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Abstract. We propose a new type of guess-and-determine attack on
the self-shrinking generator (SSG). The inherent flexibility of the new
attack enables us to deal with different attack conditions and require-
ments smoothly. For the SSG with a length L LFSR of arbitrary form,
our attack can reliably restore the initial state with time complexity
O(20.556L), memory complexity O(L2) from O(20.161L)-bit keystream for
L ≥ 100 and time complexity O(20.571L), memory complexity O(L2)
from O(20.194L)-bit keystream for L < 100. Therefore, our attack is bet-
ter than all the previously known attacks on the SSG and especially, it
compares favorably with the time/memory/data tradeoff attack which
typically has time complexity O(20.5L), memory complexity O(20.5L)
and data complexity O(20.25L)-bit keystream after a pre-computation
phase of complexity O(20.75L). It is well-known that one of the open re-
search problems in stream ciphers specified by the European STORK
(Strategic Roadmap for Crypto) project is to find an attack on the
self-shrinking generator with complexity lower than that of a generic
time/memory/data tradeoff attack. Our result is the best answer to this
problem known so far.

Keywords: Stream cipher, Self-shrinking, Guess-and-determine, Linear
feedback shift register (LFSR).

1 Introduction

The self-shrinking generator is an elegant keystream generator proposed by W.
Meier and O. Staffelbach at EUROCRYPT’94 [22]. It applies the shrinking idea
[7] to only one maximal length LFSR and generates the keystream according
to the following rule: let a = a0, a1, . . . be a binary sequence produced by the
LFSR, consider the bit pair (ai, ai+1), if ai = 1, output ai+1 as a keystream
bit, otherwise no output is produced. It is suggested in [22] that the key of
the SSG consists of the initial state of the LFSR and (preferably) also of the
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LFSR feedback logic. As in other articles, e.g. [18, 26, 31, 3], we assume that the
primitive feedback polynomial is known to the attacker.

Although many LFSR based stream ciphers are found vulnerable to (fast)
correlation attacks [4, 5, 14–16, 23–25] and algebraic attacks [1, 2, 8, 9], the self-
shrinking generator has shown remarkable resistance against such cryptanalysis.
For a length L LFSR, the previously known best concrete attack is the BDD
attack in [18], which has time complexity O(20.656L) at the expense of O(20.656L)
memory from d2.41 · Le bits keystream. One of the open research problems in
stream ciphers specified by the STORK (Strategic Roadmap for Crypto) project
[29] is to find an attack on the self-shrinking generator with complexity lower
than that of a generic time/memory/data (TMD) tradeoff attack, which typically
has time complexity O(20.5L), memory complexity O(20.5L) by using O(20.25L)-
bit keystream after a pre-computation phase of complexity O(20.75L).

In [22], a simple method of reducing the key space is introduced and the
entropy leakage analysis shows that the average key space of the self-shrinking
generator is O(20.75L). A faster cryptanalysis of the SSG is proposed by Mihal-
jević in [26] with time complexity varying from O(20.5L) to O(20.75L) and the
required keystream length ranging from 20.5L to 20.25L accordingly. To get the
best complexity estimation O(20.5L), the intercepted keystream length must be
greater than L/2 · 2L/2, which is beyond the realistic scope for large value of L.
In [31], a search tree algorithm is presented to restore an equivalent state of the
LFSR from a short segment of the keystream with time complexity O(20.694L).
However, the main bottleneck of the attacks in [31, 18] is their unrealistically
large requirement of memory. Since the self-shrinking generator uses only one
LFSR, the method of reducing the memory complexity in [17] is inapplicable.
In 2003, P. Ekdahl et al. showed that certain week feedback polynomials allow
very efficient distinguishing attacks on the SSG [10]. Except for these concrete
attacks, there is a general time/memory/data tradeoff attack [3] applicable to all
stream ciphers in theory. This kind of attack should be taken into consideration
especially when a technique called BSW sampling [3] is applicable to the cipher
system. It is known that the sampling resistance of the self-shrinking generator
is 2−L/4, thus the reduced search space is O(20.75L). However, such an attack
always has a time-consuming preprocessing phase and requires large amount of
memory, which are usually impossible for individual cryptanalysts.

