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Abstract. We propose Gate Evaluation Secret Sharing (GESS) – a new
kind of secret sharing, designed for use in secure function evaluation
(SFE) with minimal interaction. The resulting simple and powerful GESS
approach to SFE is a generalization of Yao’s garbled circuit technique.
We give efficient GESS schemes for evaluating binary gates and prove
(almost) matching lower bounds. We give a more efficient information-
theoretic reduction of SFE of a boolean formula F to oblivious transfer.
Its complexity is ≈� d2

i , where di is the depth of the i-th leaf of F .

1 Introduction

The main motivation for this work is one-round secure function evaluation (SFE).
SFE is one of the core problems of cryptography. We consider the following
one-round two semi-honest parties setting. Alice and Bob wish to compute a
function f of their inputs x and y respectively: Alice sends the first message to
Bob, Bob replies, and Alice computes f(x, y). Both parties follow the prescribed
protocol, but try to infer additional information from the messages they receive.
This problem has been extensively studied, and very efficient solutions (with
cost linear in the circuit representing f) exist (Yao’s garbled circuit [3, 21, 24, 25,
27]), when Alice is polytime bounded. When Alice is computationally unlimited,
only much less efficient algorithms are known [4, 9, 18–20, 26].

One-round SFE is particularly interesting for several reasons. Firstly, from
a practical point of view, interaction necessarily involves latencies in message
deliveries, and in many practical situations waiting for messages dominates the
entire computation time. Secondly, a large volume of research, e.g. [8, 12, 18, 19],
aims specifically at reducing round complexity of multiparty protocols. Inves-
tigating the two-party one-round model may help increase our understanding
of general secure multiparty computation. Finally, the recently popular area of
secure autonomous agent computing (see, e.g. [1, 8]) relies on one-round proto-
cols, commonly implemented via encrypted circuit constructions. A variety of
very useful mobile agents computing simple functions may benefit from our im-
provements. One such example, discussed in [1], is that of a shopping agent that
would accept a sales offer if it is below a certain threshold.

We approach the problem in a general way by reducing SFE to oblivious
transfer (OT). OT is a powerful primitive, and is the subject of a vast amount of



research. It has been studied in many settings; for example, OT is instantiable
with information-theoretic (IT) security (e.g. with noisy and quantum channels
or a distributed sender [23]). Our SFE constructions automatically apply to all
of the above (and many other) settings and will benefit from future OT research.

1.1 Our Contributions and Outline of the Work

Our main idea is a new simple way of evaluating circuit gates securely by using a
new type of secret sharing, which we call Gate Evaluation Secret Sharing (GESS).
Our method can be viewed as a generalization of Yao’s garbled gate evaluation
procedure, offering a simple and powerful approach for designing efficient SFE
protocols. Our method is flexible, and not limited to ∨,∧,¬ gates. Circuits with
special purpose (e.g. non-binary) gates may be designed and implemented via
GESS to achieve better efficiency for specific functions (see, e.g., Sect. 2.6).

We show how a composition of GESS schemes can be used to efficiently re-
duce SFE to (parallel executions of) 1-out of-2 OT. Given a boolean formula,
we obtain a one-round reduction, meaning that an instantiation of OT results in
a SFE protocol, the security and round complexity of which are that of the un-
derlying OT. Our reduction is very efficient. Previous approaches in part suffer
from the exponential (in depth) cost of evaluation of a gate, which has intu-
itievely appeared necessary. We break this intuition by providing a scheme for
gate evaluation whose cost is only quadratic in the depth of the gate. Further, in
our reduction, we don’t “pay” for the internal gates of the formula. For a depth
d circuit, this results in a factor of approximately 2O(

√
d) improvement over pre-

vious solutions: O(2dd2) vs Θ(2d2Θ(
√

d)). (Like all other approaches, ours suffers
from the fact that the number of gates may be exponential in depth. Thus, we of-
fer polytime reduction of only NC1 circuits.) We prove non-trivial lower bounds,
showing that our constructions are almost optimal in the GESS framework.

The GESS approach is especially efficient on small circuits, since it does not
use encryption. In Sect. 2.6, we demonstrate this by a new efficient protocol
for the Two Millionaires problem. This protocol also serves as an example of
designing and implementing custom GESS gates.

We start with describing previous approaches and giving conceptual and
performance comparisons to our work (Sect. 1.2). We then present intuition for
our approach and introduce the necessary formal definitions in Sect. 2 and 2.1.
We present our constructions, lower bounds and performance analysis in Sect.
2.3 – 2.5. In Sect. 2.6 we present a new solution of the Two Millionaires problem.

In Sect. 3, we show how to use GESS to allow polytime SFE of polysize
circuits, when Alice is polytime. In effect, we obtain another implementation
of Yao’s garbled circuit approach for the model with polytime Alice, offering
essentially the same computational and communication complexity as its best
implementations. The natural and efficient handling of the computational setting
demonstrates the generality of the GESS approach. We mention that the effi-
ciency of Yao’s garbled circuit technique in the standard model can be (slightly)
improved by using IT GESS on “the bottom part” of the circuit (see discussion
in Sect. 3).



1.2 Comparisons with Related Previous Work

General discussion. Note the frequent use of a variety of secret sharing schemes
in secure multiparty computation. They are always used, however, to share se-
crets among players. We contrast this with our novel use, where secrets are
shared among wires and given to the player who performs reconstruction.

We note that some of the previous approaches (e.g. [9, 18–20]) are applica-
ble to more general representations of functions (e.g. by arithmetic formulas or
branching programs (BP)). Many functions may have especially efficient repre-
sentations when not restricted to boolean formulas (the setting we consider);
such functions may not benefit from our constructions.

Although our reductions are efficient for polysize boolean formulas of ar-
bitrary depth, they perform better on balanced formulas. For the latter, the
complexity is quasi-linear (vs. cubic for highly unbalanced formulas) in the size
of the formula. Note that it is possible ([7, 6]) to rebalance any formula to obtain
an equivalent log-depth balanced formula, at the cost of small increase in its size
(see end of Sect. 2.4 for more discussion).

Therefore, for the remainder of this section, assume that we are given a
boolean formula (or an NC1 circuit, which can be viewed as one), which is
rebalanced if it benefits the approach considered.

Let d be the depth of the formula or the circuit.
Comparing our reduction to previous constant-round approaches.
Kilian [20] was the first to show a one-round IT reduction (of complexity

Θ(4d)) of SFE to OT. Kilian relies on Barrington’s [2] representation of NC1

circuits as permutation BPs. It is possible to replace Barrington’s representation
in Kilian’s construction with a more efficient construction of Cleve [9] (see, e.g.
Cramer et al. [10]). The resulting complexity is Θ(2d2Θ(

√
d)), which is the best

previously known for NC1 circuits and (re)balanced formulas.
Ishai and Kushilevitz [18, 19] suggested a way of representing a circuit

as a predicate on a vector of degree 3 (degree of the input variables xi is 1)
randomizing polynomials. Their construction assigns an (exponential in d in size)
polynomial representation to each wire of the corresponding fan-out 1 circuit,
and implies a one-round SFE-to-OT reduction, of complexity Θ(4d). They also
previously suggested a related Private Simultaneous Messages (PSM) model [17]
of computation. They showed how to evaluate functions computed by BPs in
the PSM model (and also in our SFE-to-OT reduction model) with resources
quadratic in the size of the BP. (Recall, BPs are more powerful than permutation
BPs or formulas.) For our setting, their approach implies a one-round SFE-to-
OT reduction of cost Θ(4d), using an (almost) linear in size transformation of a
formula to a BP [14].

