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Abstract. In this paper, we study the construction of (2t + 1)-variable Boolean
functions with maximum algebraic immunity, and we also analyze some other
cryptographic properties of this kind of functions, such as nonlinearity, resilience.
We first identify several classes of this kind of functions. Further, some neces-
sary conditions of this kind of functions which also have higher nonlinearity are
obtained. In this way, a modified construction method is proposed to possibly ob-
tain (2t+1)-variable Boolean functions which have maximum algebraic immunity
and higher nonlinearity, and a class of such functions is also obtained. Finally, we
present a sufficient and necessary condition of (2t + 1)-variable Boolean functions
with maximum algebraic immunity which are also 1-resilient.

Keywords: Algebraic attack, algebraic immunity, Boolean functions, balanced-
ness, nonlinearity, resilience.

1 Introduction

The recent progress in research related to algebraic attacks [1,2,5,6] seems to
threaten all LFSR-based stream ciphers. It is known that Boolean functions used
in stream ciphers should have high algebraic degree [11]. However, a Boolean
function may have low degree multiples even if its algebraic degree is high. By
this fact it is possible to obtain an over-defined system of multivariate equations
of low degree whose unknowns are the bits of the initialization of the LFSR(s).
Then the secret key can be discovered by solving the system.

To measure the resistance to algebraic attacks, a new cryptographic property
of Boolean functions called algebraic immunity (AI) has been proposed by W.
Meier et al. [16]. When used in a cryptosystem, a Boolean function should have
high AI. Now, it is known that the AI of an n-variable Boolean function is upper
bounded by

⌈
n
2

⌉
[6,16]. Balancedness, nonlinearity and correlation-immunity are

three other important cryptographic criteria. In some sense, algebraic immunity is
compatible with the former two criteria: a Boolean functions with low nonlinearity
will have low AI [7,14], a Boolean function of an odd number of variables with
maximum AI must be balanced [7]. The existence of links between algebraic
immunity and correlation-immunity remains open.

Constructions of Boolean functions with maximum AI are obviously impor-
tant. Further, it is more important to construct these functions which also satisfy
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some other criteria (such as balancedness, a high nonlinearity, a high correlation-
immunity order, . . .). Some classes of symmetric Boolean functions with maxi-
mum AI were obtained in [3] and [9], and it was shown in [12] that there is only
one such symmetric function (besides its complement) when the number of input
variables is odd. A construction keeping in mind the basic theory of algebraic im-
munity was presented in [9], which also provided some functions with maximum
AI. In [4], Carlet introduced a general method (for any number of variables)
and an algorithm (for an even number of variables) for constructing balanced
functions with maximum AI. In [13], a method was proposed for constructing
functions of an odd number of variables with maximum AI, which convert the
problem of constructing such a function to the problem of finding an invertible
submatrix of a 2n−1× 2n−1 matrix. And it was stated that any such function can
be obtained by this method.

In this paper, we study the construction of (2t+1)-variable Boolean functions
with maximum AI, and we also analyze some other cryptographic properties of
this kind of functions. From the characteristic of the matrix used in the con-
struction proposed in [13], we obtain some necessary or sufficient conditions of
(2t + 1)-variable Boolean functions with maximum AI. Further, by studying the
Walsh spectra of this kind of functions, we obtain some necessary conditions of
this kind of functions which also have higher nonlinearity and thus we propose
a modified construction to obtain such functions. We finally present a sufficient
and necessary condition of (2t+1)-variable Boolean functions with maximum AI
which are also 1-resilient.

2 Preliminaries

Let Fn
2 be the set of all n-tuples of elements in the finite field F2. To avoid

confusion with the usual sum, we denote the sum over F2 by ⊕.
A Boolean function of n variables is a function from Fn

2 into F2. Any n-variable
Boolean function f can be uniquely expressed by a polynomial in F2[x1, . . . , xn]/(x2

1

− x1, . . . , x
2
n − xn), which is called its algebraic normal form (ANF). The alge-

braic degree of f , denoted by deg(f), is the degree of this polynomial. Boolean
function f can also be identified by a binary string of length 2n, called its truth
table, which is defined as

(f(0, 0, . . . , 0), f(1, 0, . . . , 0), f(0, 1, . . . , 0), . . . , f(1, 1, . . . , 1)).

Let
1f = {X ∈ Fn

2 |f(X) = 1}, 0f = {X ∈ Fn
2 |f(X) = 0}.

The set 1f (resp. 0f ) is called the on set (resp. off set). The cardinality of 1f ,
denoted by wt(f), is called the Hamming wight of f . We say that an n-variable
Boolean function f is balanced if wt(f) = 2n−1. The Hamming distance between
two functions f and g, denoted by d(f, g), is the Hamming weight of f ⊕ g. Let
S = (s1, s2, . . . , sn) ∈ Fn

2 , the Hamming weight of S, denoted by wt(S), is the
number of 1’s in {s1, s2, . . . , sn}.