In this paper, we propose a new type of guess-and-determine attack on the
self-shrinking generator. The large flexibility inherent in the new attack enables
us to handle different attack conditions and requirements smoothly. It has no
restriction on the form of the LFSR and can reliably recover the initial state
of the LFSR with time complexity O(20.556L), memory complexity O(L2) from
O(20.161L)-bit keystream for L ≥ 100 and time complexity O(20.571L), mem-
ory complexity O(L2) from O(20.194L)-bit keystream for L < 100. Compared
with the general time/memory/data tradeoff attack, our attack avoids the time-
consumptive pre-computation phase and the large memory requirement in the
TMD attack, while without a substantial compromise of the real processing
complexity. Comparisons with other known attacks against the self-shrinking



generator show that our attack offers the best tradeoff between the complexi-
ties (time, memory and pre-computation) and the required keystream length.
Therefore, our result is the best answer to the open problem in STORK project
known so far.

The rest of this paper is organized as follows. We present a detailed descrip-
tion of our attack in Section 2 with theoretical analysis. In Section 3, experimen-
tal results to verify the feasibility of our attack and comprehensive comparisons
with the previously known attacks on the self-shrinking generator are provided.
Finally, some conclusions are given in Section 4.

2 Our Attack

The aim of our attack is to restore the initial state or an equivalent initial state
of the LFSR used in the self-shrinking generator from a keystream segment of
realistic length. We first state some basic facts on the self-shrinking generator
and on the underlying maximal length sequences, then the guess-and-determine
attack is presented in detail followed by the theoretical complexity analysis.

2.1 Basic Facts

Let a = a0, a1, . . . be the maximal length sequence produced by LFSR A used
in the self-shrinking generator and z = z0, z1, . . . be the keystream. First note
that the two decimated sequences a0, a2, . . . , a2i, . . . and a1, a3, . . . , a2i+1, . . . are
shift equivalent to the original sequence a [13]. They share the same feedback
polynomial as that of sequence a and differ only by some shift. The following
lemma determines the shift value between sequence {a2i} and {a2i+1}.
Lemma 1. Let a = a0, a1, . . . be a binary maximal length sequence produced by
a LFSR of length L, then the shift value τ between the two decimated sequences
c = {a2i} and b = {a2i+1} is 2L−1, i.e. for each integer i ≥ 0, bi = ci+2L−1 .

Proof. It suffices to note that ci+2L−1 = a2·(i+2L−1) = a2i+2L = a2i+1+2L−1 =
a2i+1 = bi.

Lemma 1 shows the exact shift value between {a2i} and {a2i+1}, which will
facilitate the determination of the relationship between them. Keep the notations
as above, we have the following lemma.

Lemma 2. Let f(x) = 1 + c1x + c2x
2 + · · · + cL−1x

L−1 + xL be the primi-
tive feedback polynomial of LFSR A over GF (2), i.e. for each i ≥ 0, ai+L =∑L

j=1 cjai+L−j, where cL = 1, then there exists a polynomial h(x) =
∑L−1

i=0 hix
i

such that h(x) ≡ xτmod f∗(x), where f∗(x) is the reciprocal polynomial of f(x)
and τ = 2L−1 is the shift value between c = {a2i} and b = {a2i+1}. Besides, the
polynomial h(x) can be efficiently computed as illustrated below for very large
value of L.



Proof. The former part of this lemma is a straightforward conclusion according
to the theory of maximal sequences [13]. It reveals that

bi = a2i+1 =
L−1∑

j=0

hjci+j =
L−1∑

j=0

hja2(i+j), (1)

i.e. each bi is a linear combination of some ci.
We follow the following recursive procedures to compute h(x). More pre-

cisely, the linear coefficients hj can be determined by recursively computing
ximod f∗(x) = x(xi−1mod f∗(x)) mod f∗(x) for moderately large L. For very
large value of L, this can be fulfilled by the combination of the recursive proce-
dure with the following small step strategy, i.e. we first determine a set of values
{τ1, · · · , τt} such that

x2L−1
mod f∗(x) = x

∏t
j=1 τj mod f∗(x) = ((xτ1mod f∗(x))τ2 · · · )τtmod f∗(x),

where
∏t

j=1 τt = 2L−1 and each τj is chosen so that xτj mod f∗(x) can be
computed efficiently by the available method such as the Square-and-Multiply
method [20] in rational time. Hence, the linear coefficients hj can be computed
in an acceptable time for very large L in this way.