Our reduction of boolean formulas is simpler and more efficient (costing
O(2dd2)) than the above approaches.

Yao’s garbled circuit approach can also be used for such reduction (see,
e.g. [19]). The idea is to use an IT-secure two-time encryption scheme (e.g. using
one-time pad) in Yao’s garbled circuit. The keys of such a scheme must be more
than twice the size of the secret, causing an exponential (in d) growth of the size



of secrets, even in fan-in 1 circuits1. The complexity of such a scheme is about
Θ(4d) (up to 2d leaves, each of size up to 2d). Our approach is a generalization
and an improvement of this approach.

Sander, Young and Yung (SYY) ([26]) present a “fully homomorphic”
encryption scheme and apply it to SFE. The encryption size grows exponen-
tially with the number of the applied OR operations, resulting in Θ(8d) cost of
SFE. Beaver [4] suggests an optimization of the SYY pyramid and extends the
approach to the multiparty setting, achieving complexity Θ(4d). Further, using
the representation of Feige, Kilian and Naor [11] of NLOGSPACE as a product
of polysize matrices, he shows how to compute it in one round, bootstrapping the
SYY approach, also achieving complexity Θ(4d). Our approach is conceptually
different, simpler, more composable, uses fewer assumptions, and offers complex-
ity of at most O(2dd2). Also, unlike SYY, we do not have the requirement of a
layered circuit, which further increases our performance improvement.

Finally, we mention (but do not discuss) a variety of non-constant round
solutions (e.g. [22] and [16]).

1.3 Our Setting

We are working in a setting with two semi-honest participants who use ran-
domness in their computation. A large part of our work concerns reductions of
various problems to the OT oracle. In the semi-honest model, secure reductions
result in secure protocols when the called oracles are replaced by their secure
implementations. Further, the oracles’ implementations may be run in parallel,
which, with natural OT implementations, results in secure one-round protocols.
See Goldreich [15] for definitions, discussion and the composition theorem.

2 The GESS Approach

The intuition behind the GESS approach. Suppose first that the circuit
C consists of a single binary gate G with two inputs, one held by Alice, and
one by Bob. To transfer the value of the output wire to Alice, Bob encodes
possible values of each of the two input wires and transfers to Alice two of the
four encodings – one for each wire. Encoding of Alice’s wire value is sent via
OT. Each pair of encodings that can be possibly sent, has to allow the recovery
of the corresponding to G value of the output wire, and cannot carry any other
useful information. Consider the following example.

s′1 s′′1s′0 s′′0

0
G

1
Given the possible output values 0, 1 and the semantics of the gate G, Bob
1 Note the distinction between this flavour of Yao’s approach and its standard version

for evaluation of polysize circuits (e.g. [3, 25, 24, 21]). The latter is not a reduction to
OT; e.g, it cannot be used to construct one-round protocols IT-secure against Alice.



generates encodings of the input wires’ values (s′0, s
′
1), (s

′′
0 , s′′1), such that each

possible pair of encodings s′i, s
′′
j , where i, j ∈ {0, 1}, allows to reconstruct G(i, j),

and carries no other information. Now, if Bob sends Alice shares corresponding
to their inputs, Alice would be able to reconstruct the value of the output wire,
and nothing else.

This mostly corresponds to our intuition of secret sharing schemes. Indeed,
the possible gate outputs play the role of secrets, which are shared and then
reconstructed from the input wires encodings (shares).

Our next observation is that Bob need not share the values of the output
wire, but instead can share their encodings, which, in turn, may be input shares
of another gate. Thus, Alice and Bob can recursively apply the GESS approach
to multi-gate circuits. For each wire, Alice will only be able to obtain one secret
– the one corresponding the the value of the wire on the parties’ inputs.

2.1 The Definition of Gate Evaluation Secret Sharing

We now formally state the desired properties of the secret sharing scheme. While
the idea of the definition is quite simple, it is somewhat burdened with notation
due to the necessary level of formalism. For simplicity, we present the definition
for the case of a gate with two binary inputs and a binary output, postponing
the presentation of its most general form to Appendix A (Def. 2). A simple
instructive example of a GESS scheme is Constr. 2 in Sect. 2.3.

Let G be a gate with two binary inputs and a binary output. Also denote
by G : {0, 1} × {0, 1} �→ {0, 1} the function computed by gate G. Let SEC be
the domain of secrets. Suppose we’ve associated a secret si ∈ SEC with each
of the two possible values i of the output wire of G. In general, distributions
of s0 and s1 may be dependent, so we talk about a tuple of secrets 〈s0, s1〉
from a domain of tuples TSEC ⊂ SEC2 associated with the output wire. We
want to assign a share to each value of the two input wires, such that each
combination of shares allows reconstruction of (only) the “right” secret. As do
secrets, shares on a wire form a tuple: 〈sh10, sh11〉 ∈ TSH1 ⊂ (SH1)2 on wire 1,
and 〈sh20, sh21〉 ∈ TSH2 ⊂ (SH2)2 on wire 2. In our notation, shij ∈ SHi is the
share of the i-th input wire (i ∈ {1, 2}), corresponding to the value j ∈ {0, 1}.
Definition 1. (Gate evaluation Secret Sharing) A gate evaluation secret shar-
ing scheme (GESS) for evaluating G as above (we also say GESS implementing
G) is a pair of algorithms (Shr, Rec) (with implicitly defined secrets domain
SEC, secrets tuples domain TSEC, two share domains SH1 and SH2 and two
share tuples domains TSH1, TSH2), such that the following holds.

The probabilistic share generation algorithm Shr takes as input a two-tuple
of secrets 〈s0, s1〉 ∈ TSEC and outputs two tuples of shares (one for each wire),
where, ∀i ∈ {1, 2}, the i-th tuple ti ∈ TSHi consists of two shares shij ∈ SHi.
The deterministic share reconstruction algorithm Rec takes as input two ele-
ments sh1 ∈ SH1 and sh2 ∈ SH2 and outputs s ∈ SEC.

Let v = 〈v1, v2〉 ∈ {0, 1} × {0, 1} be a selection vector. Define the selection
function Sel(〈sh10, sh11〉, 〈sh20, sh21〉, v) = 〈sh1v1 , sh2v2〉. Write V1 ≡ V2 to de-
note that V1 and V2 are distributed identically.