Construction and Analysis of Boolean Functions 3

Walsh spectra is an important tool for studying Boolean functions. Let X =
(x1, . . . , xn) and S = (s1, . . . , sn) both belonging to Fn

2 and their inner product
X · S = x1s1 ⊕ . . .⊕ xnsn. Let f be a Boolean function of n variables. Then the
Walsh transform of f is an integer valued function over Fn

2 which is defined as

Wf (S) =
∑

X∈Fn
2

(−1)f(X)⊕X·S .

Affine functions are those Boolean functions of degree at most 1. The nonlin-
earity of an n-variable Boolean function f is its Hamming distance from the set
of all n-variable affine functions, i.e.,

nl(f) = min{d(f, g)|g is an affine function}.

The nonlinearity of f can be described by its Walsh spectra as nl(f) = 2n−1 −
1
2maxS∈Fn

2
|Wf (S)|. Correlation immune functions and resilient functions are two

important classes of Boolean functions. A function is mth order correlation im-
mune (resp. m-resilient) if and only if its Walsh spectra satisfies

Wf (S) = 0, for 1 ≤ wt(S) ≤ m (resp. 0 ≤ wt(S) ≤ m).

Definition 1. [16] For a given n-variable Boolean function f , a nonzero n-
variable Boolean function g is called an annihilator of f if f · g = 0, and the
algebraic immunity of f , denoted by AI(f), is the minimum value of d such that
f or f ⊕ 1 admits an annihilating function of degree d.

For convenience, two orderings on vectors and monomials are defined as fol-
lows.

Definition 2. A vector ordering <v on Fn
2 is defined as:

let (a1, . . . , an), (b1, . . . , bn) ∈ Fn
2 , then (a1, . . . , an) <v (b1, . . . , bn) if and only

if
∑n

i=1 ai <
∑n

i=1 bi, or
∑n

i=1 ai =
∑n

i=1 bi and there exists 1 ≤ i < n such that
ai > bi, aj = bj for 1 ≤ j < i.

Example 1. If n = 3, then (0, 0, 0) <v (1, 0, 0) <v (0, 1, 0) <v (0, 0, 1) <v (1, 1, 0) <v

(1, 0, 1) <v (0, 1, 1) <v (1, 1, 1).

Definition 3. A monomial ordering <m on F2[x1, . . . , xn]/(x2
1−x1, . . . , x

2
n−xn)

is defined as:
let xa1

1 . . . xan
n , xb1

1 . . . xbn
n ∈ F2[x1, . . . , xn]/(x2

1−x1, . . . , x
2
n−xn), then xa1

1 . . . xan
n

<m xb1
1 . . . xbn

n if and only if (a1, . . . , an) <v (b1, . . . , bn).

It is clear that <v and <m are both total orderings.
Let A be an l×l matrix, and integers 1 ≤ i1, i2 . . . , ik ≤ l, 1 ≤ j1, j2 . . . , jk ≤ l.

Denoted by A(i1,...,ik) the k × l matrix with the rth (1 ≤ r ≤ k) row vector equal
to the irth row vector of A, and A(i1,...,ik;j1,...,jk) the k × k matrix with the rth
(1 ≤ r ≤ k) column vector equal to the jrth column vector of A(i1,...,ik).
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3 Construction of Boolean functions with maximum AI

In this section, we briefly review the method to construct Boolean functions with
maximum AI proposed in [13].

Let n be a positive integer, X = (x1, . . . , xn) ∈ Fn
2 . Let

v(X) =(1, x1, . . . , xn, x1x2, . . . , xn−1xn, . . . . . . ,

x1 · · · xdn
2 e−1, . . . , xbn

2 c+2 · · · xn) ∈ F
Pdn

2 e−1

i=0 (n
i)

2 ,

where the monomials are ordered according to the ordering <m. It is clear that∑dn
2 e−1

i=0

(
n
i

)
= 2n−1 when n is odd. Let f be an n-variable Boolean function,

let V (1f ) denote the wt(f) ×
∑dn

2 e−1

i=0

(
n
i

)
matrix with the set of row vectors

{v(X)|X ∈ 1f}, and V (0f ) denote the (2n − wt(f)) ×
∑dn

2 e−1

i=0

(
n
i

)
matrix with

the set of row vectors {v(X)|X ∈ 0f}.

Lemma 1. [3,9] Let odd n = 2t + 1 and f be an n-variable Boolean function
which satisfies

f(X) =
{

a for wt(X) ≤ t
a⊕ 1 for wt(X) > t

,

where a ∈ F2, then AI(f) = t + 1.

When a = 1, the function described in Lemma 1 is called the majority func-
tion, and we denote it by Fn. It is clear that Fn is balanced. We arrange the vectors
in 1Fn (resp. 0Fn) according to the order <v, and denote them by X1, . . . , X2n−1

(resp. Y1, . . . , Y2n−1), i.e. X1 <v . . . <v X2n−1 (resp. Y1 <v . . . <v Y2n−1). Let
Xj = (xj,1, . . . , xj,n) (resp. Yi = (yi,1, . . . , yi,n)). The ith row vector of V (1Fn)
(resp. V (0Fn)) is v(Xi) (resp. v(Yi)).

