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Abstract. MD2 is an early hash function developed by Ron Rivest for
RSA Security, that produces message digests of 128 bits. In this paper,
we show that MD2 does not reach the ideal security level of 2'2%. We
describe preimage attacks against the underlying compression function,
the best of which has complexity of 27®. As a result, the full MD2 hash
can be attacked in preimage with complexity of 2'%4.

1 Introduction

Cryptographic hash functions are an important primitive used in various situa-
tions. The main fields of applications are message authentication codes, digital
signatures, and therefore certificates. Hash functions are also used as a building
tool in many protocols and advanced constructions.

By definition, a hash function H is a function mapping an input message m
of arbitrary length to an output h of fixed length (typically this length ranges
from 128 to 512 bits)

h = H(m)

The main properties expected from a cryptographic hash function are :

— collision resistance : it should be hard to find two inputs m and m’ that
map to the same output by H.

— second preimage resistance : for a given m, it should be hard to find a
second input m’ such that m and m’ map to the same output by H.

— preimage resistance : for a given challenge h, it should be hard to find an
input m which maps to h by H.

More can be found on the theory of hash functions in [9,10]. Most of the hash
functions used in practice belong to the so-called “MD family”. This family of
hash functions was initially developed by Ron Rivest for RSA Security. The first
proposal was MD2 [7], an early, non-conventional, byte-oriented design. It was
quickly followed by MD4 [11] and MD5 [12], two hash functions with a more
modern, 32-bit-oriented design. Despite not being collision-resistant [3], MD4
has inspired most modern hash functions designs, like the RIPEMD family or
the SHA family. Over the last years, the effort on attacking hash functions has
mostly concerned collision resistance [2—4, 15], since this property is essential for
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many applications. However, few results have been reported regarding (second)
preimage attacks for these hash functions (see [5,9]).

In this paper, we focus on the MD2 hash function [7]. Despite being the oldest
hash functions from its family, and despite using an old-fashioned architecture,
MD2 is still used in several contexts. For instance, if we look at the recent PKCS
#1 v2.1, a cryptographic standard from RSA Security [17], the MD2 hash is still
given as an example of one-way, collision-resistant hash function, while MD4
has been removed, presumably because of Dobbertin’s collision attack [3]. In
addition, it is precised that “MD2 (is) recommended only for compatibility with
existing applications based on PKCS #1 v1.5”. The underlying explanation is
that the use of MD2 was highly encouraged in the previous version from 1993 [16]
where MD2 was recommended as a “conservative design”. This confidence in MD2
is not surprising because, despite being quite inefficient and based on an older
design philosophy, MD2 has surprisingly well resisted to cryptanalysis. The only
attack known is a collision attack against the compression function [14]. This
attacks works with the correct IV, however it no longer works when a checksum
is appended to the message, as imposed in the specifications [7]. For the full hash
function, no attack is known.

Consequently MD?2 still appears in various applications and even some pro-
posed standards [1]. However, the crucial security point regarding MD2 is now
its use in public-key infrastructures. Many certificates have been generated with
RSA-MD2 in the past and many of them are still widely used (like Verisign cer-
tificates for instance). Actually, anyone can easily verify that recent versions of
Windows are delivered with those MD2 certificates. Therefore millions of users
are probably using MD2-based certificates on a regular basis. The security of
certificates is a particular problem. Indeed, collision attacks do not threat the
security of the scheme, because the input of the signature primitive (typically
the usual primitive used with MD2 is the RSA signature) is fixed. An attacker
needs to find a collision between two inputs of MD2, one of them being the
data part of the certificate. If he succeeds, he will manage to forge a new valid
certificate. Hence what is required here is exactly second preimage resistance of
MD2. This is an important motivation to analyze the security of MD2 regard-
ing preimage and second preimage attacks, which is the focus of this paper. We
obtained interesting new results and theoretical attacks. Since our best attack
against MD2 is more efficient than a naive guessing attack in 2!?8, MD2 can no
longer be considered a secure one-way hash function.