Shr and Rec satisfy the following conditions:

– correctness: for all random inputs of Shr and secrets tuples 〈s0, s1〉 ∈ TSEC,
∀v ∈ {0, 1}2, Rec(Sel(Shr(〈s0, s1〉), v)) = sG(v)

– privacy (selected shares contain no information other than the value sG(v)):
There exists a simulator Sim, such that ∀〈s0, s1〉 ∈ TSEC and any v ∈
{0, 1}2: Sim(sG(v)) ≡ Sel(Shr(〈s0, s1〉), v)

Observation 1 A simple generalization of this definition (required for discus-
sion in Sect. 2.3 and 2.4) considers the identity gate GI with a four-valued output
wire, where each output corresponds to a pair of inputs. In this case, the secrets
form a 4-tuple 〈s00, ..., s11〉, while there are still two two-tuples of shares. Note
that we can convert GESS implementing GI into GESS implementing any other
binary gate by simply restricting some of the secrets to be equal. Denote the cor-
respondence between a secret s ∈ SEC and the wire value v ∈ {0, 1} by s ↔ v.
Then setting s01 = s10 = s11 ↔ 1, s00 ↔ 0 gives the implementation of the OR,
and s00 = s01 = s10 ↔ 0, s11 ↔ 1 – of the AND gates. NOT gates can be imple-
mented “for free” by simply eliminating them and inverting the correspondence
of the appropriate wire’s values and secrets.

Observation 2 We note that, in contrast with the traditional approach of multi-
secret sharing schemes, our definition allows the possibility that a single share
gives out some information about a secret. It is easy to see, however, that this
information must be common to every secret, since otherwise it is possible to
determine whether a corresponding combination of secret/share occurred, which
allows to easily construct a distinguisher breaking the privacy requirement of
GESS. Further, shares of the same wire, corresponding to different values, must
be distributed identically (otherwise a distinguisher exists).

The definition is given for specific input and output domains, and therefore
we do not talk about polynomial bounds on Shr and Rec. However, in practice,
we are interested in ensembles of schemes and want them to be uniform polytime
algorithms. We won’t insist on an ensemble of efficient simulators, because an
efficient simulator exists if any one exists. Indeed, an efficient simulator can
simply output Sel(Shr(〈s0, s1〉), v), where at least one of the secrets si is equal
to s, and v is any selection vector, such that G(v) = i.

2.2 Reduction of SFE to OT using GESS

Suppose Alice and Bob have a circuit C, consisting of fan-out 1 gates G1, G2, ....
We formally describe a reduction of securely evaluating C on their inputs to calls
to OT, resulting in a one-round protocol. Again, for simplicity of presentation
we assume that all gates Gi are fan-in 2 binary gates.

Assume that for every gate G of C, there exists a GESS GESSG : (ShrG, RecG)
of Def. 1 with appropriate secret domains (as described below). We give explicit
constructions (e.g. Constr. 2 in Sect. 2.3) of such schemes for all gates with two
binary inputs. We note that GESS for every other gate can be constructed (e.g.
from Constr. 1 instantiated with GESS of Constr. 2).



Construction 1 (Reducing SFE to OT) Bob’s precomputation. Bob starts
with the output gate. He sets the secrets domain SEC of it to be {0, 1} and sets
the secrets tuple to 〈0, 1〉. He proceeds through gates of C recursively as follows.

Consider a gate G. Let TSEC and a secrets tuple t = 〈s0, s1〉 ∈ TSEC are
given for G. Let GESSG be a GESS scheme implementing G with secrets tuples
domain TSEC ⊂ SEC2. Bob runs ShrG on the secrets tuple t and obtains two
tuples of shares t1 ∈ TSH1 and t2 ∈ TSH2, corresponding to the first and second
input wires of G respectively. Let G′

i be the i-th input gate of G (i ∈ {0, 1}). Then
Bob processes G′

i as follows. He treats the tuple of shares ti ∈ TSHi of G’s input
wire as the tuple of secrets of G′

i, and TSHi – as the secrets tuples domain of
G′

i. Bob now applies the algorithm of this paragraph to G′
i.

Eventually, Bob obtains secrets tuples for all input wires of C. Note that
Bob’s choices of instances of GESS schemes for the gates of C are deterministic
and built into the protocol; this explicates the corresponding Rec procedures.

Interaction. For each input wire associated with Alice, she and Bob make
(parallel) calls to OT oracles. Alice has the wire’s input and Bob has the tuple
of secrets as their inputs of each of the calls. For each input wire associated with
Bob, Bob sends Alice the corresponding secret from that wire’s tuple of secrets2.

Alice’s computation. Alice obtains results of the OT and the secrets cor-
responding to Bob’s inputs. Alice proceeds, from the top down on the circuit C,
as follows. For each gate, Alice knows the secrets corresponding to the inputs of
the gate, and the corresponding Rec procedure. She runs Rec on the input secrets
and obtains the output secret. She proceeds in this manner until she obtains the
secret corresponding to the output wire. Alice outputs this secret.

Theorem 1. Constr. 1 is a non-cryptographic reduction (thus unconditionally
secure against both Alice and Bob) of SFE of C to OT, in the semi-honest model.

The proof of Theorem 1 is intuitive and is presented in Appendix B.

Observation 3 A circuit C with fan-out greater than 1 can be converted into a
corresponding (potentially very large) tree-circuit C′ by duplicating C’s subtrees
where appropriate. Equivalently, one can view the secrets as being computed and
propagated by Bob in parallel on the same wire. Note that we, however, need
not increase the number of corresponding OT instances due to the growth of C′

relative to C (until a certain efficiency threshold is reached). Rather, Bob’s inputs
to OT will be longer (without the increase in the total number of bits transferred).
This will often result in significant computational and communication savings.

2.3 GESS for gates with two binary inputs

We now present an efficient ensemble of GESS schemes (indexed by the secrets
domains) implementing any binary gate with two binary inputs. This construc-
tion is a building block of a more efficient Constr. 3. We present GESS for the
2 This message is appended to Bob’s messages of the n-round instantiations of OT

oracles to form an n-round protocol.



1-to-1 gate function G : {0, 1}2 �→ {00, 01, 10, 11}, where G(0, 0) = 00, G(0, 1) =
01, G(1, 0) = 10, G(1, 1) = 11 (see Observation 1 for justification).

Let the secrets domain be SEC = {0, 1}n, and four (not necessarily distinct)
secrets s00, ...s11 ∈ SEC are given; the secret sij corresponds to the value G(i, j)
of the output wire. Note that |SEC| ≥ 4 need not hold; our scheme is interesting
even when |SEC| ≥ 2.

The intuition for the design of the GESS scheme is as follows. We first
randomly choose two strings R0, R1 ∈R SEC to be the shares sh10 and sh11

(corresponding to 0 and 1 of the first input wire). Now consider sh20 – the share
corresponding to 0 of the second input wire. We want this share to produce either
s00 (when combined with sh10) or s10 (when combined with sh11). Thus, the
share sh20 = B00B10 will consist of two blocks. One, B00 = s00⊕R0, is designed
to be combined with R0 and reconstruct s00. The other, B10 = s10 ⊕ R1, is
designed to be combined with R1 and reconstruct s10. Share sh21 = B01B11 is
constructed similarly, setting B01 = s01 ⊕ R0 and B11 = s11 ⊕ R1. Note the
indexing notation – the secret sij is always reconstructed using Bij .