The idea of the construction proposed in [13] is to obtain a new function
by changing the values of the majority function at some vectors. The problem
of finding out the appropriate vectors is converted to the problem of finding
out a k × k invertible submatrix of the 2n−1 × 2n−1 invertible matrix W =
V (0Fn)V (1Fn)−1.

Theorem 1. [13] Let n = 2t + 1, and f an n-variable Boolean function. Then,
AI(f)= t+1 if and only if there exist integers 1 ≤ i1 < . . . < ik ≤ 2n−1, 1 ≤ j1 <
. . . < jk ≤ 2n−1, such that f = f(i1,...,ik;j1,...,jk) and W(i1,...,ik;j1,...,jk) is invertible,
where f(i1,...,ik;j1,...,jk) is defined as

f(i1,...,ik;j1,...,jk)(X) =
{

Fn(X)⊕ 1 if X ∈ {Xj1 , . . . , Xjk
, Yi1 , . . . , Yik}

Fn(X) else
. (1)

Construction 1 [13] Let n = 2t + 1. The following method can generate a
Boolean function of n variables with maximum AI.

Step1: Select randomly an integer 1 ≤ k ≤ 2n−2 and k integers 1 ≤ i1 < . . . <
ik ≤ 2n−1.
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Step2: Find out k integers 1 ≤ j1 < . . . < jk ≤ 2n−1, such that the j1th, . . .,
jkth column vectors of W(i1,...,ik) are linearly independent.

Then, the Boolean function f(i1,...,ik;j1,...,jk) defined by (1) has AI t + 1.

Remark 1. 1) For any fixed 1 ≤ k ≤ 2n−2 and any k integers 1 ≤ i1 < . . . <
ik ≤ 2n−1, there always exist k integers 1 ≤ j1 < . . . < jk ≤ 2n−1 such that
W(i1,...,ik;j1,...,jk) is invertible.

2) Any Boolean function of 2t + 1 variables with maximum AI can be con-
structed by this method.

For the rest of this paper, we always suppose n = 2t + 1.

4 Properties of W and several classes of n-variable Boolean
functions with maximum AI

In this section, we first show some important properties of the matrix W =
V (0Fn)V (1Fn)−1, then use these conclusions to obtain some necessary or sufficient
conditions of n-variable Boolean function achieving maximum AI.

Let A be a 2n−1×2n−1 matrix, and divide A into (t+1)2 submatrixes, denoted
by Ai,j , 1 ≤ i ≤ t + 1, 1 ≤ j ≤ t + 1, defined as

Ai,j = A(ri−1+1,ri−1+2...,ri;sj−1+1,sj−1+2...,sj),

where

rl =
{

0 if l = 0∑l
k=1

(
n

t+k

)
if l > 0

, sl =
{

0 if l = 0∑l−1
k=0

(
n
k

)
if l > 0

.

It is clear that the row (resp. column) vectors of Wi,j correspond to the vectors
in Fn

2 with Hamming weight i + t (resp. j − 1).

Proposition 1. [10] V (1Fn)−1=V (1Fn).

Proposition 2. Let W = V (0Fn)V (1Fn)−1, then

Wi,j =

 0 if
t−j+1⊕
r=0

(
t+i−j+1

r

)
= 0

V (0Fn)i,j else
, for 1 ≤ i, j ≤ t + 1,

where 0 denotes the matrix with all entries 0.

Proof. By Proposition 1, W = V (0Fn)V (1Fn)−1 = V (0Fn)V (1Fn). Let Y =
(y1, . . . , yn) ∈ 0Fn and wt(Y ) = i > t, xr1 · · ·xrj be a monomial of degree
j(0 ≤ j ≤ t). Denote the transpose of the column vector of V (1Fn) corresponding
to xr1 · · ·xrj by u(xr1 · · ·xrj ). That is, u(xr1 · · ·xrj ) is the evaluation of xr1 · · ·xrj

at the vectors belonging to 1Fn . We can represent u(xr1 · · ·xrj ) as

(g(1), g(x1), . . . , g(xn), g(x1x2), g(x1x3), . . . ,
g(xn−1xn), . . . , g(x1 · · ·xt), . . . , g(xt+2 · · ·xn)),

(2)
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where g is a function on the monomials of degree at most t, which satisfies

g(xa1
1 · · ·xan

n ) =
{

1 if xr1 · · ·xrj |x
a1
1 · · ·xan

n

0 else
. (3)

On the other hand, we can also represent v(Y ) as

(h(1), h(x1), . . . , h(xn), h(x1x2), h(x1x3), . . . ,
h(xn−1xn), . . . , h(x1 · · ·xt), . . . , h(xt+2 · · ·xn)),