Table 1 lists the corresponding h(x), obtained by the above combination
method, of some primitive polynomials of length up to 300. Here we use τi = 210

for i = 1, · · · , d(L− 1)/10e − 1 and τd(L−1)/10e = 2L−1−10·(d(L−1)/10e−1) so that
even x2299

mod f∗(x) with f(x) being a primitive polynomial of degree 300 can
be computed in about one hour on a Pentium 4 Processor. This completes the
proof.

Lemma 2 shows that compared with the real attack complexity O(20.556L) or
O(20.571L), the complexity of computing the linear relationship between {a2i}
and {a2i+1} is negligible. The overall complexity of our attack is dominated by
the complexity of the guess-and-determine algorithm given below.

2.2 The Guess-and-Determine Algorithm

The basic idea of a guess-and-determine attack on a stream cipher is to guess
some bits of the internal state and derive other bits of the internal state through
the relationship between the keystream bits and the internal state bits introduced
by the keystream generation process. The validity of a guessed and determined
internal state is checked by running the cipher forward from that state. If the
generated keystream matches the intercepted keystream, we accept it. Otherwise,
we discard the current candidate and try the attack again to get new state
candidates.

Oppositely to the methods in other articles, here we do not directly apply the
guess-and-determine idea to sequence {ai}. Instead we consider the decimated
sequence {a2i}. With the knowledge of {a2i}, {ai} can be easily recovered from
simple linear algebra.



Table 1. Computational results of h(x) on a Pentium 4 processor using Mathematica
with the above combination method.

f(x) x2L−1
modf∗(x)

1 + x + x37 + x38 + x80 x2 + x4 + x5 + x6 + x7 + x11

+x14 + x15 + x17 + x19 + x20

+x21 + x23 + x24 + x25 + x29

+x32 + x33 + x35 + x37 + x38

+x39 + x41 + x44 + x45 + x46

+x47 + x51 + x54 + x55 + x57

+x59 + x60 + x62 + x63 + x64

+x65 + x69 + x72 + x73 + x75

+x77 + x78 + x79

1 + x37 + x100 x19 + x32 + x69

1 + x2 + x15 + x17 + x168 x8 + x76 + x77 + x91 + x92

1 + x7 + x18 + x36 + x83 + x130 +x206 + x253 + x300 x6 + x9 + x11 + x16 + x21 + x23

+x24 + x25 + x26 + x30 + x32

+x33 + x34 + x35 + x36 + x37

+x38 + x41 + x43 + x44 + x45

+x46 + x54 + x55 + x56 + x57

+x60 + x65 + x68 + x70 + x71

+x75 + x76 + x78 + x80 + x82

+x83 + x84 + x85 + x87 + x89

+x91 + x92 + x93 + x94 + x95

+x96 + x97 + x98 + x102

+x104 + x105 + x107 + x109

+x110 + x112 + x113 + x115

+x118 + x120 + x122 + x125

+x126 + x128 + x129 + x136

+x139 + x141 + x146 + x147

+x151 + x153 + x154 + x155

+x156 + x160 + x162 + x163

+x164 + x165 + x166 + x167

+x168 + x171 + x173 + x174

+x175 + x179 + x181 + x183

+x184 + x185 + x186 + x187

+x188 + x190 + x191 + x196

+x200 + x201 + x203 + x204

+x209 + x213 + x214 + x215

+x216 + x217 + x218 + x219

+x220 + x228 + x231 + x232

+x233 + x238 + x239 + x241

+x243 + x245 + x246 + x247

+x248 + x252 + x254 + x255

+x256 + x257 + x258 + x260

+x263 + x265 + x266 + x267

+x270 + x273 + x276 + x277

+x282 + x289 + x290 + x291

+x295 + x296 + x298 + x299



More precisely, to attack a self-shrinking generator, we first guess a l-bit
length segment

Al−1
0 = (a0, a2, · · · , a2(l−1)) (2)

of the initial state (a0, a2, · · · , a2(L−1)) of {a2i}, as shown in Figure 1, thus
there are L− l bits (black points in Figure 1) of the initial state left unknown.
Let WH(·) be the hamming weight of the corresponding vector, then from the
guessed segment, we can get WH(Al−1