Both leftmost blocks B00 and B01 are designed to be combined with the same
share R0, and both rightmost blocks B10 and B11 are designed to be combined
with R1. Therefore, we append a 0 to R0 to tell Rec to use the left block of the
second share for reconstruction, and append a 1 to R1 to tell Rec to use the
right block of the second share for reconstruction. Finally, to hide information
leaked by the order of blocks in shares, we perform the following. We randomly
choose a bit b; if b = 1, we reverse the order of blocks in both shares of wire 2
and invert the appended pointer bits of the shares of wire 1. More formally:

Construction 2 (GESS ensemble for gates with two binary inputs.) Let SEC =
{0, 1}n and TSEC = SEC4 be the secrets domains. Let the secrets tuple
〈s00, ..., s11〉 ∈ TSEC be given. The domains of shares are: SH1 = {0, 1}×SEC
and SH2 = SEC2. Note that TSH1 = SH2

1 and TSH2 = SH2
2 .

Shr chooses b ∈R {0, 1}, R0, R1 ∈R SEC and sets blocks
B00 = s00 ⊕ R0, B01 = s01 ⊕ R0, B10 = s10 ⊕ R1, B11 = s11 ⊕ R1.
Shr sets the tuples of shares 〈sh10, sh11〉 ∈ SH1, 〈sh20, sh21〉 ∈ SH2 as follows

wire 1 wire 2, if b = 0 wire 2, if b = 1
wire value 0 sh10 = bR0 sh20 = B00B10 sh20 = B10B00

wire value 1 sh11 = b̄R1 sh21 = B01B11 sh21 = B11B01

Rec proceeds as follows. On input Sh1 = b′r, Sh2 = a0a1, Rec outputs r ⊕ ab′ .

Theorem 2. For each n ∈ IN, Constr. 2 is a GESS scheme.

Proof. (Sketch): To prove correctness, we need to show that no matter what the
random choices of Shr and the wire values i1, i2 are, Rec always reconstructs
sG(i1,i2). Verification of correctness is simple and is moved to Appendix D.

We now prove security. Suppose secrets s00, ..., s11 are given. This determines
the distribution on the Shr generated shares. Let the input wire values i1, i2 be
given. Then the distribution P on the corresponding pair of shares 〈sh1i1 , sh2i2〉



and the secret s = sG(i1,i2) shared by the pair are determined. The goal of the
simulator is, given only s, to generate a pair of shares distributed identically to
P . Note that this exactly corresponds to the privacy condition Sim(sG(i1,i2)) ≡
Sel(Shr(s00, ..., s11), 〈i1, i2〉) of Def. 1.

The following natural simulator Sim(s) suffices. On input s ∈ SEC, Sim
chooses a random bit d ∈R {0, 1} and random strings p, q ∈R SEC. If d = 0,
he outputs (〈d, p〉, 〈p⊕ s, q〉), otherwise he outputs (〈d, p〉, 〈q, p⊕ s〉). The simple
proof by case analysis is presented in Appendix D. ��

The Permute and Point (PP) Technique. We note the application of
the following technique: we permuted the blocks of the shares of the second
wire, and appended pointers to the shares of the first wire, hiding information
contained in the order of blocks. We use the same idea in all other constructions
in this paper (of Sect. 2.4 and 2.6). We believe this technique is likely to be
useful in many other GESS constructions; it may also have other applications.

Observation 4 We note that the simulator Sim of Theorem 2 is the same for
every gate function – it is only the secrets semantics that defines the semantics
of the gate. Therefore, Sim can simulate gates without knowing what they are.
Therefore, when this secret sharing scheme is plugged into the protocol of Sect.
2.2, semantics of all gates are unconditionally hidden from Alice - she only knows
the wire connections of C.

2.4 The Main Construction – GESS for AND/OR/NOT Circuits

Note the inefficiency of Constr. 2, causing the shares corresponding to the second
input wire be double the size of the gate’s secrets. While, in some circuits, we
could avoid the exponential (in depth) secret growth by balancing the direction of
greater growth toward more shallow parts of the circuit, a more efficient solution
is desirable. We discuss only AND/OR circuits, since NOT gates are given for
“free” (see Observation 1).

Recall, in Constr. 2 each of the two shares of the second wire consists of two
blocks. Observe that in the case of OR and AND gates either left or right blocks
of these two shares are equal. We use this property to reduce (relative to Constr.
2) the size of the shares when the secrets are of the above form. Our key idea is
to view the shares of the second wire as being equal, except for one block.

Suppose each of the four secrets consists of n blocks and the secrets differ
only in the jth block, as follows:

s00 = ( t1 . . . tj−1 t00j tj+1 . . . tn ), ...

s11 = ( t1 . . . tj−1 t11j tj+1 . . . tn ),
where ∀i = 1..n: ti, t

00
j , t01j , t10j , t11j ∈ D, for some domain D of size k. It is

convenient to consider the columns of blocks, spanning across the shares. Every
column (with the exception of the j-th) consists of four equal blocks. We stress
that the index j is only determined by the secrets, and must not be recovered
at reconstruction.We construct a GESS for gates with two binary inputs, where
the size of each share of the first wire is n(k + �log(n + 1)�) and of the second



wire is (n + 1)k. Further, each share of the first wire consists of n blocks of
size |D| + �log(n + 1)�, and all but one pair of corresponding blocks are equal
between the shares. Each share of the second wire consists of n+1 blocks of size
|D| and, for OR and AND gates, all but one pair of corresponding blocks are
equal between the shares. Since the generated shares satisfy the above conditions
on secrets, repeated application of this GESS for OR and AND gates is possible.

The scheme’s intuition. For simplicity of presentation, we do not present
the GESS scheme in full generality here (this is postponed to Appendix C). We
show its main ideas by considering the case where the four secrets consist of
n = 3 blocks each, and j = 2 is the index of the column of distinct blocks.

Our idea is to share the secrets “column-wise”, that is to treat each of the
three columns of blocks of the secrets as a tuple of subsecrets and share this
tuple separately, producing the corresponding subshares. Consider sharing the
1-st column. All four subsecrets are equal (to t1 ∈ D), and we share them trivially
by setting both subshares of the first wire to a random string R1 ∈R D, and both
subshares of the second wire to be R1 ⊕ t1. Column 3 is shared similarly. We
share column 2 as in Constr. 2 (highlighted on the diagram), omitting the last
step of appending the pointers and permutation. This preliminary assignment of
shares (still leaking information due to order of blocks) is shown on the diagram.

R1 ⊕ t1 R3 ⊕ t3R2 ⊕ t012 R′
2 ⊕ t112

sh20 =

sh21 =

s00 =

s01 =

s10 =

s11 =

G

R2R1

R3

R3

R1 R′
2

R1 ⊕ t1 R2 ⊕ t002 R3 ⊕ t3R′
2 ⊕ t102

t1

t1

t1
t1

t002
t012

t102
t112

t3

t3

t3

t3

= sh10

= sh11

Note that the reconstruction of secrets is done by XOR’ing the corresponding
blocks of the shares, and, importantly, the procedure is the same for both types
of sharing we use. For example, given sh10 and sh21, we reconstruct the secret
(R1 ⊕ (R1 ⊕ t1), R2 ⊕ (R2 ⊕ t012 ), R3 ⊕ (R3 ⊕ t3)) = s01.