(4)

where h is a function on the monomials of degree at most t, which satisfies

h(xa1
1 · · ·xan

n ) =
{

1 if xa1
1 · · ·xan

n |xy1
1 · · ·xyn

n

0 else
. (5)

Denote the inner product of v(Y ) and u(xr1 · · ·xrj ) by c.
If yr1 , . . . , yrj are not all 1, by (2), (3), (4) and (5), we have c = 0 =

h(xr1 · · ·xrj ). If yr1 , . . . , yrj are all 1, we have h(xr1 · · ·xrj ) = 1 and

c =
⊕

xr1 ···xrj |x
a1
1 ···xan

n ,

x
a1
1 ···xan

n |xy1
1 ···xyn

n

wt(a1,...,an)≤t

1 =
t−j⊕
r=0

(
i− j

r

)
.

It is clear that the row (resp. column) vectors of Wi,j correspond to the vectors
in Fn

2 with Hamming weight i+ t (resp. j− 1). Therefore, we complete the proof.

Corollary 1. 1) For any 2 ≤ i ≤ t + 1, Wi,t+2−i = 0.
2) For any 1 ≤ j ≤ t + 1, W1,j = V (0Fn)1,j.
3) For any 1 ≤ i ≤ t + 1, Wi,t+1 = V (0Fn)i,t+1.

Proof. 1) If 2 ≤ i ≤ t + 1 and j = t + 2− i, then

t−j+1⊕
r=0

(
t + i− j + 1

r

)
=

i−1⊕
r=0

(
2i− 1

r

)
= 22i−2 mod 2 = 0.

2) If i = 1, then

t−j+1⊕
r=0

(
t + i− j + 1

r

)
=

t−j+1⊕
r=0

(
t− j + 2

r

)
= 2t−j+2 − 1 mod 2 = 1.

3) If j = t + 1, then

t−j+1⊕
r=0

(
t + i− j + 1

r

)
= 1.

We can obtain some necessary conditions of n-variable Boolean functions with
maximum AI.
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Theorem 2. Let 1 ≤ k ≤ 2n−1, 1 ≤ i1 < . . . < ik ≤ 2n−1, 1 ≤ j1 < . . . < jk ≤

2n−1. If there exist 0 ≤ j ≤ t, t + 1 ≤ i ≤ n such that
t−j⊕
r=0

(
i−j
r

)
= 0, and

#{X ∈ {Xj1 , . . . , Xjk
}|wt(X) = j}+ #{Y ∈ {Yi1 , . . . , Yik}|wt(Y ) = i} > k,

then, AI(f(i1,...,ik;j1,...,jk)) < t + 1.

Proof. By Theorem 1, it is sufficient to show that W(i1,...,ik;j1,...,jk) is not in-
vertible. By Proposition 2 and the first condition, we have that Wi−t,j+1 = 0.
Then the second condition implies that W(i1,...,ik;j1,...,jk) has a submatrix with the
number of rows and columns greater than k whose entries are all 0. Therefore,
W(i1,...,ik;j1,...,jk) is not invertible.

Corollary 2. Let 1 ≤ k ≤ 2n−1, 1 ≤ i1 < . . . < ik ≤ 2n−1, 1 ≤ j1 < . . . < jk ≤
2n−1. If there exists 0 ≤ r ≤ t− 1 such that

#{X ∈ {Xj1 , . . . , Xjk
}|wt(X) = r}+ #{Y ∈ {Yi1 , . . . , Yik}|wt(Y ) = n− r} > k,

then, AI(f(i1,...,ik;j1,...,jk)) < t + 1.

In the following of this section, several classes of n-variable Boolean functions
with maximum AI are provided.

Theorem 3. Let 1 ≤ k ≤ 2n−1, 1 ≤ i1 < . . . < ik ≤ 2n−1, 1 ≤ j1 < . . . < jk ≤
2n−1. If the following conditions are both satisfied, then AI(f(i1,...,ik;j1,...,jk)) =
t + 1.

1) There exist 1 ≤ a1 < . . . < as ≤ n, such that xjr,a1 = . . . = xjr,as = 0 for
1 ≤ r ≤ k.

2) For any Xjr (1 ≤ r ≤ k), there exists correspondingly Yir ′ ∈ {Yi1 , . . . , Yik},
such that yir ′,a = xjr,a for a /∈ {a1, . . . , as}, and

t−wt(Xjr )⊕
l=0

(
wt(Yir ′)− wt(Xjr)

l

)
= 1.

Proof. If Xj1 , . . . , Xjk
and Yi1 , . . . , Yik satisfy the two conditions, then by Propo-

sition 2, W(i1′,...,ik
′;j1,...,jk) is in the form of lower triangular with all entries on the

diagonal equal to 1. Therefore W(i1′,...,ik
′;j1,...,jk) is invertible, which implies that

W(i1,...,ik;j1,...,jk) is invertible, and the result holds by Theorem 1.

