number 1 with density greater than 3/4 so
this is expected to apply to this proportion of all quartic CM fields.

The above theorem establishes the degree of the Igusa class polynomials,
which vanish on the triples of the CM Igusa invariants (j1, j2, j3). Once their
degree is known, we can apply a construction as in the genus 1 CM method for
the classical complex CM method. Beginning from a quartic CM field K, we
compute the class group of K over Q, and find a representative of each class.
Here the representatives are 2 × 2 matrices called period matrices which can be
computed from a set of representatives of the class group of K and a fundamental
unit of K0. We refer to [40] for the exact construction of these period matrices
(Ωi)1≤i≤h∗

K
.

Evaluating theta functions at the Ωi allows to recover the j-invariants (j
(i)
1 ,

j
(i)
2 , j

(i)
3 )i of the CM curves and joining the j-invariants together gives us the

Igusa class polynomials described in [35] or in [40] as

H1 =

h∗
K∏

i=1

(X − j
(i)
1 ), H2 =

h∗
K∏

i=1

(X − j
(i)
2 ), H3 =

h∗
K∏

i=1

(X − j
(i)
3 ).

For the purposes of 2-adic lifting we may use normalized invariants j1, j2, and
j3, defined in terms of the Igusa-Clebsch invariants A, B, C, D (denoted A′, B′,
C′, D′ in Mestre [28]), by j1 = A5/8D, j2 = 2A3B/D, j3 = 8A2C/D.

2.2 The Lubin-Serre-Tate theorem for genus two

In 1964, Lubin, Serre and Tate [25] proved the existence of the canonical lift of an
ordinary abelian variety and gave a way of computing this lift for elliptic curves,
extending a result of Deuring [14]. Denote by Qp the field of p-adic numbers,



and by Qpd the unique unramified extension of degree d, and by Zp or Zpd their
respective rings of integers (see e.g. [4] or [21] for background). The fundamental
property of the canonical lift A↑/Zpd of an ordinary abelian variety A/Fpd is that

End(A↑) ∼= End(A). Moreover, A↑ is actually defined over Q. Thus if we can find
a curve over Fpd whose Jacobian is ordinary and has complex multiplication by
the ring of integers of a quartic CM field K, we theoretically obtain a curve over
Q with complex multiplication by OK . In the article, p is fixed to 2 and the
CM-curves over F2d whose Jacobian is ordinary are not rare and can be found
easily.

To perform this method explicitly, we require a constructive formulation of
the existence theorem for the canonical lift. In genus 1, this is the following
theorem (see [39]).

Theorem 2 Let p be a prime number and d an integer greater than 2. Let Ē
be an ordinary elliptic curve over Fpd with j-invariant j(Ē) ∈ Fpd\Fp2 . Denote
by σ the Frobenius automorphism of Zpd and by Φp(X, Y ) the p-th modular
polynomial. Then the system of equations

Φp(X, Xσ) = 0 and X ≡ j(Ē) mod p,

has a unique solution J ∈ Zpd , which is the j-invariant of the canonical lift E
of Ē (defined up to isomorphism).

Generalization to genus two is easier if one speaks about isogeny instead of
modular equations:

Theorem 3 Let C̄ be an ordinary hyperelliptic curve of genus two over Fpd .
Then there exists a hyperelliptic curve C of genus two defined over Qpd that is
a canonical lift of C̄ (in the sense that the endomorphism ring of the Jacobian
is preserved) and furthermore there exists a (p, p)-isogeny between Jac(C) and
Jac(Cσ) that reduces to the Frobenius map from Jac(C̄) to its conjugate.

In the case where p = 2, the Richelot isogeny [5] provides explicit formulae
that allow us to translate this theorem into a set of equations that must be
satisfied by the defining equation of the canonical lift. A Newton-like process
due to Harley is then used to solve it (more details are given in Section 4.1).

General results on the convergence of the Newton process for the AGM is
given by Carls [8] for abstract abelian varieties. In our case, we have explicit
equations for the Richelot correspondences of curves, for which this theoretical
machinery is not required and the convergence can be checked using classical
criteria (valuation of the Jacobian matrix of the system of equations).