The remaining (PP) step (not shown on the diagram) is to randomly permute
the order of the four columns of both shares of wire 2 and to append (log 4)-bit
pointers to each block of the shares of wire 1, telling Rec which block of the
second share to use. Note that the pointers appended to both blocks of column
1 of wire 1 are the same. The same holds for column 3. Pointers appended to
blocks of column 2 are different. For example, if the identity permutation was
applied, then we will append “1” to both blocks R1, “2” to R2, “3” to R′

2, and
“4” to both blocks R3. Because G is either an OR or an AND gate, both tuples
of shares maintain the property that all but one pairs of corresponding blocks
are equal between the shares of the tuple. Note that it is not a problem that the
index of the column with different entries on input wire 1 is the same as that
on the output wire: since the adversary never sees both shares of any wire, this
index remains unconditionally hidden.



Construction 3 (GESS for AND/OR gates) The presented construction can
be naturally generalized for an arbitrary number of blocks n of size k and for
arbitrary index j of the column with differing blocks. The formal presentation of
this general construction is postponed to Appendix C (Constr. 6).

Theorem 3. For each n, k, j ∈ IN, Constr. 3 is a GESS scheme as defined by
(a generalization of) Def. 1.

We give the intuition of the proof and refer the reader to Appendix C for
details. First, the correctness of the reconstruction is easily verifiable. Further,
each of the four pairs of shares, reconstructing their corresponding secret s ∈
{s00, .., s11}, has the following structure. Let s = (t1, ..., tn). The second share
in each pair of shares is a sequence of n + 1 randomly chosen blocks ri from
D: sh2 = (r1, ..., rn+1). The first share in each pair is a sequence of n “blocks
with pointers” sh1 = (B1, ..., Bn), as follows. ∀i ∈ {1..n}, Bi = 〈pi, bi〉, where
p1, ..., pn is a random permutation of a random n-element subset of {1..n + 1},
and bi = ti ⊕ rpi ∈ D. This implies the simulator Sim(s), required by Def. 1.

GESS’ performance. From above, if the secrets of the output wire of G
consist of n blocks of size k, then the secrets of G’s inputs consist of no more
than n+1 blocks of size k+�log(n+1)�. Similarly, d levels deeper, wires’ secrets
consist of no more than n + d blocks of size k +

∑
i=1..d�log(n + i)�. Therefore,

starting with one-bit secrets (n = 1, k = 1), a tree circuit will have at depth d
secrets of size at most (d+1)(d log(d+1)+1) = d2 log(d+1)+d log(d+1)+d+1.
The shares grow very slowly: as d → inf, the “share expansion factor” — the
ratio of sizes of shares to sizes of secrets of a GESS scheme for a gate G at depth
d — approaches 1. Since the gates have exactly two inputs, there are at most 2d

input wires to the circuit, and the total size of Bob’s secrets to be sent to Alice
is 2d(d2 log(d+1)+ d log(d+1)+ d+1) ≈ 2dd2 log d, dominated by the 2d term.

Rebalancing C prior to applying the above reduction may result in sub-
stantial performance improvement. Bonet and Buss [6] and Bshouty, Cleve and
Eberly [7] prove the following fact (and exhibit the rebalancing procedure).

Let C be a {∨,∧,¬}-formula of leaf size m. Then for all k ≥ 2, there is
an equivalent {∨,∧,¬}-formula C′, such that depth(C′) ≤ (3k ln 2) · log m, and
leafsize(C′) ≤ mα, where α = 1 + 1

1+log(k−1) .
Consider a highly unbalanced C of size m. Direct application of our reduction

costs Θ(m3), more than BP based approaches [17–19] of cost O(m2). Rebalancing
C as above, even suboptimally setting k = 9, results in a formula C′ of size m1.25

and depth ≈ 18.5 logm. Applying the reduction to C′ yields a much better cost
O(m1.25 log2 m). An optimal (w.r.t. the cost of the GESS reduction) choice of k
or better rebalancing will further improve our (but not BP’s) performance.

2.5 Lower Bounds for GESS – The Optimality of Our Constructions

Let i, j ∈ {0, 1}. Denote by Ai (resp. Bi) the random variable of the share
corresponding to the wire value i of the first (resp. second) input wire. Denote
by Sij the random variable of the secret corresponding to the gate output value
G(i, j). Let H(·) be Shannon entropy. We start with proving a technical lemma.



Lemma 1. For any GESS scheme implementing a gate with binary inputs,
H(Ai)+H(Bj)≥H(Si(1-j)|B1-j)+H(S(1-i)j |A1-i)+H(Sij |Si(1-j)S(1-i)jS(1-i)(1-j)).

Proof. For simplicity, prove the lemma for i = j = 0, i.e that H(A0) + H(B0) ≥
H(S01|B1) + H(S10|A1) + H(S00|S01S10S11). Other cases are analogous.

First, since H(S01|A0B1) = 0, and using the chain rule twice, obtain
H(A0|B1) = H(A0S01|B1) − H(S01|A0B1) = H(A0S01|B1) = H(S01|B1) +
H(A0|B1S01). Similarly, H(B0|A1) = H(S10|A1) + H(B0|A1S10).

By definition, A1, B1 do not reveal anything about S00 (other than what’s
implied by S11), and, further, A0, B0 recover S00. Then H(S00|S01S10S11) ≤
H(S00|A1B1S01S10) ≤ H(A0B0|A1B1S01S10) ≤ H(A0|A1B1S01S10)+
H(B0|A1B1S01S10) ≤ H(A0|B1S01) + H(B0|A1S10).

Thus, H(A0)+H(B0) ≥ H(A0|B1)+H(B0|A1) ≥ H(S01|B1)+H(A0|B1S01)+
H(S10|A1) + H(B0|A1S10) ≥ H(S01|B1) + H(S10|A1) + H(S00|S01S10S11). ��

Because all shares corresponding to the same wire must be distributed iden-
tically (Observation 2), their entropies must be equal. Thus Lemma 1 implies
that ∀i1, i2 ∈ {0, 1} : H(Ai1) + H(Bi2) ≥ MAXi,j∈{0,1}(H(Si(1−j)|B1−j) +
H(S(1−i)j |A1−i) + H(Sij |Si(1−j)S(1−i)jS(1−i)(1−j))).

Consider non-trivial gates – those that depend on both (binary) inputs. Note
that the gate output need not be binary. We show the optimality of constructions
for the natural case when the secrets are drawn independently at random from
the same domain (with only the restrictions of secrets equality imposed by the
semantics of G). In that case, by Observation 2, H(Si(1−j)|B1−j) = H(Si(1−j))
and H(S(1−i)j |A1−i) = H(S(1−i)j). Consider the two possible cases.