0 ) linear equations on the remaining L− l
bits via the shift structure (illustrated by arrowhead in Figure 1). For example,
if a2i = 1 (0 ≤ i ≤ l − 1), then we have

bi = a2i+1 =
L−1∑

j=0

hja2(i+j) =
l−1∑

j=0

hja2(i+j) +
L−1∑

j=l

hja2(i+j) = z∑i−1
j=0 a2i

, (3)

where h(x) =
∑L−1

j=0 hjx
j is the polynomial satisfying h(x) ≡ x2L−1

mod f∗(x)

found by Lemma 2. Note that the partial sum
∑l−1

j=0 hja2(i+j) in (3) is a known
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Fig. 1. Guess-and-determine process

parameter because we guessed the value of (a0, a2, · · · , a2(l−1)), thus (3) is a
linear equation on L− l variables (a2l, · · · , a2(L−1)). Once there is a bit a2i = 1
for 0 ≤ i ≤ l − 1, we will have one linear equation on (a2l, · · · , a2(L−1)). Our
observation is that the more 1 in the guessed segment Al−1

0 , the more linear
equations on the remaining L − l bits we can get. The extreme case is that if
(a0, a2, · · · , a2(l−1)) = (1, 1, · · · , 1), then we will have l linear equations on L− l
variables. In order to get an efficient attack, here we do not exhaustively search
over all the possible values of Al−1

0 . Instead, we just search over those possible
values of Al−1

0 satisfying (without loss of generality, we assume a0 = 1)

WH(Al−1
0 ) ≥ dα · le, (4)

where dxe gives the smallest integer greater than or equal to x and α (0.5 ≤ α ≤
1) is a parameter to be determined later. Hence, we can get at least dα · le linear
equations on the remaining L− l bits by this method.

Now a crucial question arises naturally, i.e. how about the linear dependency
of these linear equations? Fortunately, from the initial state (a0, a2, · · · , a2(L−1))
of {a2i}, we have

(a0, · · · , a2(L−1), a2L, · · · , a2(N−1)) = (a0, a2, · · · , a2(L−1)) ·G,



where N is the length of sequence {a2i} under consideration and G is a L×N
matrix over GF (2):

G =




g0
0 g0

1 · · · g0
N−1

g1
0 g1

1 · · · g1
N−1

...
...

. . .
...

gL−1
0 gL−1

1 · · · gL−1
N−1


 ,

i.e. each a2i is a linear combination of (a0, a2, · · · , a2(L−1)). Since for each i ≥ 0,
a2i+1 = a2i+2L−1 , the column vectors gi = (g0

i , g1
i , · · · , gL−1

i )T corresponding
to the bits selected in (a1, a3, · · · , a2l−1) according to the pattern of (a0, a2, · · ·
, a2(l−1)) can be regarded as random vectors over GF (2)L. Thus, this holds also
for the truncated versions of gi over GF (2)L−l which form the coefficient matrix
on the remaining L− l unknown bits. The following lemma guarantees that the
matrix formed by the truncated random column vectors always has the rank
close to its maximum.

Lemma 3. ([30]) The probability that a random generated m×n binary matrix
has rank r (1 ≤ r ≤ min(m,n)) is

Pr = 2r(m+n−r)−nm
r−1∏

i=0

(1− 2i−m)(1− 2i−n)
1− 2i−r

. (5)

Although we can sometimes get more than dαle linear equations by the above
searching method, we only use the lower bound dαle in the estimation of the
linear independent equations and let dα · le = L − l. The reason for doing so is
to derive the worst case complexity of our guess-and-determine algorithm in the
Section 2.3. By lemma 3, the probability that a random generated dαle× (L− l)
binary matrix has rank r ≥ dαle − 5 is

P (r ≥ dαle − 5) =
dαle∑

r=dαle−5

2−(r−dαle)(r−L+l)
r−1∏

i=0

(1− 2i−dαle)(1− 2i−L+l)
1− 2i−r

. (6)

Simulation results show that P (r ≥ dαle− 5) ≥ 0.99 for L ≤ 1500, i.e. the linear
equations we get are almost linear independent. We can compensate the linear
dependency of the linear system by an exhaustive search at a small scale.

The entire description of the guess-and-determine attack (algorithm A) is as
follows (in C-like notation).