First, we describe briefly the MD2 algorithm. Then, we focus on the com-
pression function and describe several attacks. The best is a pseudo-preimage
attack with complexity 273. Finally, we show how to turn these attacks into an
attack for the full hash, which is not straightforward because of the checksum
bytes.
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2 The MD2 Hash Function

2.1 Generalities

The MD2 Message-Digest algorithm was developed in 1989 by Ron Rivest. The
actual specifications can be found in RFC 1319 [7]. This algorithm belongs,
together with MD4 and MDS5, to the family of hash functions developed by Ron
Rivest for RSA Security. However, compared to the other algorithms of the family
(and to most actual hash functions), MD2 has several interesting particularities

— MD2 is a byte-oriented hash function. Indeed all instructions handle 8
bits of data. While this was useful for old architectures, today’s processors
can manipulate words of (at least) 32 bits. Consequently all modern hash
functions use 32-bit instructions. This is the case of MD4, MD5 and also for
the hash functions of the RIPEMD and SHA families.

— MD2 uses a checksum of 128 bits computed from the whole message and
appended as the last input block of the compression function. Hence MD2
does not follow the Merkle-Damgard construction, contrarily to most actual
hash functions. Consequently classical results [9] on how to turn collisions
on the compression function to collisions for the whole hash function do not
apply here. This is the reason why the collision attack described in [14] does
not extend to the full MD2 hash.

— the compression function of MD2 has a different architecture from most
modern hash functions. Indeed it does not look like a block cipher. Instead,
a fixed “scrambling” function is iterated on a 384 bits long internal state.
The initial state is derived linearly from a message block of length 128 bits
and an intermediate hash of 128 bits. The final state is truncated to 128 bits.
This function uses simple instructions like XOR and a nonlinear S-box.

Therefore MD2 is a very early design of hash function and differs significantly
from modern hash functions. In terms of efficiency, it compares quite bad to its
challengers (mostly because of the byte-oriented structure).

2.2 Description of MD2

In this section, we describe more precisely the mechanisms used by the MD2
hash function (see [7] for the full specifications). The general description of MD2
is found in Figure 1.

All blocks manipulated have length 128 bits. We refer to the blocks of the
message by My, ..., M,. The first step of MD2 is to append a padding to the
initial message, then to compute a checksum block (that we call C). This in-
creases the length of the message by 1 block. Finally the compression function
(referred to as F)) is applied iteratively to produce the hash value. If we call H;
the ¢-th intermediate hash,

Hiy = F(H;, M;)

The IV of the hash function is Hy and is set by default to 0.
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Fig.1. The MD2 Hash Function

The compression function A precise representation of the compression func-
tion F' is given in Figure 2. Each box in this figure contains one byte. F' is
decomposed into 3 matrices - denoted by A, B and C - with 16 columns and
19 rows each. The first row of each matrix is initialized respectively with H,,
M; and H; & M,;. Then the rows of each matrix are computed recursively from
top to bottom. The last rows of B and C are not used. The ’+’ symbol denotes
addition modulo 256.
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Fig. 2. The Compression Function of MD2

The computations are based on a function ¢ from 16 bits to 8 bits. In the
case of the matrix A, this can be described by the equations :

Al = o(A71 AL)
= A7 e8(4l,)

where S is a fixed S-box of size 8 bits. Equations for matrices B and C are
exactly the same. This function ¢ is represented in Figure 3. For the particular
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case i = 0, a byte extracted from another matrix is used instead of Al ; (see
Figure 2).

A

Af—l"@ AE —

Fig. 3. The ¢ function

The checksum function The checksum C is computed from the blocks of
message by iterating a non-linear checksum function, that we call G. Details on
G are not relevant for our attacks. Basically G uses only basic operations like
XOR and the S-box S. At a high-level, the following equations describe this
mechanism :

ICy =0
IC; 11 = G(IC;, M;)

G is a complicated function, however it is straightforward to compute the inter-
mediate checksum IC; from IC;; and M;. The final value IC,, ;; is the appended
checksum C. A precise description of G is available in [7].

3 Collision Attacks against MD2

The only known cryptanalytic result against MD2 is the paper by Rogier and
Chauvaud [14]. In this paper, collisions on the compression function of F are de-
scribed. This attack works very well because the IV used in MD2 is O (although
a variant is proposed for other IV’s with an increased complexity). Details of
this attack are not essential here. The key idea is to use the symmetry between
matrices B and C when H; = 0. (the first rows are equal in this case). Unfortu-
nately collisions cannot be extended to the full MD2 because of the checksum
bytes.

Although collision attacks may be of interest in many contexts, there are
several arguments why researching efficient collision attacks for MD2 is no longer
a major concern.
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— First, one has to take into account the dimension of MD2. The produced
hashed values have length only 128 bits. Therefore birthday paradox attacks
have complexity of the order of 264. This is not a satisfying level of security for
modern applications. As an example, the MD5 hash function (whose output
have also a length of 128 bits) is actually the subject of a distributed attack to
find collisions [8]. It is clear that the interest of finding complicated shortcut
attacks diminishes when efficient attacks using a large computational power
are possible [18].

— Secondly, MD2 is no longer widely used in practice. For instance, in MAC or
signatures, the collision resistance of a hash function is generally a require-
ment, but MD2 is no longer recommended for such applications. However,
as we mentioned previously, MD?2 is still used in some certificates. In this
context, collision resistance is not really a concern but preimage and second
preimage resistance are required.

4 Preimage Attacks against MD2 Compression Function

A large variety of definitions for preimage and second preimage attacks exist in
the literature, depending on what is a fixed challenge for the attacker and what
can be freely chosen. A classical reference is [9], however a new classification of
these notions has been recently given in [13].

In this section, we focus only on (preimage) attacks against the compression
function of MD2. Tt is well known that these attacks can generally be extended
to attacks against the whole hash (see [9]).

4.1 Three Scenarios

According to the previous notations, the compression function F' operates by :
H;11 = F(H;, M;)

where the H;’s are intermediate hash values and M, is a message block (see
Section 2.2). Basically we can consider 3 attack scenarios at this point :

1. H;y1 and H; are given and the attacker must find an appropriate M;.
2. H;y1 and M; are given and the attacker must find an appropriate H;.
3. H;y, is given and the attacker must find appropriate H; and M,.

Any of these attacks may be of interest to attack the whole hash. Obviously,
the 1st and 2nd attack are very similar because the roles of H; and M; in F' are
almost symmetric.

These 3 attack scenarios have received different names in the literature. Re-
cently the names “aPre” (“a” stands for “always”), “ePre” (“¢” stands for “every-
where”) and “Pre” have been given to these 3 notions [13]. In [9], the terminology
of “preimage resistance” and “pseudo-preimage resistance” is used. In the follow-
ing sections, we envisage each scenario separately and propose new attacks.
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4.2 Attacking Scenario 1

In this scenario, we suppose that H; and H,;; are a fixed challenge and our goal
is to find an appropriate M; such that

Hiyy = F(H;, M;)

First, we notice that a solution does not necessarily exist. Indeed all variables
have length 128 bits, so in average only one solution M; is expected, but there is
no guarantee. We propose an attack that recovers all solutions corresponding to a
given challenge (H;, H;+1). Basically our attack is a sophisticated combination of
exhaustive search and meet-in-the-middle attacks. It proceeds with two distinct
steps. In the following, we call (my,...,m15) the 16 bytes of M.

First Step The first step of the attack is to derive all possible information from
the challenge (H;, H;11). These two objects are stored at the first and last row
of matrix A (see Figure 4 where dashed cells correspond to the known bytes).

Fig. 4. Initial knowledge when H;; and H; are fixed

Because of the structure of ¢ (this function is used to compute the contents
of the matrices, see Section 2.2), more information can be derived directly from
the challenge. For instance, when A! | and A! are known, we can obtain A’
since :

Af = (A AL
= A e s(Al )

In Figure 5, we represented by dashed boxes the large portion of A that can be
directly derived this way. The second row is known because the byte introduced
on the left hand side is known and always equal to 0.