Example 2. Let n = 7, L1 = {(1, 0, 0, 0, 0, 0, 0), (0, 1, 1, 0, 0, 0, 0), (0, 0, 1, 1, 0, 0, 0),
(1, 1, 1, 0, 0, 0, 0, )} ⊆ 1Fn , L2 = {(1, 0, 0, 0, 1, 1, 1), (0, 1, 1, 0, 1, 1, 0), (0, 0, 1, 1, 0, 1, 1),
(1, 1, 1, 0, 1, 1, 1, )} ⊆ 0Fn . Then the function

f(X) =
{

Fn(X)⊕ 1 if X ∈ L1 ∪ L2

Fn(X) else

has AI 4.
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Theorem 4. Let 1 ≤ 2k ≤ 2n−1, 1 ≤ i1 < . . . < i2k ≤ 2n−1, 1 ≤ j1 < . . . <
j2k ≤ 2n−1. wt(Xjr) = w1, wt(Yir) = w′

1 for 1 ≤ r ≤ k, and wt(Xjr) = w2,
wt(Yir) = w′

2 for k + 1 ≤ r ≤ 2k. If one of the following two conditions is
satisfied, then AI(f(i1,...,i2k;j1,...,j2k)) = t + 1.

1)
t−w1⊕
r=0

(
w′

2−w1

r

)
and

t−w2⊕
r=0

(
w′

1−w2

r

)
are not both 1, and

AI(f(i1,...,ik;j1,...,jk)) = AI(f(ik+1,...,i2k;jk+1,...,j2k)) = t + 1.

2)
t−w1⊕
r=0

(
w′

1−w1

r

)
and

t−w2⊕
r=0

(
w′

2−w2

r

)
are not both 1, and

AI(f(i1,...,ik;jk+1,...,j2k)) = AI(f(ik+1,...,i2k;j1,...,jk)) = t + 1.

Proof. Let M denote the 2k × 2k matrix W(i1,...,i2k;j1,...,j2k). The first condition
implies that M(1,...,k;1,...,k) and M(k+1,...,2k;k+1,...,2k) are both invertible, and at
least one of M(1,...,k;k+1,...,2k) and M(k+1,...,2k;1,...,k) is 0. Then, M is invertible,
and the result holds by Theorem 1.

If the second condition is satisfied, the result can be proved in the same way.

Example 3. Let n = 7, L1={(0, 0, 0, 0, 1, 1, 0), (0, 0, 0, 0, 1, 0, 1), (0, 0, 0, 0, 0, 1, 1),
(1, 1, 0, 0, 1, 0, 0), (1, 1, 0, 0, 0, 1, 0), (1, 1, 0, 0, 0, 0, 1)}, L2={(1, 1, 0, 0, 1, 1, 0), (1, 1,
0, 0, 1, 0, 1), (1, 1, 0, 0, 0, 1, 1), (1, 1, 1, 1, 1, 0, 0), (1, 1, 1, 1, 0, 1, 0), (1, 1, 1, 1, 0, 0, 1)}.
Then the function

f(X) =
{

Fn(X)⊕ 1 if X ∈ L1 ∪ L2

Fn(X) else

has AI 4.

Theorem 5. Let 1 ≤ k ≤ n, Yi1 , . . . , Yik belong to 0Fn and their Hamming weight
are w1, . . . , wk, respectively. If

1)
t−1⊕
r=0

(
wi−1

r

)
= 1 for 1 ≤ i ≤ k, and

2) there exist 1 ≤ j1 < . . . < jk ≤ n, such that the j1th, . . ., jkth column of

the matrix

Yi1

. . .
Yik

 are linearly independent,

then, AI(f(i1,...,ik;j1+1,...,jk+1)) = t + 1.

Proof. By Proposition 2, W
(i1,...,ik;j1+1,...,jk+1)

is invertible if the two conditions are
both satisfied, then , and the result holds by Theorem 1.

Example 4. Let n = 7, L1={(1, 0, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0, 0)},
L2={(1, 0, 1, 0, 1, 1, 1), (0, 1, 1, 0, 1, 0, 1), (1, 1, 1, 1, 0, 1, 0)}. Then the function

f(X) =
{

Fn(X)⊕ 1 if X ∈ L1 ∪ L2

Fn(X) else

has AI 4.
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5 Nonlinearity and resilience of Boolean functions with
maximum AI

At first, we give the Walsh spectra of majority functions. Note that although the
first item and the case of wt(S) = 1 in the second item in the following lemma
have been given in [9], we still give the proof for completeness.

Lemma 2. Let S ∈ Fn
2 .

1) If wt(S) is even, then WFn(S) = 0.
2) If wt(S) is odd, then

WFn(S) = (−1)(wt(S)+1)/22
(

n− 1
t

) (wt(S)−1)/2∏
i=1

2i− 1
n− 2i

.