Case 1: there exist gate inputs i, j, s.t. G(i, j) is not equal to the gate
value on any other inputs. This is the case for most non-trivial gates (including
AND and OR). In this case, H(Sij |Si(1−j)S(1−i)jS(1−i)(1−j)) = H(Sij) and thus
∀i1, i2 ∈ {0, 1} : H(Ai1 ) + H(Bi2) ≥ H(Si(1−j)) + H(S(1−i)j) + H(Sij). This
matches (within 1 bit) the upper bound given by Constr. 2.

Case 2: such i, j don’t exist. Then the only non-trivial gates are XOR and
¬ XOR. GESS of Constr. 4 implements XOR and matches the lower bound of
H(Si(1−j)) + H(S(1−i)j) for this case.

Construction 4 (GESS ensemble for XOR gates.) Let SEC = {0, 1}n and
TSEC = SEC2 be the secrets domains. Let the secrets tuple 〈s0, s1〉 ∈ TSEC
be given. The domains of shares are set as follows: SH1 = SH2 = SEC.

Shr chooses R ∈R SEC and sets sh10 = R, sh11 = s0 ⊕ s1 ⊕ R, sh20 =
s0 ⊕ R, sh21 = s1 ⊕ R.

Rec proceeds as follows. On input sh1, sh2, Rec outputs sh1 ⊕ sh2.

Theorem 4. For each n ∈ IN, Constr. 4 is a GESS as defined by Def. 1.

The proof of Thm. 4 is very simple and is omitted.
In conclusion, for the shares Ai and Bj of the two input wires, we proved

Theorem 5. For every GESS scheme implementing an OR or an AND gate,
when all secrets are chosen at random from the same domain SEC and each has
entropy HS, ∀i, j ∈ {0, 1} : H(Ai) + H(Bj) ≥ 3HS.



Of course, the entropy of each share must be at least HS . Then all possible
gates with two binary inputs are (almost) optimally implemented by either Con-
str. 2 or 4. Our Constr. 3 beats the above lower bound by exploiting common
information among secrets. We leave open the question of exact lower bounds for
this interesting case. We stress that the share-size-to-secret-size ratio approach-
ing 1, achieved by Constr. 3, is “near optimal”.

2.6 Application of GESS: Efficient Practical Two Millionaires

We apply the GESS approach to give a new efficient solution to the two mil-
lionaires problem. We design a GESS scheme for a new type of gate and use it
to compute the Greater Than (GT) predicate. We use the intuitive circuit C
(below) that compares bits of the parties’ inputs x and y, starting with the most
significant, and sets the answer bit when it encounters the difference.

xn

T

0

y1x1

Tyn
where T (j, xi, yi) =




j, ifj ∈ {−1, 1},
−1, ifj = 0 ∧ xi < yi,

0, ifj = 0 ∧ xi = yi,

1, ifj = 0 ∧ xi > yi.

Here j is ternary input and xi and yi are bits. It is easy to see that C indeed
computes GT: once a ternary wire is set to −1 or 1, that value is propagated to
the output wire. We aim to minimize the expansion of the share corresponding
to the input j. Note the double application of permute and point in Constr. 5.

Construction 5 (GESS ensemble for T -gates.) Let SEC = {0, 1}n and TSEC =
SEC3 be the secrets domains. Let the secrets tuple 〈s−1, s0, s1〉 ∈ TSEC is
given. The domains of shares are set as follows: SH1 = {0, 1} × SEC, SH2 =
({0, 1}2 × SEC)2 and SH3 = SEC3.

Shr chooses R0, R1, r1, r2, r3 ∈R SEC, a ∈R {0, 1} and b = {b1, b2, b3} - a
random permutation of {0, 1, 2}, where each bi is suitably represented by 2 bits.
Shr sets the shares sh1i = Ai, sh2i = 〈Bi0, Bi1〉, sh3i = 〈Ci0, Ci1, Ci2〉, as shown
on the following diagram.

r1
r3

s1 ⊕ r1 ⊕ r2

r2

r2

r1b2
B1a B1ā

B0āB0a

R1

R0

b3

b3
a

ā

aA1

A0

A-1 s-1 ⊕ r1 ⊕ r2
b1

C0b1

C1b1

C0b2

C1b2

C0b3

C1b3

s0 ⊕ R0 ⊕ r3

s-1 ⊕ R0 ⊕ r3

s1 ⊕ R1 ⊕ r3

s0 ⊕ R1 ⊕ r3

Rec, on input Sh1 = a′r, Sh2 = p0 b0 p1 b1, Sh3 = c0c1c2, outputs r⊕ ba′ ⊕ cpa′ .

Theorem 6. For each n ∈ IN, Constr. 5 is a GESS as defined by Def. 1.

Proof. (Sketch): Correctness of the scheme is easily verified. The simulator Sim(s)
chooses random α ∈R {0, 1}, r′0, ..., r′4 ∈R SEC, β0, β1 ∈R {0, 1, 2}, where β0 �=
β1. Let β′

i be suitable 2-bit representations of βi. Sim outputs shares 〈(αr′2),
(β′

0r
′
0β

′
1r

′
1), (γ0γ1γ2)〉, where γβα = s⊕r′2⊕r′α, and the other two γi are assigned

r′3 and r′4. The proof of equality of the generated distribution to the real execu-
tion is similar to that of previous two theorems, and is omitted. ��



Performance. Let n be the length in bits of the compared numbers. The
secrets corresponding to the T -gate at level i are of length i, and thus the secrets
corresponding to the corresponding xi and yi are of lengths 3i and 2i+4. Thus,
Bob needs to send

∑
i=1..n 3i = 1.5n(n + 1) bits and perform n 1-out of-2 OT’s

with secrets of sizes 2 + 4, ..., 2n + 4.
The asymptotic complexity of this GT solution is worse than that of the best

currently known for either setting with limited Alice (Yao’s approach, see, e.g.
[24]) or unlimited Alice [5, 13]. Still, our solution performs better for comparing
smaller numbers (n ≈ 60..70), since we do not use encryption3.

We note that a reduction with a complexity similar to ours (quadratic) can
be obtained by using BP-based techniques of [19].

3 Extension to Evaluating Polysize Circuits

When Alice is assumed to be polynomially bounded, all polytime computable
functions can be efficiently evaluated. Beaver, Micali and Rogaway [3, 25], Naor,
Pinkas and Sumner [24] and Lindell and Pinkas [21] suggested one-round proto-
cols following Yao’s [27] garbled circuit approach.

As discussed, the OT reduction does not allow polytime evaluation of general
polysize circuits, due to the exponential growth of combined secrets size for each
level of general circuits. We now informally describe a natural extension that
handles this problem in the standard model. This demonstrates the generality
and applicability of the GESS approach. The resulting solution is conceptually
very clean, although slightly less efficient than the best known approach.