– Parameter: α, L

– Input: keystream {zi}N−1
i=0 , feedback polynomial f(x)

– Processing:

1. Apply the combination strategy illustrated in Section 2.1 to compute x2L−1

mod f∗(x), where f∗(x) is the reciprocal polynomial of f(x)

2. for all l-bit segment Al−1
0 satisfying (4) do

• for k = 0 to l − 1 do



∗ if a2k = 1 then
Using h(x) obtained in step 1 and f(x), derive a linear expression
on the remaining bits in AL−1

l = (a2l, · · · , a2(L−1)) and store the
expression in matrix U
end if

end for
• for j = 0 to N − 1− dα · le do

(a) Check the linear consistency [32] of the linear system using keystream
indexed from zj

(b) if the linear consistency test is OK then
∗ Solve the linear system in U according to the keystream indexed

from zj to get a state candidate (a′0, a
′
2, · · · , a′2(L−1)) or a small list

of candidates
∗ for each candidate state do

i. Run the SSG forward from the candidate state and check the
generated keystreams with {zi}N−1

i=j

ii. if the correlation test is OK then
Output that candidate and break the loop
else continue
end if

end for
else continue
end if

end for
end for

– Output: the initial state or an equivalent state (a0, a2, · · · , a2(L−1))

Here the for loop works in the same way as in C language. Assume we start
with the keystream {zi}N−1

i=0 . We first derive the linear expressions as in (3) from
the guessed segment Al−1

0 , then associate them with the keystream indexed from
z0 and test the linear consistency of the resulting system. If the test fails, then try
the keystream indexed from z1, indexed from z2, . . . , and so on. If we cannot get
a consistent linear system based on the keystream in hand, discard the current
guess of Al−1

0 and try another guess to restart. If we find it, solve the system
to get a candidate state (a′0, a

′
2, · · · , a′2(L−1)) or a small list of candidate states.

Run the self-shrinking generator forward from each candidate state and generate
the corresponding keystream. If the generated keystream does not match the
intercepted keystream, discard that candidate and try another one. If all the
candidates failed to find a match, then try another guess of Al−1

0 to restart the
above whole process. If enough keystream is available, we expect to find the
initial state (or an equivalent state) corresponding to the intercepted keystream
with high success probability.

2.3 Complexity Analysis

Now we analyze the time, memory and data complexity of the algorithm A. We
first establish the basic equation of our attack. Then, the corresponding time,
memory and data complexity are derived in the most general case, respectively.



Finally, we discuss the success rate of the algorithm A and point out the optimal
choices of the attack parameters.

From algorithm A, to cover the L − l unknown bits by O(α · l) linear inde-
pendent equations, we let

O(α · l) = L− l =⇒ l = O(
1

1 + α
· L) . (7)

Since we just want to derive the magnitude, here we ignore the possible small
number of linear dependent equations.

In algorithm A, we only search over those possible values of Al−1
0 that satisfy

(4). Let H = {Al−1
0 | dαle ≤ WH(Al−1

0 ) ≤ l and a0 = 1}, then

|H| =
l−1∑

i=dαle−1

(
l − 1

i

)
,

where | · | denotes the cardinality of a set. The proportion between the l-bit
values contained in |H| and all the 2l possible values is |H|

2l , we rewrite it as
∑l−1

i=dαle−1

(
l−1

i

)

2l
=

2βl

2l
= 2−(1−β)·l , (8)

where β is a parameter determined by α and l. From (8), we have

β =
1
l
· log2

l−1∑

i=dαle−1

(
l − 1

i

)
. (9)

Combining with (7), we have a function β = β(α, L), as shown in Figure 2. It is
worth noting that β decreases with α increasing.
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Fig. 2. β as a function of α and the LFSR length L

For the algorithm A to succeed, we must find at least one match pair between
the state set H and the keystream segments involved in algorithm A. Assume
sequence {ai} is purely random (consisting of independent and uniformly dis-
tributed binary random variables), thus the keystream length N should satisfy

(N − L) ·
l−1∑

i=dαle−1

(
l − 1

i

)
(
1
2
)l−1 ≥ 1,



i.e.

N >
2l−1

∑l−1
i=dαle−1

(
l−1

i

) =
2l−1

2β·l = 2(1−β)·l−1 =⇒ N ∼ O(2
1−β
1+α ·L) . (10)

Algorithm A searches over the state set H and at each iteration, it checks along
the keystream {zi}N−1

i=0 to find the suited segment. Therefore, the worst case
time complexity is

O(N − L) ·O(2β·l) = O(2
1

1+α ·L) . (11)

The following theorem summarizes the above results.

Theorem 1. Keep the notations as above. The guess-and-determine algorithm
A in section 2.2 has time complexity O(L3 · 2 1

1+α ·L), memory complexity O(L2)
and data complexity O(2

1−β
1+α ·L), where L is the length of the LFSR used in the

SSG, 0.5 ≤ α ≤ 1, β is a parameter determined by α and L.

Proof. For the time complexity, note (11) and that in each iteration of algorithm
A, we have to check the linear consistency of the linear system and then solve it.
This contributes the L3 factor to time complexity. For the memory complexity,
it suffices to note that in the algorithm A, we only need to store the matrix U
corresponding to the current guess of Al−1

0 and the memory usage in step 2 is
dominating. The data complexity follows (10).

Corollary 1. Keep the notations as those in Theorem 1 and under the above
complexities, the success probability of algorithm A is

Psucc = 1− (1− 2 · 2− 1−β
1+α ·L)N−L ,

where N is the length of the keystream used in the attack.

Proof. It suffices to note that in algorithm A, we totally check N −L keystream
segments and each segment matches to a state in H with probability 2 ·2− 1−β

1+α ·L.

To get the optimal performance of our attack, we should optimize the pa-
rameters α and β of the algorithm A. Table 2 lists the asymptotic time, memory
and data complexities corresponding to the different choices of α with the LFSR
length L ≥ 100. It is worth noting that the values of β are just approximations.
In a real attack, we recommend using (7) and (9) to compute the more accurate
values. (In Table 2, 3 and 4, we ignore the polynomial factors in the correspond-
ing time complexities of these attacks, e.g. for the attack in [31], this factor is L4

and for the BDD-based attack in [18], this factor is LO(1)).To beat the general
time/memory/data tradeoff attack, we recommend using α = 0.8. Accordingly,
the asymptotic time, memory and data complexities are O(20.556L), O(L2) and
O(20.161L), respectively.

Note that the values listed in Table 2 are asymptotic. For 40 ≤ L < 100,
the corresponding values are listed in Table 3.To beat the TMD attack with
40 ≤ L < 100, we recommend using α = 0.75 or α = 0.8. In both cases, the
corresponding memory and data complexities are better than those of the TMD
attack, while without a substantial compromise of the time complexity.



Table 2. The asymptotic time, memory and data complexities of algorithm A corre-
sponding to different choices of α (L ≥ 100).

α β Time Memory Data

0.5 0.99 O(20.667L) O(L2) O(20.007L)
0.6 0.96 O(20.625L) O(L2) O(20.025L)
0.75 0.80 O(20.571L) O(L2) O(20.114L)
0.8 0.71 O(20.556L) O(L2) O(20.161L)
0.9 0.46 O(20.526L) O(L2) O(20.284L)
1.0 0.00 O(20.5L) O(L2) O(20.5L)

Table 3. The time, memory and data complexities of algorithm A corresponding to
different choices of α (40 ≤ L < 100).

α β Time Memory Data

0.5 0.93 O(20.667L) O(L2) O(20.047L)
0.6 0.88 O(20.625L) O(L2) O(20.075L)
0.75 0.66 O(20.571L) O(L2) O(20.194L)
0.8 0.57 O(20.556L) O(L2) O(20.239L)
0.9 0.36 O(20.526L) O(L2) O(20.337L)

1.0 0.00 O(20.5L) O(L2) O(20.5L)

3 Comparisons and Experimental Results

We first present a detailed comparison with some other well-known attacks
against the self-shrinking generator. Then, a number of experimental results
are provided to verify the actual performance of the new attack. The advantages
of our attack are pointed out at the end of this section.

3.1 Comparisons with Other Attacks

We mainly focus on the following attacks against the self-shrinking generator,
i.e. the Mihaljević’s attack in [26], the search tree attack in [31], the BDD-
based attack in [18] and the time/memory/data tradeoff attack in [3]. Table 4
summarizes the corresponding results.

We can see from Table 4 that our attack achieves the best tradeoff between
the time, memory, data and pre-computation complexities. More precisely, The
attack in [26] suffers from the large amount of the keystream, which reaches
O(20.5L) to obtain the best time complexity O(20.5L). Both the search tree attack
in [31] and the BDD-based attack in [18] are unrealistic in terms of the memory
requirement. In addition, the data complexity of our attack with α = 0.5 are
in the same order as those in [31] and [18] for the LFSR length L up to 2000.
The two typical TMD attacks are derived according to the two points T = N2/3,
M = D = N1/3 and T = M = N1/2, D = N1/4 on the curve TM2D2 = N2 with
pre-computation P = N/D, where T , M , D, N denote time, memory, data and
search key space, respectively. Even regardless of the heavy pre-computation



Table 4. Asymptotic complexity comparisons with some other well-known attacks
against the self-shrinking generator with the LFSR of length L.

Attack Pre-computation Time Memory Data

[26]A - O(20.5L) O(L) O(20.5L)
[26]B - O(20.75L) O(L) O(20.25L)
[31] - O(20.694L) O(20.694L) O(L)
[18] - O(20.656L) O(20.656L) O(L)
[3]A O(20.75L) O(20.5L) O(20.5L) O(20.25L)
[3]B O(20.67L) O(20.67L) O(20.33L) O(20.33L)

Ours (α = 0.5) - O(20.667L) O(L2) O(20.007L)
Ours (α = 0.75) - O(20.571L) O(L2) O(20.114L)
Ours (α = 0.8) - O(20.556L) O(L2) O(20.161L)

phase of the TMD attack, our attack with α = 0.8 has much better memory
and data complexity compared with the two TMD attacks, while without a
substantial compromise of the real time complexity.

On the other hand, our attack can deal with different attack conditions
and requirements smoothly due to the flexible choices of α. If only very short
keystream and very limited disk space are available to the attacker, we still can
launch a guess-and-determine attack successfully against the SSG with α ≤ 0.6.
In this way, we avoid the large memory requirement of the two attacks in [31]
and [18].

3.2 Experimental Results

We made a number of experimental results in C language on a Pentium 4 pro-
cessor to check the actual performance of our attack.

Since the guess-and-determine attack in Section 2.2 has no restriction on
the LFSR form, it has been implemented and tested many times for random
chosen initial states and primitive polynomials of degree 10 ≤ L ≤ 50 involved
in the self-shrinking generator. For 10 ≤ L ≤ 40, we use α = 0.6 to mount the
attack on the self-shrinking generator. For 40 < L ≤ 50, we use α = 0.8. The
results are rather satisfactory. The required keystream length are very close to
the theoretical value in magnitude and the time complexity seems to be upper
bounded by the theoretical value, which is just in expectation.

For example, let the LFSR’s feedback polynomial be f(x) = 1 + x2 + x19 +
x21+x40, then the shift value is x239

mod f∗(x) = x11+x29+x30, where f∗(x) is
the reciprocal polynomial of f(x). For a random chosen initial state, our attack
takes several minutes to recover the initial state or an equivalent state with
success rate (see Table 3 and Corollary 1)

1− (1− 2 · 2−(1−0.88)·40/(1+0.6))(200−40) > 0.99

from 200 bits keystream.
As a summary, our attack has at least the following advantages over the past

relevant attacks against the self-shrinking generator:



– significantly smaller memory complexity with the time complexity quite close
to O(20.5L).

– no pre-computation or if like (pre-compute h(x)), significantly smaller pre-
processing time complexity without a compromise of the real attack com-
plexity.

– flexibility to different attack conditions and requirements

These features guarantee that the proposed guess-and-determine attack can pro-
vide a better tradeoff between the time, memory and data complexities than all
the previously known attacks against the self-shrinking generator. Especially, it
compares favorably with the general time/memory/data tradeoff attack. Thus,
our attack is the best answer known so far to a well-known open problem spec-
ified by the European STORK project.

4 Conclusions

In this paper, we proposed a new type of guess-and-determine attack on the self-
shrinking generator. The new attack adapts well to different attack conditions
and enables us to analyze the self-shrinking generator with the best tradeoff
between the time, memory, data and pre-computation complexities known so far.
So our result is the best answer to the corresponding open problem in STORK
project known so far.
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