Proof. Since
∑

wt(X)=i

(−1)S·X = Ki(wt(S), n), we have

WFn(S) =
n∑

i=t+1

Ki(wt(S), n)−
t∑

i=0

Ki(wt(S), n), (6)

where Ki(k, n) is the so-called Krawtchouk polynomial [15, Page 151, Part I]
defined by

Ki(k, n) =
i∑

j=0

(−1)j

(
k

j

)(
n− k

i− j

)
, i = 0, 1, . . . , n.

Krawtchouk polynomials also have properties [15, Page 153, Part I] as follows.
P1. Ki(k, n) = (−1)kKn−i(k, n).
P2.

∑e
i=0 Ki(k, n) = Ke(k − 1, n− 1).

P3. (n − k)Ki(k + 1, n) = (n − 2i)Ki(k, n) − kKi(k − 1, n) for nonnegative
integers i and k.

If wt(S) is even, then by (6) and P1, we have WFn(S) = 0.
If wt(S) is odd, then by (6), P1 and P2, we have

WFn(S) = −2
t∑

i=0

Ki(wt(S), n) = −2Kt(wt(S)− 1, n− 1).

By the definition of Krawtchouk polynomials, we have Kt(k, n − 1) = 0 if k is
odd. Thus by P3, we have

WFn(S) = (−1)(wt(S)−1)/2+12Kt(0, n− 1)
(wt(S)−1)/2∏

i=1

2i− 1
n− 2i

= (−1)(wt(S)+1)/22
(

n− 1
t

) (wt(S)−1)/2∏
i=1

2i− 1
n− 2i

.
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Lemma 3. Let S, T ∈ Fn
2 .

1) If wt(S) + wt(T ) = n + 1, then WFn(S) = (−1)tWFn(T ).
2) If both wt(S) and wt(T ) are odd, and 0 < wt(S) < wt(T ) ≤ t + 1, then

|WFn(S)| > |WFn(T )|.

Proof. 1) Since Krawtchouk polynomials have the following property,

Ki(k, n) = (−1)iKi(n− k, n),

we have that

WFn(S) = −2Kt(wt(S)− 1, n− 1)
= −2(−1)tKt(n− 1− (wt(S)− 1), n− 1)
= −2(−1)tKt(wt(T )− 1, n− 1) = (−1)tWFn(T ).

2) It is obvious from the second item of Lemma 2.

Remark 2. By Lemma 3, we have

max
T∈Fn

2

|WFn(T )| = |WFn(S1)| = |WFn(Sn)| = 2
(

n− 1
t

)
,

where wt(S1) = 1, wt(Sn) = n. Therefore, nl(Fn) = 2n−1 −
(
n−1

t

)
[9]. And

max
T∈Fn

2 ,wt(T ) 6=1,n
|WFn(T )| = |WFn(S3)| = |WFn(Sn−2)| =

2
n− 2

(
n− 1

t

)
,

where wt(S3) = 3, wt(Sn−2) = n − 2. We note that the difference between the
maximal and the secondarily maximal absolute value of Walsh spectra is quite
great, which is

2
n− 3
n− 2

(
n− 1

t

)
.

Algebraic immunity has the following relationship with nonlinearity.

Lemma 4. [14] Let f be an n-variable Boolean function, AI(f) = k, then

nl(f) ≥ 2n−1 −
n−k∑

i=k−1

(
n− 1

i

)
,

and this bound is tight.

Remark 3. Lemma 4 together with Remark 2 implies that Fn has the worst non-
linearity among all n-variable Boolean functions with maximum AI.

Theorem 6. The Walsh spectra of f = f(i1,...,ik;j1,...,jk) is given by

Wf (S) = WFn(S)− 4(
k∑

r=1

S ·Xjr −
k∑

r=1

S · Yir).
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Proof.

Wf (S) =
2n−1∑
r=1

(−1)f(Xr)+S·Xr +
2n−1∑
r=1

(−1)f(Yr)+S·Yr

=
∑

r∈{1,...,2n−1}\{j1,...,jk}

(−1)Fn(Xr)+S·Xr +
k∑

r=1

(−1)Fn(Xjr )+1+S·Xjr +

∑
r∈{1,...,2n−1}\{i1,...,ik}

(−1)Fn(Yr)+S·Yr +
k∑

r=1

(−1)Fn(Yir )+1+S·Yir

= WFn(S)− 2(
k∑

r=1

(−1)Fn(Xjr )+S·Xjr +
k∑

r=1

(−1)Fn(Yir )+S·Yir )

= WFn(S)− 2(
k∑

r=1

(−1)1+S·Xjr +
k∑

r=1

(−1)S·Yir )

= WFn(S)− 2(
k∑

r=1

(2S ·Xjr − 1) +
k∑

r=1

(1− 2S · Yir))

= WFn(S)− 4(
k∑

r=1

S ·Xjr −
k∑

r=1

S · Yir).

From the above analysis in this section, some necessary conditions of Boolean
functions with maximum AI and these functions which also have higher nonlin-
earity than that of Fn can be obtained.

Theorem 7. Let 1 ≤ k ≤ 2n−1, 1 ≤ i1 < . . . < ik ≤ 2n−1, 1 ≤ j1 < . . . < jk ≤
2n−1. If one of the following conditions is satisfied, then AI(f(i1,...,ik;j1,...,jk)) <
t + 1.

1) There exists 1 ≤ r ≤ n, such that xj1,r + . . . + xjk,r > yi1,r + . . . + yik,r.
2)If n ≡ 1 mod 4,

#{X ∈ {Xj1 , . . . , Xjk
}|wt(X) is odd} > #{Y ∈ {Yi1 , . . . , Yik}|wt(Y ) is odd};

if n ≡ 3 mod 4,

#{X ∈ {Xj1 , . . . , Xjk
}|wt(X) is odd} < #{Y ∈ {Yi1 , . . . , Yik}|wt(Y ) is odd}.

Proof. By Theorem 6, the first condition means that |Wf(i1,...,ik;j1,...,jk)
(S)| >

|WFn(S)| for S = (0, . . . , 0︸ ︷︷ ︸
r−1

, 1, 0, . . . , 0). Thus, we have nl(f(i1,...,ik;j1,...,jk)) < nl(Fn)

by Remark 2 . Therefore, by Remark 3, we have AI(f(i1,...,ik;j1,...,jk)) < t + 1.
If the second condition is satisfied, then |Wf(i1,...,ik;j1,...,jk)

(S)| > |WFn(S)| for
S = (1, 1, . . . , 1). In the same way, the result can be proved.

Theorem 8. Let f = f(i1,...,ik;j1,...,jk) be an n-variable Boolean function with AI
t + 1. If one of the following conditions is satisfied, then f has the worst nonlin-
earity among all n-variable Boolean functions with maximum AI.
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1) There exists 1 ≤ r ≤ n, such that xj1,r + . . . + xjk,r = yi1,r + . . . + yik,r.
2) #{X ∈ {Xj1 , . . . , Xjk

}|wt(X) is odd} = #{Y ∈ {Yi1 , . . . , Yik}|wt(Y ) is odd}.

Proof. By Theorem 6, the first condition means that |Wf(i1,...,ik;j1,...,jk)
(S)| =

|WFn(S)| for S = (0, . . . , 0︸ ︷︷ ︸
r−1

, 1, 0, . . . , 0). Thus, we have nl(f(i1,...,ik;j1,...,jk)) ≤ nl(Fn)

by Remark 2 . Therefore, by Remark 3, we have nl(f(i1,...,ik;j1,...,jk)) = nl(Fn), and
the result is proved.

If the second condition is satisfied, then |Wf(i1,...,ik;j1,...,jk)
(S)| = |WFn(S)| for

S = (1, 1, . . . , 1). In the same way, the result can be proved.

Corollary 3. For any 1 ≤ i, j ≤ 2n−1, if AI(f(i;j)) = t + 1 then f(i;j) has the
worst nonlinearity among all n-variable Boolean functions with maximum AI.

Proof. From Theorem 8, it is sufficient to consider the case of i = 2n−1, j = 1, i.e.
X = (0, 0, . . . , 0), Y = (1, 1, . . . , 1). In this case, from the first item of Corollary
1 we have AI(f(i;j)) < t + 1 which contradicts the assumption.

Theorem 9. If 1 ≤ k ≤ n−3
4(n−2)

(
n−1

t

)
, then nl(f(i1,...,ik;j1,...,jk)) is given by

2n−1 −
(

n− 1
t

)
+ 2min{ min

1≤s≤n
(

k∑
r=1

yir,s −
k∑

r=1

xjr,s), (−1)t(N1 −N2)},

where
N1 = #{Y ∈ {Yi1 , . . . , Yik}|wt(Y ) is odd },

N2 = #{X ∈ {Xj1 , . . . , Xjk
}|wt(X) is odd }.

Proof. Denote f(i1,...,ik;j1,...,jk;) by f . From Theorem 6 we have,

|WFn(S)| − 4k ≤ |Wf (S)| ≤ |WFn(S)|+ 4k.

Let S, T ∈ Fn
2 , and wt(S) = 1 or n, wt(T ) /∈ {1, n}. If 1 ≤ k ≤ n−3

4(n−2)

(
n−1

t

)
, then

by Remark 2,

|Wf (S)| ≥ |WFn(S)| − 4k ≥ |WFn(T )|+ 4k ≥ |Wf (T )|.

Therefore, we have maxT∈Fn
2
|Wf (T )| = maxwt(S)=1,n|Wf (S)|.

Case 1. wt(S) = 1 and S = (0, . . . , 0︸ ︷︷ ︸
s−1

, 1, 0, . . . , 0). By Theorem 6 we have

|Wf (S)| = 2
(

n− 1
t

)
− 4(

k∑
r=1

yir,s −
k∑

r=1

xjr,s).

Case 2. wt(S) = n. By Theorem 6 we have

|Wf (S)| = 2
(

n− 1
t

)
− 4((−1)t(N1 −N2)).

Hence the result follows from nl(f) = 2n−1 − 1
2maxS∈Fn

2
|Wf (S)|.
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Now, we modify Construction 1 to construct n-variable Boolean functions
with maximum AI and possibly having higher nonlinearity.

Construction 2 Step1: Select randomly an integer 1 ≤ k ≤ 2n−2 and k
integers 1 ≤ i1 < . . . < ik ≤ 2n−1, which satisfy

i) min
1≤s≤n

k∑
r=1

yir,s is as large as possible;

ii) if n ≡ 1 mod 4, #{Y ∈ {Yi1 , . . . , Yik}|wt(Y ) is odd } is as large as
possible; if n ≡ 3 mod 4, #{Y ∈ {Yi1 , . . . , Yik}|wt(Y ) is even } is as large as
possible.

Step2: Find out k integers 1 ≤ j1 < . . . < jk ≤ 2n−1, which satisfies
i) the j1th, . . ., jkth column vectors of W(i1,...,ik) are linearly independent;

ii) a = min
1≤s≤n

(
k∑

r=1
yir,s −

k∑
r=1

xjr,s) is as large as possible;

iii) if n ≡ 1 mod 4,

b = #{Y ∈ {Yi1 , . . . , Yik}|wt(Y ) is odd }−#{X ∈ {Xj1 , . . . , Xjk
}|wt(X) is odd }

is as large as possible; if n ≡ 3 mod 4,

c = #{X ∈ {Xj1 , . . . , Xjk
}|wt(X) is odd }−#{Y ∈ {Yi1 , . . . , Yik}|wt(Y ) is odd }

is as large as possible.
Then, the Boolean function f(i1,...,ik;j1,...,jk) defined by (1) has AI t + 1 and

has possibly a higher nonlinearity.

Remark 4. From Theorem 9, the function obtained by Construction 2 will has a
higher nonlinearity than that of Fn if 1 ≤ k ≤ n−3

4(n−2)

(
n−1

t

)
and a > 0, b > 0 (if

n ≡ 1 mod 4) or c > 0 (if n ≡ 3 mod 4), and it possibly has a nonlinearity equal
to that of Fn if k > n−3

4(n−2) .

Further, the following theorem provides a class of n-variable Boolean functions
with maximum AI which also have higher nonlinearity than that of Fn.

Theorem 10. Let n ≡ 3 mod 4, 1 ≤ k ≤ min{n, n−3
4(n−2)

(
n−1

t

)
}, Yi1 , . . . , Yik belong

to 0Fn and their Hamming weights are w1, . . . , wk, respectively. If

1)
t−1⊕
r=0

(
wi−1

r

)
= 1, i = 1, . . . , k; and

2) w1, . . . , wk are not all odd; and
3) there exist 1 ≤ j1 < . . . < jk ≤ n, such that the j1th, . . ., jkth columns of

the matrix

Yi1

. . .
Yik

 are linearly independent; and

4) for any s /∈ {j1, . . . , jk}, yi1,s + . . .+yik,s ≥ 1; and for any s ∈ {j1, . . . , jk},
yi1,s + . . . + yik,s ≥ 2.

then, AI(f(i1,...,ik;j1+1,...,jk+1)) = t+1 and nl(f(i1,...,ik;j1+1,...,jk+1)) ≥ nl(Fn)+2.

Example 5. The Boolean function defined in Example 4 has AI 4. And nl(f) =
nl(Fn) + 2.
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Finally, we obtain the following sufficient and necessary condition of Boolean
functions with maximum AI which are also resilient functions.

Theorem 11. Let f = f(i1,...,ik;j1,...,jk) be an n-variable Boolean function. Then,
f is 1-resilient function if and only if

k∑
r=1

yir,s −
k∑

r=1

xjr,s =
1
2

(
n− 1

t

)
,

for s = 1, . . . , n.

Corollary 4. Let f = f(i1,...,ik;j1,...,jk) be an n-variable Boolean function. Then,
f is 1-resilient function and has AI t + 1 if and only if

k∑
r=1

yir,s −
k∑

r=1

xjr,s =
1
2

(
n− 1

t

)
,

for s = 1, . . . , n, and W(i1,...,ik;j1,...,jk) is invertible.

6 Conclusion

Possessing a high algebraic immunity is a necessary condition for Boolean func-
tions used in stream ciphers against algebraic attacks. In this paper, some classes
of (2t + 1)-variable Boolean functions with maximum AI are obtained. Further,
some necessary conditions of this kind of functions which also have higher non-
linearity are presented and thus a modified construction method is proposed to
obtain such functions. Finally, a sufficient and necessary condition of (2t + 1)-
variable Boolean functions with maximum AI which are also 1-resilient is pre-
sented. However, it is still open that what is the highest nonlinearity of Boolean
functions with maximum AI and how to construct Boolean functions which have
maximum AI and the highest nonlinearity.
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