The protocol is essentially Constr. 1, with the following amendment. Bob
will not propagate the secrets “up the circuit”. Instead, for a gate G with out-
put wires w1, ..., wn and their (already computed) corresponding secrets tuples
(s1

0, s
1
1), ..., (s

n
0 , sn

1 ), he encrypts all the secrets corresponding to each gate value
together. More formally, he chooses two random keys k′, k′′ of a semantically se-
cure private-key encryption scheme E. He computes e0 = Ek′ (〈s1

0, ..., s
n
0 〉), e1 =

Ek′′ (〈s1
1, ..., s

n
1 〉) and assigns G’s labels to be a random permutation of e0, e1. He

then treats the keys as the secrets to be propagated, letting k′ and k′′ correspond
to wire values 0 and 1 respectively. When Bob is done, he will have assigned se-
crets to each of the input wires and associated labels with each of the gates. He
sends the secrets to Alice as before, additionally sending her the gate labels.

Alice obtains the secret shares for the input wires and proceeds evaluation
similarly to the previous solution. The difference now is that, after having re-
covered a gate’s secret (which is the key for one of the associated encryptions),
she decrypts the corresponding encryption to recover the outgoing wires’ secrets.
To ensure that only one decryption succeeds, we impose an additional require-
ment on the encryption scheme. Informally, we need the ranges of encryptions
under different keys be distinct, and that Alice is able to tell which decryption
succeeded. This is a rather weak requirement, satisfied, for example, by schemes
3 This advantage is minute with standard (public-key primitive based) OT implemen-

tations; it may be significant in other settings.



with elusive and efficiently verifiable ranges, formalized in [21]. Alice then uses
the recovered secrets as shares in computing the child gate’s secrets, and so on.
Finally, she outputs the value of the output wire.

Theorem 7. The above construction securely (against computationally unlim-
ited Bob and limited Alice) reduces SFE of polysize circuits to OT, in the semi-
honest model.

The proof of the theorem is rather intuitive and is presented in Appendix E.
The performance of the resulting approach is very similar to that of the

currently best known solutions (e.g. [21, 24]). Indeed, our wire secrets are of the
same size as theirs, and thus the only difference in performance is caused by the
size of the gate labels. In [24], each gate has four labels of size N each4, where
N is the security parameter. It is easy to see that each gate of our solution
adds up to 6N bits to the collection of all gate labels (two secrets of length N
expand into two shares of length N +1 and two shares of length 2N , which then
are encrypted and stored as labels.). Some optimization of this number is also
possible. For example, we need not encrypt (and thus add the corresponding
labels) for the secrets that are just larger than N . This can reduce the gate
induced label size gate by up to 2N bits.

We further note that in our scheme we only need to use encryptions once the
secret sizes grow too large (i.e some threshold larger than encryption keys). Thus
our method improves the performance of the evaluation of “the bottom part” of
every circuit, and can be combined with Yao’s garbled circuit implementations.
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A The General Definition of GESS

We give a general definition of a GESS scheme that allows to share a tuple of
secrets. Let G be a gate with k inputs from domain DI = DI1 × ... × DIk

and
one output from domain DO. We also denote by G : DI �→ DO the function
computed by gate G. Let SEC be the domain of secrets and TSEC ⊂ SEC|DO|

be the domain of tuples of secrets to be shared. For simplicity of presentation
and without loss of generality, assume that all domains DIi and DO are initial
sequences of non-negative numbers, e.g. DI1 = {0, 1, 2, ..., |DI1| − 1}.

Definition 2. (Gate evaluation Secret Sharing) A gate evaluation secret shar-
ing scheme (GESS) for evaluating G (we also say GESS implementing G) is a
pair of algorithms (Shr, Rec) (with implicitly defined secrets domain SEC, se-
crets tuples domain TSEC, k share domains SH1, ..., SHk and k share tuples
domains TSH1, ..., TSHk), such that the following holds.

The probabilistic share generation algorithm Shr takes as input a dO = |DO|-
tuple of secrets
〈s0, ..., sdO−1〉 ∈ TSEC and outputs a sequence of k tuples of shares, where the
i-th tuple ti ∈ TSHi consists of |DIi | shares shij ∈ SHi. The deterministic share
reconstruction algorithm Rec takes as input a sequence of k elements shi ∈ SHi,
one from each domain, and outputs s ∈ SEC.

Let b = 〈b1, ..., bk〉 ∈ DI be a selection vector. Define the selection function
Sel(〈sh10, ..., sh1|DI1 |−1〉, ..., 〈shk0, ..., shk|DIk

|−1〉, b) = {sh1b1 , ..., shkbk
}.

Shr and Rec satisfy the following conditions:

– correctness: for all random inputs of Shr and secrets tuples 〈s0, ..., sdO−1〉 ∈
TSEC, ∀b ∈ DI , Rec(Sel(Shr(〈s0, ..., sdO−1〉), b)) = sG(b)

– privacy (selected shares contain no information other than the value sG(b)):
There exists a simulator Sim, such that ∀〈s0, ..., sdO−1〉 ∈ TSEC and any
b ∈ DI : Sim(sG(b)) ≡ Sel(Shr(〈s0, ..., sdO−1〉), b)



B Proof of Theorem 1

Proof. (Sketch): Security against Bob is trivial since he does not receive any
messages. The intuition for the scheme’s security against Alice is that none of
the GESS implementations leak any information. To prove security, we show how
to construct SimA, perfectly simulating the following ensemble (view of Alice):
VIEWA(x, a) = {x, mOT , m}, where x and a are Alice’s input and output, mOT

is the sequence of messages received from the OT oracles and m is the message
received from Bob directly.

SimA first simulates wire secrets assignment as follows. He starts with the
output wire, assigns its value to be a, and proceeds through gates from the
bottom up as follows. Given gate G, its GESSG, simulator SimG, and G’s output
wire value v, SimA assigns values to G’s input wires according to SimG(v).

Eventually, SimA assigns secrets to all input wires of C. SimA outputs
{x, m′

OT , m′}, where x is Alice’s input, m′
OT and m′ are (proper representa-

tions of) the sequences of C’s input wires assignments corresponding to Alice
and to Bob respectively.

It is intuitive that the proposed simulator perfectly simulates Alice’s view.
Indeed, the vector of inputs to C defines a value assignment to each wire of
the circuit, which, in turn, defines a distribution on shares/secrets obtained
(received or computed) by Alice for each wire. We prove that wire assignment of
SimA perfectly simulates the obtained secret for each wire. It is clear that SimA

perfectly assigns the secret corresponding to the output wire by setting it to the
output of the computation he obtained as its input. Further, SimA assigns secrets
to the input wires of the output gate G. These secrets are distributed identically
to the secrets that Alice reconstructs for these wires, because of the perfect
simulation of SimG. Proceeding upward to the input wires, it is clear that SimA

perfectly simulates all the wire assignments that Alice sees and reconstructs in
the real execution. ��

C The General Construction of GESS for AND/OR
Gates

Construction 6 (Improved GESS for gates with two binary inputs.) Let D =
{0, 1}k and SEC = Dn. Let secrets s00, ..., s11 ∈ SEC consist of n blocks of
length k, and differ only in the j-th block. That is, let

s00 = ( t1 . . . tj−1 t00j tj+1 . . . tn ),
...
s11 = ( t1 . . . tj−1 t11j tj+1 . . . tn ),

where ∀i = 1..n: ti, t
00
j , t01j , t10j , t11j ∈ D, and the index j is determined only by

the secrets. Let TSEC ⊂ SEC4 be the space of all tuples of the above form.
Shr chooses R1, ...Rn, R′

j ∈R D and a random permutation5 π : {1..n+1} �→
{1..n + 1}. Let τ = π−1 be the inverse of π. For m ∈ {0, 1}, Shr sets the shares
5 This permutation specifies which block of the second tuple is XOR’ed with the ith

block of the first tuple to obtain the ith block of the reconstructed secret.



sh1m = 〈Bm1, ..., Bmn〉 and sh2m = 〈Cm1, ..., Cmn+1〉, as shown on the following
diagram.