In addition, if we guess the byte introduced on the left hand side of
the 3rd row in A (i.e. Ci; + 1), then we can derive the full content of matrix
A by similar considerations. In particular the bytes A%.’s are known, and also
the bytes C}5’s for i > 0.

Second Step Then, the second step of the attack is to perform a meet-in-
the-middle attack on the matrices B and C to find an appropriate value of M,;.
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Fig. 5. Known values in the matrix A

Basically at this point, we know what enters on the left hand side of B and what
exits on the right hand side of C. Hence, we apply the following “meet-in-the-
middle” algorithm :

— Guess the 4 bytes (Bi;, ..., Bis)

o for all values of the 8 bytes (mq,...,mz7),

* compute the 4 bytes (B3,..., B7) (this is possible because the se-
quence of A%.’s is known)

* compute the 4 bytes (C1,...,C%) (this is possible because H; is
known)

* store these 4 4+ 4 = 8 bytes in a table T}

e sort 77 (which has 24 entries of 64 bits each)

e Repeat the same process with (ms, ..., m15) to obtain a table Ty that
contains also the bytes (B2,..., B3,C}, ..., C?).

e Find all collisions between 77 and T5. This can be done efficiently by
computing the joint product T = T; <1 T5 (see [19]) with complexity of
the order of 264

o The resulting table T’ contains on average 25 candidate values for M; =
(mo, ce ,m15)

e Loop over all these candidates to find all valid M;’s

One can also refer to Figure 6 for the general philosophy of this attack. Dashed
boxes represent the 8 bytes stored in tables 77 and T, where we look for colli-
sions.

Analysis In this attack, there are two outside loops. A loop of size 28 comes
from the First Step of the attack (we need to guess one byte in order to find
the full content of A). Besides an outside loop of length 232 is required in the
“meet-in-the-middle” algorithm. Inside these loops we need to create and to sort
the tables 71 and T5. Those are tables with 254 entrees, sorted using a key of 64
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known initial guess known
value (32 bits) vaue

Fig. 6. The general philosophy of the attack

bits. Sorting the tables can be done efficiently with an appropriate “bucket-sort”
algorithm so the cost is above 24 instructions. Creating the tables has also a
cost of the order of 264 instructions. Since these two operations are performed
twice (once for T) and once for T»), the complexity is of the order of

Complexity = 2% x 232 x (4 x 204) = 2106

basic instructions. This corresponds approximatively to 2°° applications of the

compression function (a quick estimation shows that about 2!! instructions are
needed for the compression function).

This should be compared to the complexity of an exhaustive search to find a
preimage which would cost 2'2® applications of the compression function. How-
ever, our attack requires about 27! bits of memory. High memory requirements
are known to increase the “real” cost of attacks [20]. Nevertheless this complex-
ity is of the order of 2°"/* while 2" would be expected for a good compression
function on n bits. An improved attack is also proposed in Appendix A to reduce
these memory requirements. Further improvements have been investigated but
no attack with complexity below 23"/4 was found.

4.3 Attacking Scenario 2

In the second scenario, the message block M; is fixed and we search an appro-
priate H;. Attacking this scenario is very similar to attacking scenario 1 because
there is an important symmetry in the compression function.

In the previous attack we managed to reconstruct the content of A from the
initial challenge, and then applied a “meet-in-the-middle” attack to B and C. In
Scenario 2, we can reconstruct the content of B from the challenge (M;, H; 1)
and then attack by the middle the matrices A and C. Details of this attack are
not very helpful to break the full MD2 hash, so we decided not to explore further
this scenario.

4.4 Attacking Scenario 3

Finally, we suppose that only H;; is fixed, and the problem is to find any pair
(H;, M;) solution of the equation

Hiy = F(H;, M;)
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This type of attack is often referred to as a pseudo-preimage attack on the
compression function [9]. Of course, it is easier to find such a solution because
we have more degrees of freedom. Therefore we wish to find an attack with
complexity better than the previous 2°°. In this section, we describe an attack
with complexity of the order of 27 against this scenario.

The Attack First, one should notice that many solutions exist to this problem.

Indeed, we expect
9128y, 9128

9128 =21
solutions in average. Therefore it is reasonable to impose some additional con-
straints.

Like for the previous attacks, we first derive all possible information from
the given challenge (H;+1 here). In addition, we impose the constraint that
Al; = A3; = c, where c is some constant, say ¢ = 0 for instance. Figure 7
represents the resulting known values in the matrix A.

Fig. 7. Known values in the matrix A

We observe that the complete rightmost column of A is known, which helps
when considering the behavior of matrix B. At this point, a 6 bytes constant
(ko, ..., ks) is chosen at random. Then we apply the following algorithm :

— Pick 27 messages M; of the form
M; = (m()v"'amgvk()v"'akf))

where the m;’s are chosen at random. It is straightforward to compute the
matrix B for each M; since the rightmost column of A is known. Hence we
build a table T (with 27? entries) where we store the rightmost column of
B, i.e. the Bi.’s.
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— Pick 2% intermediate hashes H; of the form

'7k5)

where the h;’s are chosen at random!. It is straightforward to compute the

complete matrix A for each H;. Therefore all values Ciy for i > 0 are also

known. Besides

.y ho, ko, ..

H; = (ho, ..

.,k5@k5)

.k ko @ ko, ..

Hi@MiZ(*,..

thus the 6 rightmost boxes of the first row of C are known and equal to O.

Hence a lot of information about C can be derived (see Figure 8). By the

o)
)
)
)
)
wH i)
i,
)
)
)
i)
I,
)
)
)
V),

\\\\\\\\\\\\\\\

Fig. 8. Known values in the matrix C

way, the bytes Bi; for 11 < i < 17 are also known at this point. We store

these elements in a table T".

The final step of the attack is to find collisions on the objects of 56 bits

., Bif)

(Bis. -

that have been computed by two different means and stored in tables T and T".

Using the birthday paradox, we expect 280 collisions because

% 9—56 _ 980

|T| x |T'| x 2756 = 272 x 264

All these collisions can be found efficiently by computing T <t 7" (see [19]). Each

, M;). In order for this pair to solve the

some pair (H;
initial problem, we need an additional equality between

collision corresponds to

A}. Thus only 1 out of 256 values
.,ho) are chosen, the value of ho is fully determined.

! Actually there is an extra constraint, that ¢(A)

of H; are valid. Once (hy,..

This induce no extra cost but must be taken into account when choosing the H;’s
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— the bytes (Bis, ..., Bi?) stored in table T'
— the value of the same bytes obtained when we fill up all the content of matrix
C (which is possible for each candidate since H; ® M; is now known).

Hence a little extra processing is required to find a real solution and a condition
on 80 bits must be verified. However, we have 2%° candidates from the joint
product of T and 7" so one “real” solution should be found among them. The
probability of failure (i.e. that no solution exists) can be roughly approximated
to é ~ 0.368. Otherwise, we can pick a little more candidates for M; and H; or
choose other constants.

Analysis The bottleneck in the previous attack is the time spent analyzing each
of the 280 candidates (H;, M;). However, using an “early-abort” strategy, most
candidates can be eliminated after the first check for the value Bj;. Therefore,
only half a row of matrix C must be computed in average. To compute the
compression function, 3 x 18 = 54 rows are computed. So we have a speedup by

a factor
2 x 54 ~ 26:75

compared to a full computation of F.

Therefore this pseudo-preimage attack has complexity of about com-
putations of the compression function, and requires about 27® bits of memory.
This is much faster than the expected value of 2'28. All attacks against the
compression function are summarized in Table 1.

273.25

Attack |Fixed Challenge| Variable |Time|Memory
Simple Hi+1 and Hi Mi 295 271
Improved Hiy1 and H; M; 29 238
Pseudo-Preimage Hipq H; and M;| 27 278

Table 1. Summary of the attacks against the compression function

5 Preimage Attacks for the Full MD2 Hash

The objective of a preimage attack is, for a given challenge h, to find a message
m such that hashing m with MD2 gives h :

MD2(m) = h

Classical techniques exist to turn attacks against the compression function into
attacks against the full hash. However they apply to classical iterated hash func-
tions, like those based on the Merkle-Damgard paradigm. The use of an addi-
tional checksum in MD2 make things slightly more complicated.
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5.1 Attacking MD2 without the checksum

If we omit the checksum, it is straightforward to apply the previous attacks
directly to MD2. For instance, the attack described in Section 4.2 is immediately
useful. Indeed, for a given (H;, H;1+1), we are able to find M; such that :

Hiy = F(H;, M;)

faster than exhaustive search. If we take H; = 0 (i.e. the IV of the MD2 spec-
ifications) and H;y1 = h (the target value), the message of 1 block m = M;
basically solves the preimage problem (some extra work might be necessary to
ensure the padding is correct). Anyway, this clearly no longer works when the
checksum block is appended at the end.

Preimage attacks against the full hash can also be found based on a pseudo-
preimage attack (like the one described in Section 4.4, with complexity 273). For
instance, a general meet-in-the-middle technique is :

— Pick 2% random values of the first block of message M;, and store all
intermediate hashes H; in a table Tj.

— Apply 228 times the pseudo-preimage attack and, for each solution (Hz, M>),
store the intermediate hash H» in a table T5.

— Search for a collision between some H; in table T} and some Hs in table T5.
The corresponding message m = (M7, M) is a solution.

Since 2100 x 228 = 2128 4 collision is indeed expected. Hence this attack builds
a solution m of length two blocks and has complexity of the order of 2'°!, which
is faster than exhaustive search. However when the checksum is used, this input
message is likely to be invalid. Indeed, we need a collision on the intermediate
hash values and the intermediate checksums simultaneously.

5.2 A Chaining Attack

The principle of chaining attacks is to iterate an attack against the compression
function, while chaining the intermediate variables used in each attack. Here, we
first choose at random a sequence of intermediate hashes of the form :

0=Hy,Hy,...,Hy27,Hi2s = h

For each pair (H;, H;1+1), we apply the attack of Section 4.2 to find all solutions
of :

Hiy = F(H;, M;)
A constraint we add is that at least two solutions M; and M/ must be found, for
all . Assuming F' is a random function, this should happen with a reasonable
probability (called p). It can roughly be approximated by 1 minus the probability
to have exactly 0 or 1 solution :

2128

~ 1 (1 _o—128\2'28_1 o 5128
p~1—(1-2 ) (1-2 )
~1-—2¢!

~ 0.264
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If there are less than 2 solutions, we throw away H;.1 and pick another value.
In average, we need to apply 128 x p~! ~ 29 times the attack of Section 4.2 to
find an appropriate pair of solutions (M;, M) for all 1.

Then, we have 2128 possible messages that are solution of the preimage prob-
lem for MD2 with challenge h (there are 2 possible blocks of message for all 7).
Among them, one of the message is likely to satisfy the checksum constraint, i.e.
its last block should be the checksum of the 127 previous blocks. To find this
message, a simple meet-in-the-middle attack applies :

— Compute the 2%¢ intermediate checksums ICg4 by testing the two possible
blocks of message at all positions 7,0 < i < 63.

— Compute the 2% intermediate checksums ICg4 by inverting the checksum
function G, starting for both values M7 and Mj,,, and for all blocks of
message at positions 7,64 <7 < 127.

— Search for a collision between these 2 lists of 264 elements

This technique is similar to the one used in [6]. The resulting attack against
the full hash is only marginally slower than the attack against the compression
function, since the deterioration corresponds to a factor 2°. Therefore it will
cost about 2% x 29 = 2194 gpplications of the compression function. In addi-
tion, a memory of 27! bits is required (or 2% using the improved algorithm of
Appendix A). This is much faster than a naive exhaustive search.

6 Second Preimage Attacks

A second preimage attack consists, on the challenge of a message m, to provide
a second message m’ which gives the same MD2 hash :

MD2(m) = MD2(m/’)

The resistance of MD2 against this type of attack is critical for the security of
existing certificates. Indeed a certificate generally consists in a data part m and
a signature of the data part. To compute this signature, a hash of the data part
is generally computed. If an attacker is able to replace m with an other data
part m’ mapping to the same hash, he is able to forge a new certificate.

If we omit the checksum blocks for MD2, it is straightforward to find a second
preimage, based on the previous attacks. For any of the intermediate steps

Hiy = F(H;, M;)

in the original message m, we apply the attack described in Section 4.2. With
probability p ~ 0.26, another message block M/, mapping H; to H;41 is found.
Then we can simply substitute M/ to M; to forge a new certificate.

Unfortunately, when the checksum is used, this attack no longer works be-
cause the checksum is altered by the previous substitution. Therefore the last
block of message is no longer valid.



225

We could not find a dedicated second preimage attack against the full MD2,
including the checksum bytes. An attack is still possible by applying a preimage
attack on h = MD2(m). The result m’ is a preimage of h and is very likely to
be different from m. Unfortunately m’ is very constrained :

— its length is at least 128 blocks (including the checksum block), so the mes-
sage m' is of length > 2 Kbytes. Some variants of the attack can increase
this message length but it is not possible to reduce it. This is slightly larger
than a typical certificate, however a trade-off between the size of the forged
certificate and the probability of success could also be envisaged.

— at least 128 blocks in the forged certificates are random and therefore cannot
be chosen by the attacker.

All together, it seems difficult for the moment to forge new certificates that
respect the required format. However we are not far from it and we think it
is an interesting topic for further research. We encourage a deeper analysis of
the MD2 hash function whose security, especially regarding (second) preimage
attacks is important for many existing certificates.

7 Conclusion

In this paper, we described preimage and pseudo-preimage attacks against the
compression function of MD2, the best of which has complexity 273. The re-
sulting attack against the full hash (including the checksum) costs about 2104
applications of the compression function. As a consequence, MD2 can no longer
be considered a secure one-way hash function.

These results are also very interesting from a theoretical point of view, be-
cause preimage attacks against hash functions are quite rare. Most of the research
in recent years has focused on finding collisions for hash functions.
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A A memory-efficient Attack

The attack described in Section 4.2 is much faster than an exhaustive search,
however the large memory requirements make it highly unpractical and prob-
ably contributes to under-estimate the “real” complexity. Here, we propose an
improved attack regarding the data complexity.

The general idea of the attack of Section 4.2 is to split the target M; in
two halves (mo, ..., m7) and (ms, ..., m15) of 64 bits each. The improved attack
consists in splitting )M, in 4 parts instead of 2 using the following algorithm :

— Guess the 6 bytes {(B3}, B2), (Bi;, B%), (C:,C%)}
e guess the 4 bytes mg,...,ms
* compute and store in table T} the bytes B, B3,Ci,C3
e guess the 4 bytes my,...,mr
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* compute and store in table T» the bytes B3, B2, Ci, C3

e guess the 4 bytes mg, ..., m11
* compute and store in table T3 the bytes Bi,, B?,C1,,C?,
e guess the 4 bytes mis,...,my5

% compute and store in table T the bytes B}, B?,Cl,,C%
Compute the joint product T = Ty 1 T of size 232. It contains candidate
values for (mg,...,my).

Compute the joint product T’ = T3 1 Ty of size 232. It contains candi-
date values for (ms,...,ms).
Guess 2 additional bytes B}; and By

* For each element of 7' compute the 4 bytes B, B}, C2, C#

x Compute similarly these 4 bytes for each element of T”

* Search for a collision in the two resulting lists.

e This results in a list of 232 candidates for (my, ..., m1s).

This slightly more complex attack has complexity of the order of
28 x 248 X 216 X 232 ~ 2104
instructions, like previously. However the largest tables we handle have 232 en-

tries of 32 bits. The philosophy of this improved attack is described in Figure 9.

known initial guess initial guess initial guess known
value (16 hits) (16 hits) (16 bits) value

moO,...m3 § m4,..,m7 m8,..,m11 § mi2,..m15 mO,...m3 § m4,...m7 m8,..,m11 § mi12,..,m15

H mo0,..,m7 o § P m8,..,m15 H mo0,..,m7 o § P m8,..,m15 H
N N

second guess
(16 hits)

Fig. 9. The general philosophy of the improved attack