2.3 Reduction of the moduli subvariety

This section is based on the work of Goren [19] describing the reduction of an
abelian surface.



Theorem 4 ([19]) Let K be a cyclic quartic CM field and A an abelian variety
having CM by OK the ring of integers of K. Let p̄ be a prime of Q̄, p1 = p̄∩OK

and (p) = p1 ∩ Z. Assume that p is unramified in K. Then the reduction Ap̄ of
A mod p̄ is determined by the decomposition of p in OK as follows:

(i) if p = P1P2P3P4 then Ap̄ is ordinary and simple;
(ii) if p = P1P2 then Ap̄ is isomorphic to the product of two supersingular

elliptic curves;
(iii) if p = P1 then Ap̄ is isogenous but not isomorphic to a product of two

supersingular elliptic curves.

For a non-normal quartic CM field, which is the generic case, an analogous
theorem holds: depending on group theoretic considerations in the Galois group
of the normal closure of K, one can decide whether the reduction of the Jacobian
of a CM curve is ordinary, intermediate, or supersingular, and whether or not it
is simple. We omit the details here and refer instead to Goren [19] for a precise
statement.

These results are used at two places. First, they are required in the final curve
construction step, to determine a prime of ordinary reduction, a necessary con-
dition for cryptographic use. From the primes of ordinary reduction, we choose
a prime p such that a solution to the Igusa class polynomials over Fp gives a
group order which is prime. Second, for the 2-adic method to work, the reduction
modulo 2 must be ordinary, otherwise the canonical lift is not well-defined and
the lifting algorithm does not apply. Given a CM field K, the theorem describes
when there exists an ordinary curve defined over a finite field F2d with CM by
OK . As the input to our algorithm is an ordinary curve, rather than the CM
field K, this theorem describes the condition at 2 on those CM fields which can
be treated by our algorithm.

3 New representation of the CM variety

Before presenting our 2-adic CM method, we explain our modification to the
representation of the ideal describing the CM invariants. In the classical CM
method, Spallek [35] chose to compute three polynomials H1, H2 and H3, defined
as

H1 =

h∗
K∏

i=1

(X − j
(i)
1 ), H2 =

h∗
K∏

i=1

(X − j
(i)
2 ) and H3 =

h∗
K∏

i=1

(X − j
(i)
3 ).

Subsequently Weng [40] formalized the classical CM method for genus two in
terms of the same polynomials. However these polynomials determine an ideal
(H1(j1), H2(j2), H2(j3)) ⊂ Q[j1, j2, j3], of degree h∗

K
3, i.e. defining h∗

K
3 points

(j
(i1)
1 , j

(i2)
2 , j

(i3)
3 ), of which only the h∗

K solutions (j
(i)
1 , j

(i)
2 , j

(i)
3 ) determine valid

CM curves.
In order to compute the equation of a CM curve, we need to test all h∗

K
3

candidate solutions to this system of equations to find one of the h∗
K which is

known to have the correct endomorphism ring. For each solution we must apply



Mestre’s algorithm [28] to find the corresponding curve, then to test a random
point on the Jacobian to determine if the group of rational points has the correct
order. This overhead is unnecessary since with a few additional relations among
the (j1, j2, j3), we determine a complete set of relations for the CM invariants of
the desired CM order.

The solution is to find some compact representation for the full ideal of class

invariants. Beginning with the minimal polynomial of j1, H1(X) =
∏h∗

K

i=1(X −
j
(i)
1 ) ∈ Q[X ], we then use Lagrange interpolation to compute

Gk(X) =

h∗
K∑

i=1

j
(i)
k

h∗
K∏

ℓ=1

ℓ 6=i

X − j
(ℓ)
1

j
(i)
1 − j

(ℓ)
1

∈ Q[X ], for k = 2, 3.

This solves the problem of having an incomplete specification for the ideal of in-
variants, since jk = Gk(j1) are uniquely determined by any root j1 of H1(X). To
determine a CM curve over Fp, we solve for a root ̄1 of H1(X) mod p which de-
termines ̄2 = G2(̄1) and ̄3 = G3(̄1), and use Mestre’s algorithm to determine
a CM curve from the triple (̄1, ̄2, ̄3).

Modified Lagrange interpolation. The above construction provides an exact de-
scription of the CM invariants, but we observe empirically that the coefficient
sizes of Gk, in comparison with those for Hk, are larger by a factor of three to

four. However, in the formulae for Gk, we can pull out the factor H ′
1(j

(i)
1 )−1 =∏

k 6=i(j
(i)
1 − j

(k)
1 )−1. Therefore instead of using Gk we consider the polynomials

Ĥk(X) =

h∗
K∑

i=1

j
(i)
k

h∗
K∏

ℓ=1

ℓ 6=i

(X − j
(ℓ)
1 ) ∈ Q[X ] for k = 2, 3,

which recover the lost factor, and have coefficients of the same order of magnitude
as Hk. The defining relations for our CM invariants can now be expressed as

H1(j1) = 0, H ′
1(j1)j2 = Ĥ2(j1), H ′

1(j1)j3 = Ĥ3(j1).

In order to explain the decrease in the size of the polynomial coefficients,
we make some assumptions to deal with a notion of size for the j-invariants
we are manipulating. Let L be a number field containing all Galois conjugates

j
(i)
k of the j-invariants. We assume that there exists a notion of a logarithmic

height function h : L → R>0, measuring the size of elements, which satisfies the
properties: h(ab) = h(a)+h(b), and h(a+b) 6 max(h(a), h(b)), for general a and
b. We extend h to a height function on L[X ] by: h(

∑n

i=0 aiX
i) =

∑n

i=0 h(an).
We also assume that all the j-invariants are random elements of bounded height
S. We can then estimate the relative heights of our polynomials Hk, Gk, and
Ĥk. We evaluate the size of Hk to be

h(Hk) ≤
h∗

K∑

i=1

iS =
h∗

K(h∗
K + 1)

2
S,



since the coefficients of Hk are symmetric polynomials in the j
(i)
k . A similar

calculation for Gk and Ĥk gives h(Gk) ≤ 2h∗
K(h∗

K −1)S, and h(Ĥk) ≤ h∗
K(h∗

K −
1)S. Under the assumption that the j-invariants behave as random elements, we
expect equality to hold for each bound. This analysis, although heuristic, agrees
with the empirical results of the algorithm.

Remark 2. We emphasize the fact that this new representation applies both to
the classical CM construction and to our new p-adic method that we present in
the next section.

4 The 2-adic CM method

In this section we describe our algorithm for computing the Igusa class polyno-
mials H1, Ĥ2, Ĥ3 corresponding to a CM order. In the classical approach one
starts from a CM field and computes the Igusa class polynomials. In our ap-
proach, the input is a genus 2 curve defined over a small finite field F2d , for some
small d, and we reconstruct the class polynomials associated to its canonical
lift. The input curves for this construction are defined over a tiny field of no
cryptographic interest, but via their canonical lift we find their class invariants
over Q, which can then be reduced modulo p to produce curves of cryptographic
application over some large prime field Fp. We note that the class polynomials
we find may determine a proper irreducible factor of the CM class invariants, in
the case the invariants fall into distinct Galois orbits. However, for their appli-
cation to cryptography this only aids in the rational reconstruction phase of our
algorithm.

The algorithm proceeds as follows. Since d is small, one can easily compute
all the data related to the input curve C, in particular the endomorphism ring
O of its Jacobian, which we assume to be the maximal order of a CM field K.
The canonical lift of C is then computed to a high precision, so that we can get
a good 2-adic approximation of its Igusa invariants. Theorem 1 gives a way to
predict the degree h∗

K of the class polynomials. From this information, if the
precision is sufficient, there is a unique possibility left for the polynomials H1,
Ĥ2, Ĥ3. These can be computed by running the LLL algorithm on a matrix built
from powers of the invariants of the canonical lift. Algorithm 1 gives a summary
of the algorithm, and in the next two subsections we discuss the details.

4.1 Computing the canonical lift

Canonical lifts were introduced in cryptography for the purpose of point counting
by Satoh [32] for elliptic curves. After many improvements by several people,
this ended up in a very fast method that runs in a time which is almost-linear
in the required precision. A precise description and comparison of the various
methods in the elliptic case can be found in [39] to which we refer for additional
reading. Two genus 2 variants have been introduced by Mestre [27, 26], based
on the Richelot isogeny or on the Borchardt mean. The latter variant has been
developed in detail by Lercier and Lubicz [23].



Algorithm 1 The 2-adic CM method

Input : An ordinary genus 2 curve C defined over F2d having CM by an order O;
Output : (H1,irr, bH2,irr, bH3,irr) which determine an irreducible factor of the class in-

variants (H1, bH2, bH3) of O.
1: Compute the j-invariants of C and choose an arbitrary lift to Z2d ;
2: Compute the canonical lifts (j1, j2, j3) ∈ (Z2d)3, i.e. the j-invariants of the canonical

lift of C;
3: Determine the degree h∗

K of (H1, bH2, bH3);
4: Apply the LLL algorithm with input h∗

K and powers of (j1, j2, j3);

5: Retrieve the result of LLL, that is the polynomials H1,irr , bH2,irr and bH3,irr verifying

H1,irr(j1) = 0, H ′

1,irr(j1) · j2 = bH2,irr(j1) and H ′

1,irr(j1) · j3 = bH3,irr(j1);

6: Return the triple
“
H1,irr , bH2,irr , bH3,irr

”
.

For the present work, we used the former approach, based on Richelot isoge-
nies, together with the asymptotically fast lifting algorithm of Harley. Since this
is not well described in the literature, we say a few words about it.

The main point is that Richelot isogeny as described in [5] gives relations
between the defining equations of genus 2 curves whose Jacobian are (2, 2)-
isogenous. We take equations in the Rosenhain form: y2 = x(x− 1)(x− λ0)(x−
λ1)(x − λ∞). Putting Λ = (λ0, λ1, λ∞), we can realize the relations coming
from Richelot isogeny as a system of polynomial maps Φ = (Φ1, Φ2, Φ3) from
Q6

2d = Q3
2d × Q3

2d to Q3
2d , such that two curves of Rosenhain invariants Λ and

Λ′ have Jacobians related by a (2, 2)-isogeny if and only if Φ(Λ, Λ′) = 0. Hence,
according to Theorem 3, the Rosenhain invariants Λ of the canonical lift of
the curve C we are interested in must verify Φ(Λ, Λσ) = 0. Before giving the
explicit formulae for Φ, we sketch how Harley’s algorithm can be adapted to the
multivariate setting.

Assume we have an approximation Λ0 ∈ Q3
2d to the Rosenhain invariants Λ

of the canonical lift, correct to precision 2k. Let Λ1 ∈ Z3
2d be such that Λ =

Λ0 + 2kΛ1. Then Λ satisfies the equation Φ(Λ, Λσ) = 0, which rewrites as

0 = Φ(Λ0 + 2kΛ1, Λ
σ
0 + 2kΛσ

1 ) = Φ(Λ0, Λ
σ
0 ) + 2kdΦ(Λ0, Λ

σ
0 )

[
Λ1

Λσ
1

]
mod 22k,

from which Λ1 can be deduced. Indeed, since Φ(Λ0, Λ
σ
0 ) ≡ 0 mod 2k, the equation

in Λ1 can be restated as Λσ
1 + AΛ1 + B = 0, where A is a 3 × 3 matrix over

Z2d , and B and Λ1 are vectors in Z3
2d . Another level of recursive Newton-lifting

is used for solving this so-called Artin-Schreier equation.
In this brief description, we have freely assumed that computing σ is a cheap

operation, which is unfortunately not true if one takes an arbitrary defining
polynomial f(x) for the extension field Q2d = Q2[x]/(f(x)). The trick is to

choose the polynomial f(x) such that f divides x2d−x, which in turn implies that
tσ = t2, where t is the defining element of the extension field. The computation
of such an f is done, again, by a Newton lifting algorithm based on the equation



f(x2) = f(x)f(−x), which is easily seen to be satisfied by the polynomial we are
looking for. We refer to [39] for a more precise description.

Let us now describe the polynomial maps Φ given by the Richelot’s isogeny.
For clarity, we give them in an implicit form that introduces new intermediate
variables. Let λ0, λ1 and λ∞ be the starting Rosenhain invariants. The images
λσ

0 , λσ
1 and λσ

∞ of λ0, λ1 and λ∞ by the second power Frobenius automorphism
are given by the following formulae:

λσ
0 =

(u1 − v∞)(w0 − v0)

(u1 − v0)(w0 − v∞)
, λσ

1 =
(u1 − u∞)(w1 − v0)

(u1 − v0)(w1 − v∞)
and λσ

∞ =
(u1 − v∞)(u∞ − v0)

(u1 − v0)(u∞ − v∞)
,

where (u1, u∞), (v0, v∞) and (w0, w1) are the respective roots of the polynomials

U2 − 2λ∞U + λ∞(1 + λ1) − λ1,
V 2 − 2λ∞V + λ0λ∞, and
(λ0 − 1 − λ1)W

2 + 2λ1W − λ0λ1.

Remark 3. We need to pay attention to the valuations of our Rosenhain invariants.
Assuming that we begin with λ0 ≡ 0 mod 4, λ1 ≡ 1 mod 4 and val(λ∞) = −2, we
choose the labeling of the roots of our quadratic polynomials such that v0, w0 ≡
0 mod 2, u1, w1 ≡ 1 mod 2, and val(u∞), val(v∞) < 0, from which λσ

0 ≡ 0 mod 4,
λσ

1 ≡ 1 mod 4 and val(λσ
∞) = −2 follows.

4.2 Recognizing class polynomials in Q[X]

In this section we explain how we use the LLL algorithm to recover the minimal poly-
nomials over Z of the canonical lifted j-invariants. Let Λ = 〈b1, . . . , bm〉 be a lat-
tice and let det(Λ) be its determinant. Minkowski’s inequality gives the upper boundp

m/2πedet(L)1/m, for the norm of the shortest lattice vector, and in a random lat-
tice, one expects a minimal length vector to be close to this norm. The LLL algorithm
outputs a basis of short vectors, and if we construct Λ to have a known vector v ∈ Λ of
norm much smaller than this bound, then, heuristically, it will be the shortest vector
in Λ.

Let Z2d be an extension of Z2 of degree d with Z2-basis 1, w1, . . . , wd−1. Let α ∈
Z2d generate Z2d , and α̃ be an approximation of α modulo a high power of 2, say
α ≡ α̃ mod 2N . We assume that we know the degree s of its minimal polynomial
f(x) ∈ Z[x], i.e. f(x) = asx

s+. . .+a0 where the (ai) ⊆ Z are unknown. The degree s of
the minimal polynomial is the degree of an irreducible factor of Igusa class polynomials,
whose degree is h∗

K . In order to determine the (ai), we determine a basis of the left
kernel in Zs+d+1 of the matrix

„
A

2NId

«
, where A is the (s + 1) × d matrix:

0
BBB@

1 0 · · · 0
α1,0 α1,1 · · · α1,(d−1)

...
...

αs,0 αs,1 · · · αs,(d−1)

1
CCCA ,

with αj,k defined by αj = αj,0 + αj,1w1 + . . . + αj,(d−1)wd−1.
In order to compute the basis of the left kernel, we apply the LLL algorithm in the

same way as described in [10]. This kernel is a lattice Λ, in which the coefficients of the



minimal polynomial of α are part of a short vector. Indeed, if a0, . . . , as are integers
with |ai| ≪ 2N such that asα

s + . . . + a0 ≡ 0 mod 2N , then (a0, . . . , as, ε1, . . . , εd)
will be a short vector in Λ, for appropriate integers (εi). Any other solution that is
not proportional to the (ai) will differ by an element of Λ0 + 2N Zs+d+1, where Λ0 is
generated by the cdαd+i + . . . + c0α

i ≡ 0 mod 2N , 1 ≤ i ≤ s − d, coming from the
minimal polynomial g(x) = cdxd + · · · + c0 of α in Z2[x] having arbitrary coefficients
in Z2. If the precision N is sufficiently high, we expect the unique solution (a0, . . . , as)
to appear as the shortest vector in the LLL-reduced lattice basis.

We remark that we can easily compute the image of (j1, j2, j3) by the Frobenius σ

and therefore we have access to the powers of (j1, j2, j3) and (jσi

1 , jσi

2 , jσi

3 ) for i ∈ [1, d].
Therefore we can use this information as input of our LLL algorithm. It implies a more
complicated recognition phase where we have to use the subresultant algorithm to
recognize our minimal polynomials. Moreover an explosion of the coefficient size in the
course of the algorithm leads us to use modular arithmetic and the Chinese remainder
theorem for our computations.

5 Complexity and comparison with other methods

5.1 Complexity of the 2-adic CM method

The two costly steps of the 2-adic CM method are the computation of the canonical lift
and the reconstruction of the polynomials using LLL. Those two steps highly depend
on the precision k at which we have to compute the canonical lift in order to recover
the full polynomials. This precision k depends itself on the sizes of the polynomial H1,
bH2, bH3, for which no bound (that would depend on the class number of K) is known.
Hence we shall keep k in our formulae, although this is not a parameter under control.

By using advanced algorithms coming from point counting, the canonical lift com-
putation takes a time which is essentially linear in the precision k. More precisely it
has a complexity O(M(dk) log(k)) where M(dk) is the time for multiplying integers
with dk bits, that is O(dk) up to logarithmic factors.

The complexity of the LLL step involves the further parameter h∗

K , which is the
degree of the polynomials we are trying to reconstruct. Using the classical LLL algo-
rithm, we end up with a complexity of O((h∗

K + d)6k3). The L2 variant of Nguy˜̂en and
Stehlé [30] has a better general complexity of O((h∗

K +d)5(h∗

K +d+k)k), and in our case
the structure of the lattice gives us an improved complexity of O((h∗

K+d)4(h∗

K+d+k)k).
Now we will analyze what we could expect from the PSLQ algorithm. In [1], given an

input of h∗

K + d complex numbers whose integer relation is bounded by 2k, the PSLQ
algorithm is claimed to have a number of iterations in O((h∗

K + d)3 + (h∗

K + d)2k).
Each iteration consists of four steps. Both for the complexity in the dimension and
in the precision the bottleneck step is the third step, Hermite’s reduction and matrix
multiplication. Therefore the complexity of one iteration is O((h∗

K + d)3k). The total
complexity of PSLQ seems to be O((h∗

K + d)6k + (h∗

K + d)k2) thus we do not expect
any improvement from using a 2-adic version of PSLQ.

5.2 Comparison with other methods

The comparison with the classical CM method [35, 40] is only valid for inputs at which
their outputs coincide, since the inputs to each algorithm is different. In the 2-adic
method one treats only CM fields where the ideal (2) has a special structure, and



moreover the input is not the field but a hyperelliptic curve over a small finite field. In
the classical CM method one starts directly from a CM field, with the requirement that
the class number of the real subfield is 1. The main advantage of the 2-adic method
compared to the classical method is that the complex floating point evaluation of theta
constants at the period matrices (which is the bottleneck in the classical method)
is replaced by a p-adic canonical lifting procedure for which we have precise control
over precision and precision loss (there is none). Furthermore, the time-complexity of
the evaluation of theta constants is quadratic in the required precision, whereas the
canonical lift is essentially linear in the precision. On the other hand, the drawback of
the 2-adic CM method is that the reconstruction step is much more expensive than in
the classical case, since the step of building a polynomial from its roots is replaced by a
call to the LLL algorithm. In this later case, the complexity becomes again quadratic in
the precision. In other words, by changing the method, we have moved the bottleneck
of the approach from the first step to the second step.

We can also compare to the CRT approach [9, 16]. In that case, to be able to build
a class polynomial whose coefficients have k bits, one needs to use O(k) small finite
fields Fpi

, where pi is O(k). Finding the appropriate curves implies O(p3
i ) steps for each

pi, since we essentially have to enumerate all isomorphism classes over the field Fpi
.

Hence the complexity is more than quadratic in the precision, so that the CRT method
is not competitive with the other methods in terms of required precision. This ignores
the endomorphism ring computation which is exponential in pi in the worst case (but
might be controlled by a more selective sieving for CRT primes).

5.3 Experiments

All of the experiments we carried out were written using Magma [12] and C routines.
The 2-adic arithmetic is taken from an experimental gmp-style library called Mploc

which was developed by E. Thomé [37]. It currently contains far more than the 2-adic
arithmetic, including efficient arithmetic in Qp, Qp[X], and extensions of Qp. We use
NTL [34] library for the floating-point LLL routine, as at the time we developed our
program, Stehlé’s LLL C routines were not available [36]. All the experiments were
conducted on a 2.4 GHz Athlon 64. On such a computer, computing irreducible factors
of Igusa class polynomials of degree less than twenty is a question of minutes.

Example. Let C be the curve of equation y2 +h(x)y + f(x) = 0 over F32 = F2[t]/(t
5 +

t2 + 1), with f(x) = x5 + t20x3 + t17x2 + t19x and h(x) = x2 + t9x. The curve is

ordinary and has CM by the maximal order of K = Q(i
p

75 + 12
√

17). The field K is
non-normal and its class number is 50; so we have h∗

K = 100 isomorphism classes of
principally polarized abelian varieties.

Looking for a minimal polynomial of the lifted value of j1, the LLL algorithm
produced a plausible answer of degree 50. A more subtle analysis of the Galois theory
in fact predicts that the class polynomial of degree 100 is reducible over the rationals,
splitting in two factors of degree 50. Using our method, we produce one of these two
factors H1(X), with the corresponding polynomials bH2(X) and bH3(X). The leading
coefficient of H1 is 35011156176023724124731283121814869112, consistent with the theory
of Goren-Lauter [20], and reduction at a large prime gave rise to a Jacobian whose group
of rational points agreed with the expected order for this CM field.

For this example, we used a 2-adic precision of 65000 bits, and the running time
to lift the curve and compute the invariants was 20 seconds. The subsequent lattice



reductions took about one day. This confirms that the bottleneck is in the second step,
as predicted by the complexity estimates, and suggests that an improved strategy would
be to lift additional j-invariants to reduce the size of the lattice in the reduction phase.

6 Conclusion and perspectives

This work presents a new p-adic method for building Igusa class polynomials for genus
two curves, that can be used to efficiently produce CM curves suitable for cryptogra-
phy. Our method makes use of p-adic lifting techniques borrowed from point counting
algorithms. The algorithm performs well in practice and has allowed us to treat much
larger class numbers than previously reported in the literature.

In order to deal with such large degree class polynomials, we were led to introduce a
new representation for the ideal of CM points, so that the final step of the CM method
— namely reducing the polynomials modulo an appropriate prime p and constructing
the corresponding curve equation — no longer requires a combinatorial search for one
valid tuple of invariants for each h∗

K
3 tuple when using class polynomials of degree h∗

K .
Our work is based on curves of characteristic 2, which places a restriction on which

CM fields we can treat. This is analogous to the condition on discriminants treatable
by the CM construction in genus 1 using reduced class polynomials in terms of Weber
functions. Extending this algorithm to other small characteristics p would impose an
independent condition so that more CM fields could be treated. Such algorithms are
the subject of ongoing investigation, motivated by this research.

As the discussion of complexity issues indicates, the different methods for building
Igusa class polynomials (complex analytic, p-adic analytic, CRT) all have advantages
and limitations. Combining them in order to take advantage of the best of each method
is something that should be explored. For example, an algebraic formula for the exact
leading coefficient of the Igusa class polynomials (see [20]) would have benefit to a
greater or lesser extent in each of these methods. We note that the bottleneck of
the classical CM method is the evaluation of theta constants. Recently, Dupont [15]
developed new algorithms for this task, yielding a huge performance improvement for
the classical CM method. Further investigation of the limiting steps for the classical
and p-adic methods will determine in the end which algorithm applies most effectively
to a given problem.
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tique et en petit genre. Talk given in Rennes in March 2002. Notes written by D.
Lubicz.



27. J.-F. Mestre. Utilisation de l’AGM pour le calcul de E(F2n). Lettre adressée à
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A Cryptographic CM curve generation on one example

We start with the curve C of equation y2 +h(x)y+f(x) = 0 over F8 = F2[t]/(t
3 +t+1),

with f(x) = x5 + t6x3 + t5x2 + t3x and h(x) = x2 + x. The curve is ordinary and has

complex multiplication by the maximal order of K = Q(i
p

23 + 4
√

5). The field K is
non-normal and its class number is 3; so we have 6 isomorphism classes of principally
polarized abelian varieties. We apply our algorithm and compute the canonical lift of
C to high precision (in fact, a posteriori, we see that 1200 bits are enough) and get its
invariants. From this we reconstruct the minimal polynomial H1 and the corresponding
bH2 and bH3. As expected, the degree of H1 is 6.

H1 = 218536724 T
6

− 11187730399273689774009740470140169672902905436515808105468750000 T
5

+ 501512527690591679504420832767471421512684501403834547644662988263671875000 T
4

− 10112409242787391786676284633730575047614543135572025667468221432704263857808262923 T
3

+ 118287000250588667564540744739406154398135978447792771928535541240797386992091828213521875 T
2

− 21350510111131531701116319169938793494948953569198870004032131926868578084899317 T

+ 36051523540951793641135

cH2 = 2−3`
2734249284974589542086559782016563911333032280921936035156250000 T

5

+ 57554607277149797568849387967258354564256002479144001401149377453125000000 T
4

+ 2402137816085408582966361480412923409977297040376760501014543382338189483861887923 T
3

− 75691166837057576824962404339816428897154828109931810138346946500235981947587900092046875 T
2

+ 2134851035828519670812312117443096939126403484719666514876459782054400437 T

− 358515111 13223340932387911793641133370974539856105277
´

cH3 = 2−4`
200620022977265019387539624994933881234269211769104003906250000 T

5

− 23006467431764975697282545882188900514908468992554759536043135578125000000 T
4

+ 615017294619678068611319414718144161545088218260214211563850151291136646894987547 T
3

− 14310698742415340178789612716269299249317950024503557714370659520249839645781463819312875 T
2

− 213465813161118373951326869125713288587261208212107985724468058651509734160907 T

+ 355513232409223561144013111793641132451986402352017881724712641689
´

From the Newton polygon of H1 for the 2-adic valuation, we see that there are three
roots that have valuation 0, and the others have negative valuation. Hence only three
of the curves have good reduction modulo 2. However, since H1 is irreducible over Q,
the 2-adic lifted invariants of any of the three conjugate curves yields the whole H1.

Choosing the 120-bit prime p = 954090659715830612807582649452910809, and
solving a norm equation in the endomorphism ring OK , we know that a solution
(j1, j2, j3) to the Igusa class polynomials gives the invariants of a genus 2 curve whose
Jacobian has prime order

910288986956988885753118558284481029311411128276048027584310525408884449

of 240-bits. We find a corresponding curve:

C : y2 = x6 + 827864728926129278937584622188769650 x4

+ 102877610579816483342116736180407060 x3

+ 335099510136640078379392471445640199 x2

+ 351831044709132324687022261714141411 x
+ 274535330436225557527308493450553085

and a test of a random point on the Jacobian verifies the group order.