... ... ...

... ... ...

... ...

... ...

Rτ(n+1) ⊕ tτ(n+1)

C11 C1π(j) C1n+1C1π(n+1)

Rτ(n+1) ⊕ tτ(n+1)

C01 C0π(j) C0π(n+1) C0n+1

Rτ(1) ⊕ tτ(1)

Rτ(1) ⊕ tτ(1) Rj ⊕ t00j R′
j ⊕ t10j

R′
j ⊕ t11jRj ⊕ t01j

π(1)R1

B11 B1j B1n

π(n)Rn

π(1)R1

B0nB0jB01

π(n)Rnπ(j)Rj

π(n+1)R′
j

More specifically, the blocks of both shares of the first wire will be assigned
R1, . . . , Rn, with the exception of the jth block of the share corresponding to
1, which will be assigned R′

j. Shr then, for all i, prepends π(i) to the ith block
of both shares of the first wire, with the exception of the jth block of the second
share, which gets prepended π(n + 1).

Each π(i)-th block of both shares of the second wire will be set to Ri⊕ ti, with
the exception of blocks π(j), π(n + 1). Those blocks assignment is motivated by
Construction 2. Specifically, we set the π(j)-th block of the share corresponding
to 0 to Rj ⊕ t00j and that block of the share corresponding to 1 – to Rj ⊕ t01j . We
set the π(n+1)-st block of the share corresponding to 0 to R′

j ⊕ t10j and that block
of the share corresponding to 1 – to Rj ⊕ t11j . This completes the description of
Shr.

Rec proceeds as follows. He obtains two shares sh1 = (ind1, r1, ..., indn, rn)
and sh2 = (a1, ..., an+1). He reconstructs the secret s = (σ1, ..., σn) by setting
σi = ri ⊕ aindi .

Theorem 8. For each n, k, j ∈ IN, Construction 6 is a GESS scheme as defined
by Def. 1. (Note that security and correctness hold w.r.t. TSEC.)

Proof. (Sketch): The correctness of the reconstruction is easily verifiable. To
prove security, we construct a simulator Sim(s). On input s = σ1, ..., σn, Sim(s)
does the following. He chooses random r′1, ..., r

′
n+1 ∈R D and a random permuta-

tion ρ : {1..n+1} �→ {1..n+1}. He outputs the shares sh1 = (ρ(1)r′1, . . . , ρ(n)r′n)
and sh2 = (σρ−1(1) ⊕ r′ρ−1(1), . . . , σρ−1(n+1) ⊕ r′ρ−1(n+1))

We now prove that Sim perfectly simulates the real-life generated shares.
The first share is distributed identically to both of the real-life generated shares
of the first vector. Indeed, each ri is distributed identically to each Ri, Rj and R′

j

and ρ(1), ..., ρ(n) is distributed identically to π(1), ..., π(n) and to π(1), ..., π(j −
1), π(n + 1), π(j + 1), ..., π(n), for any j.

As for the second share, all blocks (and their positions) are generated iden-
tically to the real execution, with the exception of blocks in positions ρ(j) and
ρ(n + 1). Proof of the equality of their distribution to the corresponding blocks
of the real distribution closely follows that of Construction 2 and is omitted. ��

D Case Analysis for the Proof of Theorem 2

Proof. (Sketch): We need to consider the four possible combinations of gate in-
put values i1, i2 ∈ {0, 1}. We show that Sim perfectly simulates the correspond-
ing truly generated shares. Denote random variables 〈sh1, sh2〉 = 〈b′r, a0a1〉 =
Sel(Shr(s00, ..., s11), 〈i1, i2〉). We write out only one case; others are analogous.



Case i1 = 0, i2 = 0. Thus s = sG(0,0).
Correctness: If b = 0, then b′ = 0, sh1 = 0R0, sh2 = (s00 ⊕ R0, s10 ⊕ R1).
Rec(sh1, sh2) = R0 ⊕ (s00 ⊕ R0) = s00 = s. If b = 1, then b′ = 1, sh1 =
1R0, sh2 = (s10 ⊕ R1, s00 ⊕ R0). Rec(sh1, sh2) = R0 ⊕ (s00 ⊕ R0) = s00 = s.
Security: Clearly, Sim(s) perfectly simulates sh1. Further, sh2 consists of two
blocks B00 = s ⊕ R0 and B10 = s10 ⊕ R1. Observe that B10 = s10 ⊕ R1 is dis-
tributed uniformly randomly on SEC (since R1 is random on SEC and secret).
Therefore, sh2 consists of two blocks from SEC, where one block is random on
SEC and the other is equal to s ⊕ R0, where the non-random block is pointed
by the bit b′ of sh1, Therefore Sim(s) also perfectly simulates sh2 and the pair
〈sh1, sh2〉, since d is distributed identically to b′. ��

E Proof of Theorem 7

Proof. (Sketch): The reduction is trivially secure against Bob, since he does not
receive any messages from Alice. To prove security against Alice, we will show
how to simulate the input wires’ secrets and gate labels that Bob sends to Alice,
given the output of the computation. We present the proof for binary fan-in 2
circuits; a more general argument is readily obtained by natural generalization.

The simulator Sim(x, b) proceeds as follows. First, it (perfectly) simulates
the secret of the output wire by s.

Then, for each level of the circuit, starting from the bottom, for each gate G
of the current level: given the (previously simulated) G’s output wires’ secrets
s0, ..., sk−1, it simulates G’s input wires’ secrets and gate labels as follows. It
chooses two random keys s′, s′′ from the key domain of the employed encryption
scheme. Then it computes e0 = Encs′(〈s0, ..., sk−1〉), e1 = Encs′′(〈0, ..., 0〉) and
assigns G’s labels to be a random permutation of e0, e1. Then Sim runs the
the simulator SG(s′) of the secret sharing scheme of G. The simulator SG(s′)
produces two shares (distributed identically to real execution), each of which is
the simulation of the secret of the corresponding wire.

Sim runs the above procedure on C “from the bottom up”, and eventually
obtains the simulations of the input wires and gate labels, which he outputs,
suitably formatted.

We note the true randomness of all encryption keys and the perfect simu-
lations of secret sharing schemes. Intuitively, the only way for an adversary to
distinguish the simulation from the real execution is by distinguishing the sets
of non-decrypted gate labels. However, learning anything “substantial” that way
would mean breaking the semantic security of the employed encryption scheme,
which can be shown by a simple hybrid argument. ��


