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Abstract. We consider the problem of increasing the threshold param-
eter of a secret-sharing scheme after the setup (share distribution) phase,
without further communication between the dealer and the sharehold-
ers. Previous solutions to this problem require one to start off with a
non-standard scheme designed specifically for this purpose, or to have
communication between shareholders. In contrast, we show how to in-
crease the threshold parameter of the standard Shamir secret-sharing
scheme without communication between the shareholders. Our technique
can thus be applied to existing Shamir schemes even if they were set up
without consideration to future threshold increases.
Our method is a new positive cryptographic application for lattice reduc-
tion algorithms, inspired by recent work on lattice-based list decoding of
Reed-Solomon codes with noise bounded in the Lee norm. We use fun-
damental results from the theory of lattices (Geometry of Numbers) to
prove quantitative statements about the information-theoretic security
of our construction. These lattice-based security proof techniques may
be of independent interest.

Keywords: Shamir secret-sharing, changeable threshold, lattice reduc-
tion, geometry of numbers

1 Introduction

Background. A (t, n)-threshold secret-sharing scheme is a fundamental crypto-
graphic scheme, which allows a dealer owning a secret to distribute this secret
among a group of n shareholders in such a way that any t shareholders can
reconstruct the secret, but no subset of less than t shareholders can gain infor-
mation on the secret. Classical constructions for (t, n) secret-sharing schemes
include the polynomial-based Shamir scheme [18] and the integer-based Chinese
Remainder Theorem (CRT) scheme [2].

A common application for (t, n) secret-sharing schemes is for achieving ro-
bustness of distributed security systems. A distributed system is called robust
if system security is maintained even against an attacker who manages to break
into/eavesdrop up to a certain number of components of the distributed system.
For example, access control to a system can be enforced using a secret shared
among n system servers using a (t, n)-threshold secret-sharing scheme, while
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maintaining security if less than t servers are compromised. In such applica-
tions, the threshold parameter t must be determined by a security policy, based
on an assessment which is a compromise between the value of the protected sys-
tem and attacker capabilities on the one hand (which require as high a threshold
as possible) and user convenience and cost on the other hand (which require as
low a threshold as possible). In many settings, the system value and attacker
capabilities are likely to change over time, thus requiring the security policy
and hence threshold parameter t to vary over time. In particular, an increase
in system value or attacker capabilities after the initial setup with a relatively
low threshold parameter t, will require an increase in the threshold parameter
to a higher value t′ > t. The longer the lifetime of the system, the more likely
that such a change will be needed. Note that we assume that shareholders will
cooperate honestly in making the transition to the larger threshold t′ > t, since
the attacker in our setting is an outsider.

Previous Solutions. A trivial solution to the problem of increasing the thresh-
old parameter of a (t, n)-threshold secret-sharing scheme to t′ > t is for the share-
holders to discard their old shares and for the dealer to distribute new shares of
a (t′, n) secret-sharing scheme to all shareholders. However, this solution is not
very attractive, since it requires the dealer to be involved after the setup stage
and moreover requires communication between the dealer and each shareholder
(such communication may be difficult to establish after the initial setup stage).

A much better solution would allow the threshold to be changed at any time
without any communication between the dealer and shareholders after the setup
stage. We say that such schemes allow dealer-free threshold changeability. A
trivial dealer-free threshold changeable scheme can be constructed as follows:
the dealer initially sets up n − t + 1 threshold schemes for each possible future
threshold t′ ∈ {t, t + 1, . . . , n}, and gives to each shareholder n − t + 1 shares
of the secret. Namely, for each t′ ∈ {t, . . . , n}, the shareholder receives a share
of the secret for a (t′, n)-threshold scheme. Such a trivial scheme may not be
applicable because of the following drawbacks:

(1) Non-Standard Initial Scheme: The dealer must plan ahead for future thresh-
old increases by initially setting up a non-standard (t, n)-threshold scheme
designed specifically for threshold-changeability, whose shares consist of n−
t+1 shares corresponding to the n−t+1 underlying (t′, n)-threshold schemes.
Hence the trivial scheme cannot be applied to increase the threshold of ex-
isting standard Shamir (t, n)-schemes which were not originally designed for
threshold changeability and in which each shareholder has only a single share
of one Shamir (t, n)-scheme.

(2) Large Storage/Communication Requirements for Shareholders: Each share-
holder must receive and store n − t + 1 shares, where each share is as long
as the secret (assuming that perfect security is desired). Hence the trivial
scheme cannot be applied when storage or communication costs for n− t+1
shares are prohibitive.

Other ‘dealer-free’ solutions to the threshold increase problem have been
proposed in the literature (see related work below), but they all suffer from at
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least one of the two drawbacks above, or they require communication between
the shareholders.

Our Contributions. In this paper, we present a new method for increasing
the threshold of the standard Shamir (t, n)-threshold secret-sharing scheme[18],
which does not have any of the drawbacks discussed above. In particular, and
in contrast to previous solutions, our method does not require communication
between the dealer and shareholders after the initial setup stage nor between
shareholders, and can be applied to existing Shamir schemes even if they were
set up without consideration to future threshold increase. Storage and commu-
nication costs are the same as for the standard Shamir scheme.

The basic idea of our method is the following: to increase the threshold from
t to t′ > t, the shareholders add an appropriate amount of random noise to
their shares (or delete a certain fraction of the bits of their share) to compute
subshares which contain partial information about (e.g. half the most-significant
bits of) the original shares. Since the subshares contain only partial information
about the original shares, a set of t subshares may no longer be sufficient to
reconstruct the secret uniquely, but if one observes a sufficiently larger number
t′ > t of subshares then one can expect the secret to be uniquely determined by
these t′ subshares (e.g. if the subshares contain only half the information in the
original shares then one can expect that t′ = 2t subshares will uniquely determine
the secret)1. By replacing the share combiner algorithm of the original (t, n)-
threshold secret-sharing with an appropriate ‘error-correction’ algorithm which
can uniquely recover the secret from any t′ subshares, we obtain the desired
threshold increase from t to t′, leaving the secret unchanged.

Our efficient ‘error-correction’ combiner algorithm for the Shamir secret-
sharing scheme is constructed using lattice basis reduction techniques. Thus,
our method is a new positive cryptographic application for lattice reduction
algorithms. Furthermore, we make use of fundamental tools from the theory
of lattices (Geometry of Numbers) to prove quantitative statements about the
information-theoretic security and correctness of our construction. These lattice-
based security proof techniques may be of independent interest.

Although our threshold-increase method does not yield a perfect (t′, n) secret-
sharing scheme, we obtain a useful result about the information-theoretic secu-
rity of our method, which we believe suffices for many applications. Roughly
speaking, we prove that for any desired ε > 0, our method can be used to change
the threshold to t′ > t (meaning that any t′ subshares can be used to recover
the secret) such that any ts < t′ − (t′/t) observed subshares leak to the attacker
at most a fraction ε of the entropy of the secret, where ε can be made as small
as we wish by an appropriate choice of security parameter.

Interestingly, our lattice-based methods can be adapted also to change the
threshold of the standard integer-based Chinese Remainder Theorem (CRT)

1 We remark that this intuitive reasoning is not rigorous, and indeed there exist ex-
amples for which it is incorrect. However, our results show that it is approximately
true for the Shamir scheme.
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secret-sharing scheme[2]. We provide full details of this result in a companion
paper [22].

Related Work. Several approaches to changing the parameters of a threshold
scheme in the absence of the dealer have been proposed in the literature. The
technique of secret redistribution[5, 16] involves communication among the share-
holders to ‘redistribute’ the secret with the a threshold parameter. Although this
technique can be applied to standard secret-sharing schemes, its disadvantage is
the need for secure channels for communication between shareholders. Methods
for changing threshold which do not require secure channels have been studied
in [4, 14, 15, 13], but they all require the initial secret-sharing scheme to be a
non-standard one, specially designed for threshold increase (as a simple example
of such a non-standard scheme, the dealer could provide each shareholder with
two shares of the secret: one share for a (t, n) scheme and one share for a (t′, n)
scheme).

Our scheme uses a lattice-based ‘error-correction’ algorithm which is a slight
variant of an algorithm for ‘Noisy Polynomial Approximation’ with noise bounded
in the Lee norm [20]. This algorithm in turn is one of a large of body of recent
work on ‘list decoding’ of Reed-Solomon and Chinese Remainder codes [9, 19, 6,
21]. We remark also that although the correctness proof of our scheme is based
on the work of [20], our security proof is new and the lattice-based techniques
used may be of independent interest.

Organization of This Paper. Section 2 presents notations, known results on
lattices, and a counting lemma that we use. In Section 3, we provide definitions
of changeable-threshold secret-sharing schemes and their correctness/security
notions. In Section 4 we present the original Shamir (t, n)-threshold secret shar-
ing scheme, and our threshold-changing algorithms to increase the threshold to
t′ > t. We then provide concrete proofs of the correctness and security proper-
ties of our scheme. Section 5 concludes the paper. Due to page limitations, some
proofs have been omitted. They are included in the full version of this paper,
available on the authors’ web page.

2 Preliminaries

2.1 Notation

Vectors and Polynomials. For a vector v ∈ IRn, we write v = (v[0], . . . ,v[n−1]),
where, for i = 0, . . . , n − 1, v[i] denotes the ith coordinate of v. Similarly for
a polynomial a(x) = a[0] + a[1]x + . . . + a[t − 1]xt−1, we let a[i] denote the
coefficient of xi. For a ring R, we denote the set of all polynomial of degree at
most t with coefficients in the ring R by R[x; t].

Lee and Infinity Norm. For a prime p and an integer z we denote Lee norm
of z modulo p as ‖z‖L,p = mink∈ZZ |z − kp|. Similarly, for a vector v ∈ ZZ

n, we
define the Lee norm of v modulo p by ‖v‖L,p = max0≤i≤n−1 ‖v[i]‖L,p. For a
vector z = (z1, . . . , zn) ∈ IRn, we denote the infinity norm of z by ‖z‖∞ =
max1≤i≤n |zi|. For integers a and p, we denote a mod p by bacp. For real z we
define Int(z) = dze − 1 as the largest integer strictly less than z.
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Sets. For a set S, we denote by #S the size of S. For any set S and integer
n, we denote by Sn the set of all n-tuples of elements from S and by D(Sn) the
set of all n-tuples of distinct elements from S. For integer n, we denote by [n]
the set {1, 2, . . . , n}.

Entropy. We denote by log(.) the logarithm function with base 2. For a
discrete random variable s with probability distribution Ps(.) on a set S, we
denote by H(s ∈ S) =

∑
x∈S Ps(x) log(1/Ps(x)) the Shannon entropy of s. Let

t be any other random variable on a set T , and let u denote any element of T .
Let Ps(.|u) denote the conditional probability distribution of s given the event
t = u. We denote by H(s ∈ S|u) =

∑
x∈S Ps(x|u) log(1/Ps(x|u)) the conditional

entropy of s given the event t = u.

2.2 Lattices

Here we collect several known results that we use about lattices, which can be
found in [8, 10, 7]. Let {b1, . . . ,bn} be a set of n linearly independent vectors in
IRn. The set

L = {z: z = c1b1 + . . . + cnbn, c1, . . . , cn ∈ ZZ}

is called an n-dimensional (full-rank) lattice with basis {b1, . . . ,bn}. Given a
basis B = (b1, . . . ,bn) ∈ IRn for a lattice L, we define the associated basis
matrix ML,B to be the (full-rank) n × n matrix whose ith row is the ith basis
vector bi for i = 1, . . . , n. The quantity | det(ML,B)| is independent of B. It is
called the determinant of the lattice L and denoted by det(L).

Given a basis for lattice L, the problem of finding a shortest non-zero vector in
L is known as the shortest vector problem, or SVP. An algorithm is called an SVP
approximation algorithm with ‖·‖∞-approximation factor γSV P if it is guaranteed
to find a non-zero lattice vector c such that ‖c‖∞ ≤ γSV P minv∈L\0 ‖v‖∞.
The celebrated LLL algorithm of Lenstra, Lenstra and Lovász [12] is a fully
polynomial time SVP approximation algorithm with ‖·‖∞-approximation factor
γLLL = n1/22n/2. Also, as shown in[1, 11], there exists an SVP approximation
algorithm with ‖ · ‖∞-approximation factor γex = n1/2 which polynomial time
in the size of elements of McL but not in dimension of L.

In this paper we actually need to solve a variation of SVP called the closest
vector problem (CVP): given a basis of a lattice L in IRn and a “target” vector t ∈
IRn, find a lattice vector c such that ‖c−t‖∞ is minimized. An algorithm is called
a CVP approximation algorithm with ‖ · ‖∞-approximation factor γCV P if it is
guaranteed to find a lattice vector c such that ‖c−t‖∞ ≤ γCV P minv∈L ‖v−t‖∞.
Babai[3] has shown how to convert the LLL algorithm into a fully polynomial
CVP approximation algorithm with ‖·‖∞-approximation factor γBab = n1/22n/2.

In our proof of security we use several fundamental theorems from the theory
of lattices (‘Geometry of Numbers’). The original theorems are quite general, but
the restricted versions stated below suffice for our purposes. First, we need the
following definition of successive Minkowski minima of a lattice.
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Definition 1 (Minkowski Minima). Let L be a lattice in IRn. For i = 1, . . . , n,
the ith succesive Minkowski minimum of L, denoted λi(L), is the smallest real
number such that there exists a set {b1, . . . ,bi} of i linearly-independent vectors
in L with ‖bj‖∞ ≤ λi(L) for all j = 1, . . . , i.

Note that λ1(L) is just the shortest infinity-norm over all non-zero vectors in L.
Next, we state Minkowski’s ‘first theorem’ in the geometry of numbers.

Theorem 1 (Minkowski’s First Theorem). Let L be a lattice in IRn and
let λ1(L) denote the first Minkowski minimum of L (see Def. 1). Then λ1(L) ≤

det(L)
1
n .

We will use the following point-counting variant of Minkowski’s ‘first theo-
rem’, which is due to Blichfeldt and van der Corput(see [8]).

Theorem 2 (Blichfeldt-Corput). Let L be a lattice in IRn and let K denote
the origin-centered box {v ∈ IRn : ‖v‖∞ < H} of volume V ol(K) = (2H)n.
Then the number of points of the lattice L contained in the box K is at least

2 · Int
(

V ol(K)
2n det(L)

)
+ 1, where for any z ∈ IR, Int(z) denotes the largest integer

which is strictly less than z.

Finally, we will also make use of Minkowski’s ‘second theorem’ [8].

Theorem 3 (Minkowski’s Second Theorem). Let L be a full-rank lattice
in IRn and let λ1(L),. . . ,λn(L) denote the n Minkowski minima of L (see Defi-
nition 1). Then λ1(L) · · ·λn(L) ≤ 2n det(L).

2.3 An Algebraic Counting Lemma

The following is a fundamental lemma that we use, interestingly, for both the
correctness and security proofs of our construction. Fix a prime p defining the
finite field ZZp, positive integer parameters (n̂, t̂, Ĥ), and an arbitrary set Â of
polynomials of degree at least 1 and at most t̂ over ZZp. The lemma gives us an
upper bound on the probability that, for n̂ randomly chosen elements α1, . . . , αn̂

of ZZp, there will exist a polynomial a(x) ∈ Â which has ‘small’ absolute value

modulo p (less than Ĥ) at all the points α1, . . . , αn̂
. We remark that a similar

(and more general) lemma was used in the analysis of a polynomial approxima-
tion algorithm [20]. Note that the lemma does not hold in general if we allow

Â to contain constant polynomials, since these polynomials may have constant
coefficient smaller than Ĥ .

Lemma 1. Fix a prime p, positive integers (n̂, t̂, Ĥ), and a non-empty set Â
of polynomials of degree at least 1 and at most t̂ with coefficients in ZZp. Let

E(n̂, t̂, Ĥ, Â) ⊆ ZZ
n̂
p denote the set of vectors α = (α1, . . . , αn̂

) ∈ ZZ
n̂
p for which

there exists a polynomial a ∈ Â such that ‖a(αi)‖L,p < Ĥ for all i = 1, . . . , n̂.

The size of the set E(n̂, t̂, Ĥ, Â) is upper bounded as follows:

#E(n̂, t̂, Ĥ, Â) ≤ #Â · (2Ĥt̂)n̂.
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Proof. Suppose that α = (α1, . . . , αn̂
) ∈ ZZ

n̂
p is such that there exists a polyno-

mial a ∈ Â such that

‖a(αi)‖L,p < Ĥ for i = 1, . . . , n̂. (1)

It follows that there exist n̂ integers r1, . . . , rn̂
such that, for each i = 1, . . . , n̂,

we have a(αi) − ri ≡ 0 (mod p) with |ri| < Ĥ and hence αi is a zero of the
polynomial gi(x) = a(x)−ri over ZZp. But for each i, gi is a polynomial of degree
at least 1 and at most t̂ over ZZp and hence has at most t̂ zeros in ZZp. So for

each possible value for (r1, . . . , rn) ∈ (−Ĥ, Ĥ)n̂ and a ∈ Â, there are at most t̂n̂

‘bad’ values for α = (α1, . . . , αn̂
) in (ZZp)

n̂ such that (1) holds. Using the fact

that there are less than (2Ĥ)n̂ possible values for (r1, . . . , rn̂
) and less than #Â

possible values for a, the claimed bound follows. ut

3 Definition of Changeable-Threshold Secret-Sharing

Schemes

We will use the following definition of a threshold secret-sharing scheme, which
is a slight modification of the definition in [17].

Definition 2 (Threshold Scheme). A (t, n)-threshold secret-sharing scheme
TSS = (GC, D, C) consists of three efficient algorithms:

1. GC (Public Parameter Generation): Takes as input a security parameter k ∈
N and returns a string x ∈ X of public parameters.

2. D (Dealer Setup): Takes as input a security/public parameter pair (k, x) and
a secret s from the secret space S(k, x) ⊆ {0, 1}k+1 and returns a list of
n shares s = (s1, . . . , sn), where si is in the ith share space Si(k, x) for
i = 1, . . . , n. We denote by

Dk,x(., .) : S(k, x) ×R(k, x) → S1(k, x) × · · · × Sn(k, x)

the mapping induced by algorithm D (here R(k, x) denotes the space of ran-
dom inputs to the probabilistic algorithm D).

3. C (Share Combiner): Takes as input a security/public parameter pair (k, x)
and any subset sI = (si : i ∈ I) of t out of the n shares, and returns a
recovered secret s ∈ S(k, x). (here I denotes a subset of [n] of size #I = t).

The correctness and security properties of a (t, n)-threshold secret-sharing
scheme can be quantified by the following definitions, which are modifications
of those in [17].

Definition 3 (Correctness, Security). A (t, n) threshold secret-sharing scheme
TSS = (GC, D, C) is said to be:
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1. δc-correct: If the secret recovery fails for a ’bad’ set of public parameters of
probability pf at most δc. Precisely, pf is the probability (over x = GC(k) ∈
X ) that there exist (s, r) ∈ S(k, x) ×R(k, x) and I ⊆ [n] with #I = t such

that Ck,x(sI) 6= s, where s = Dk,x(s, r) and sI
def
= {si : i ∈ I}.

We say that TSS is asymptotically correct if, for any δ > 0, there exists
k0 ∈ N such that TSS is δ-correct for all k > k0.

2. (ts, δs, εs)-secure with respect to the secret probability distribution Pk,x on
S(k, x): If, with probability at least 1−δs over the choice of public parameters
x = GC(k), the worst-case secret entropy loss for any ts observed shares is
at most εs, that is

|Lk,x(sI)|
def
= |H(s ∈ S(k, x)) − H(s ∈ S(k, x)|sI )| ≤ εs,

for all s ∈ S1(k, x) × · · · × Sn(k, x) and I ⊆ [n] with #I ≤ ts. We say that
TSS is asymptotically ts-secure with respect to Pk,x if, for any δ > 0 and
ε > 0 there exists k0 ∈ N such that TSS is (ts, δ, ε · k)-secure with respect to
Pk,x for all k > k0.

The following definition of the Threshold Changeability without dealer assis-
tance for a secret sharing scheme is a modification of the definition in [15].

Definition 4 (Threshold-Changeability). A (t, n)-threshold secret-sharing
scheme TSS = (GC, D, C) is called threshold-changeable to t′ with δc-correctness
and (ts, δs, εs)-security with respect to secret distribution Pk,x, if there exist n
efficient subshare generation algorithms Hi : Si(x, k) → Ti(x, k) for i = 1, . . . , n,
and an efficient subshare combiner algorithm C′ such that the modified (t′, n)-
threshold scheme TSS′ = (GC, D′, C′), with modified shares

D
′
k,x(s, r)

def
= (H1(s1), . . . , Hn(sn)) ∈ T1(k, x) × · · · Tn(k, x),

where (s1, . . . , sn) = Dk,x(s; r), is δc-correct and (ts, δs, εs)-secure with respect to
Pk,x. TSS is called asymptotically threshold-changeable to (ts, t

′) with respect
to Pk,x if there exist algorithms Hi : Si(k, x) → Ti(k, x) (i = 1, . . . , n) and C′

such that the (t′, n)-threshold scheme TSS′ defined above is asymptotically correct
and asymptotically ts-secure with respect to Pk,x.

The idea captured by the above definition is that the change of threshold
from t to t′ is implemented by getting each shareholder to replace his original
share si by the subshare Hi(si) output by the subshare generation algorithm Hi

(the original share si is then discarded).

4 Threshold-Changeability for Shamir Secret-Sharing

4.1 The Standard Shamir Scheme

The standard Shamir (t, n)-threshold secret sharing scheme is defined as follows.
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Scheme ShaTSS = (GC, D, C): Shamir (t, n)-Threshold Secret-Sharing

1. GC(k) (Public Parameter Generation):

(a) Pick a (not necessarily random) prime p ∈ [2k, 2k+1] with p > n.

(b) Pick uniformly at random n distinct non-zero elements α =
(α1, . . . , αn) ∈ D((ZZ∗

p)
n). Return x = (p, α).

2. Dk,x(s, a) (Dealer Setup): To share secret s ∈ ZZp using t − 1 uniformly
random elements a = (a1, . . . , at−1) ∈ ZZ

t−1
p , build the polynomial as,a(x) =

s+a1x+a2x
2+. . .+at−1x

t−1 ∈ ZZp[x; t−1]. The ith share is si = a(αi) mod p
for i = 1, . . . , n.

3. Ck,x(sI) (Share Combiner): To combine shares sI = (si : i ∈ I) for some I ⊆
[n] with #I = t, compute by Lagrange interpolation the unique polynomial
b ∈ ZZp[x; t − 1] such that b(αi) ≡ si (mod p) for all i ∈ I . The recovered
secret is s = b(0) mod p.

4.2 Threshold-Changing Algorithms

Our threshold-changing subshare generation and combiner algorithms to change
the (t, n)-threshold scheme ShaTSS = (GC, D, C) into a (t′, n)-threshold scheme
ShaTSS′ = (GC, D′, C′) are defined as follows. Note that the subshare combiner
algorithm uses an efficient CVP approximation algorithm ACVP with ‖ · ‖∞-
approximation factor γCV P . We define ΓCV P = log(dγCV P + 1e) (if we use the
Babai poly-time CVP algorithm, we have ΓCV P ≤ 1 + 0.5(t′ + t + log(t′ + t))).

Scheme ShaTSS′: Changing Threshold to t′ > t

1. Hi(si) (ith Subshare Generation): To transform share si ∈ ZZp of original
(t, n)-threshold scheme into subshare ti ∈ ZZp of desired (t′, n)-threshold
scheme (t′ > t) the ith shareholder does the following (for all i = 1, . . . , n):

(a) Determine noise bound H which guarantees δc-correctness (typically, we
set δc = k−t′):

i. Set H = max(bpα/2c, 1) with
ii. α = 1 − 1+δF

(t′/t) > 0 (noise bitlength fraction) and

iii. δF = (t′/t)
k

(
log(δ

−1/t′

c nt) + ΓCV P + 1
)
.

(b) Compute ti = αi · si + ri mod p for a uniformly random integer ri with
|ri| < H .

2. C′
k,x(tI) (Subshare Combiner): To combine subshares tI = (ti : i ∈ I) for

some I = {i[1], . . . , i[t′]} with #I = t′ (and guaranteed δc-correctness), do
the following:
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(a) Build the following (t′ + t)× (t′ + t) matrix MSha(αI , H, p), whose rows

form a basis for a full-rank lattice LSha(αI , H, p) in Qt′+t:

MSha(αI , H, p) =




p 0 . . . 0 0 0 . . . 0
0 p . . . 0 0 0 . . . 0
...

...
. . .

...
...

...
...

...
0 0 . . . p 0 0 . . . 0

αi[1] αi[2] . . . αi[t′] H/p 0 . . . 0
α2

i[1] α2
i[2] . . . α2

i[t′] 0 H/p . . . 0
...

...
. . .

...
...

...
. . .

...
αt

i[1] αt
i[2] . . . αt

i[t′] 0 0 . . . H/p




.

Here H = bpα/2c, α = 1− 1+δF

(t′/t) , δF = (t′/t)
k

(
log(δ

−1/t′

c nt) + ΓCV P + 1
)
.

(b) Define t′ = (ti[1], . . . , ti[t′], 0, 0, . . . , 0) ∈ ZZ
t′+t.

(c) Run CVP Approx. alg. ACVP on lattice LSha(αI , H, p)
given by MSha(αI , H, p) with target vector t′. Let c =

(c1, . . . , ct′ , ct′+1, . . . , ct′+t) ∈ Qt′+t denote the output vector returned
by ACVP, approximating the closest vector in LSha to t′.

(d) Compute the recovered secret ŝ = (p/H) · ct′+1 mod p.

Remark 1. The reason for multiplying the shares si by αi before adding the
noise ri, is that otherwise, the secret may not be uniquely recoverable from the
noisy subshares (indeed, a(αi)+ri = a(αi)+1+(ri−1), and typically |ri−1| < H ,
so secrets s and s + 1 would be indistinguishable).

Remark 2. It is not difficult to see that our method of adding a ‘small’ random
noise integer ri with |ri| < H to the share multiple αi ·si modulo p, is essentially
equivalent (in the sense of information on the secret) to passing the residues
αi · si mod p through a deterministic function which chops off the log(2H) ≈
(1− 1/(t′/t)) · k least-significant bits of the k-bit residues αi · si mod p, and this
also yields shorter subshares than in our method above. However, since reducing
the length of the original shares is not our main goal, we have chosen to present
our scheme as above since it slightly simplifies our scheme and its analysis.
Similar results can be obtained, however, for the ‘deterministic’ approach of
chopping off least-significant bits.

Remark 3. Some special variants of the Shamir scheme use special values for
the points αi, such as αi = i for i = 1, . . . , n, to which the above method does
not apply, because of its reliance on the random choice of the αi’s. However, it
turns out that our method can be modified to work even for these special Shamir
variants. The idea is to make up for the loss of randomness in the αi’s by getting
the shareholders to multiply their shares by additional random integers (say
Bi ∈ ZZp) prior to adding the random noise ri. The Bi’s are then sent along to
the combiner with the noisy subshares. We do not analyze this variant of our
scheme in this paper.
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4.3 Correctness

The following theorem shows that the choice of the parameter δF used in our
threshold changing algorithm is sufficient to guarantee the δc-correctness of our
scheme for all sufficiently large security parameters.

Theorem 4 (Correctness). The scheme ShaTSS′ (with parameter choice δc =
k−t′) is asymptotically correct. Concretely, for any choice of parameter δc (0 <
δc < 1), the (t′, n) scheme ShaTSS′ is δc-correct for all security parameters k
satisfying the inequality k ≥ k′

0, where

k′
0 =

(
t′/t

t′/t − 1

) (
log(δ−1/t′

c nt) + ΓCV P + 2
)

.

Proof. Fix a subshare subset I ⊆ [n] with #I = t′. We know by construction of
lattice LSha(αI ), that the dealer’s secret polynomial as,a(x) = s + a1x + . . . +
at−1x

t−1 ∈ ZZp[x; t − 1] gives rise to the lattice vector

a′ = (αi[1]as,a(αi[1]) − k1p, . . . , αi[t′]as,a(αi[t′]) − kt′p, (
s

p
H),

a1

p
H, . . . ,

at−1

p
H),

which is “close” to the target vector

t′ = (αi[1]as,a(αi[1]) − k1p + ri[1], . . . , αi[t′]as,a(αi[t′]) − kt′p + ri[t′], 0, 0, . . . , 0),

where kj = b
αi[j]a(αi[j])+ri[j]

p c ∈ ZZ for all j = 1, . . . , t′. In particular we have,

using |ri[j]| < H for all j = 1, . . . , t′, that ‖a′ − t′‖∞ < H . Consequently, since
ACVP is a CVP approximation algorithm with ‖.‖∞ approximation factor γCV P ,
its output lattice vector c will also be “close” to the target vector, namely we
have ‖c − t′‖∞ < γCV P · H . Applying the triangle inequality, we conclude that
the lattice vector z = c − a′ satisfies

‖z‖∞ = ‖c− a′‖∞ < (γCV P + 1)H. (2)

Now, either p
H c[t′ + 1] ≡ p

H a′[t′ + 1] ≡ s (mod p) in which case the combiner
succeeds to recover secret s, or otherwise we have the ‘bad’ case that

p

H
z[t′ + 1] =

p

H
c[t′ + 1] −

p

H
a′[t′ + 1] 6≡ 0 (mod p). (3)

Hence, for fixed I , the combiner succeeds except for a fraction δI of ‘bad’ choices
of αI ∈ D((ZZ∗

p)
t′), for which LSha(αI ) contains a ‘short’ and ’bad’ vector z

satisfying (2) and (3). To upper bound δI , consider the polynomial f(x) =
p
H z[t′+1]x+ · · ·+ p

H z[t′+ t]xt. Note that, since z ∈ LSha, we have f(αi[j]) ≡ z[j]
(mod p) and hence ‖f(αi[j])‖L,p < (γCV P + 1)H for all j ∈ [t′] using (2). Also,
f(x) mod p has zero constant coefficient and degree at least 1 and at most t over

ZZp using (3). Applying Lemma 1 (with parameters n̂ = t′,t̂ = t,Ĥ = 2ΓCV P H ,

#Â ≤ pt) we conclude that such a ‘bad’ polynomial f exists for at most a

fraction δI ≤ pt(2Ĥt)t′/#D((ZZ∗
p)

t′) of αI ∈ D((ZZ∗
p)

t′), for each fixed I . Hence,
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the probability δ that a uniformly chosen α ∈ D((ZZ∗
p)

n) is ‘bad’ for some I ⊆ [n]
with #I = t′ is upper bounded as

δ ≤

(
n
t′

)
pt(2Ĥt)t′

#D((ZZ∗
p)

t′)
, (4)

and a straightforward calculation (see full paper) shows that the right-hand side

of (4) is upper bounded by δc for all k ≥
(

t′/t
t′/t−1

)(
log(δ

−1/t′

c nt) + ΓCV P + 2
)
.

This completes the proof. ut

4.4 Security

The concrete security of our scheme is given by the following result. It shows that,
for fixed (t′, n) and with parameter choice δc = k−t′ , the (t′, n) scheme ShaTSS′

leaks at most fraction εs/k = O(log k/k) = o(1) of the entropy of the secret to
an attacker observing less than t′ − (t′/t) subshares (for all except a fraction
δs ≤ δc = o(1) of public parameters, and assuming the security parameter k is
sufficiently large).

Theorem 5 (Security). The scheme ShaTSS′ (with parameter choice δc =
k−t′) is asymptotically Int(t′ − (t′/t))-secure with respect to the uniform secret
distribution on ZZp. Concretely, for any parameter choice δc > 0, the (t′, n)
scheme ShaTSS

′ is (ts, δs, εs)-secure with:

ts =
t′ − (t′/t)

1 + (t′/t)
k

(
log(δ

−1/t′
c nt) + ΓCV P + 1

) ,

δs = δc, εs = (β + 7)(ts + t) + ts log t + 1, β =
log(2δ−1

c

(
n
ts

)
)

ts + t − 1
,

for all security parameters k ≥ k0, where, letting m = ts +t+1 and k′
0 as defined

in Theorem 4,

k0 = max

(
k′
0 +

(t′/t + 1)2

t′/t − 1
(β + log t + 3), (β + 4)m2 + 5tsm logm

)
.

Proof. (Sketch) Fix an observed subshare subset I ⊆ [n] with #I = ts. Assuming
the secret is uniformly distributed on ZZp it is easy to show (see full paper) that
the conditional probability Pk,x(s|sI) of the secret taking the value s ∈ ZZp given
that the observed sub-share vector takes the value sI is given by:

Pk,x(s|sI) =
#Ss,p(αI , t, p, H, sI)

#S0,1(αI , t, p, H, sI)
, (5)

where, for any integers ŝ ≥ 0 and p̂ ≥ 1, we define the set

S
ŝ,p̂

(αI , t, p, H, sI)
def
= {a ∈ ZZp[x; t − 1] : ‖αi[j]a(αi[j]) − si[j]‖L,p < H∀j ∈ [ts]

and a(0) ≡ ŝ (mod p̂)}.
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We will derive a probabilistic lower bound on #S0,1 and upper bound on #Ss,p

which both hold for all except a fraction δI ≤ δs/
(

n
ts

)
of ‘bad’ choices for αI ∈

D((ZZ∗
p)

ts) assuming k ≥ k0 (with ts, δs and k0 defined in the theorem statement).
We then apply these bounds to (5) to get a bound Pk,x(s|sI) ≤ 2εs/p for all s
(with εs defined in the theorem statement) so that for fixed I , entropy loss is
bounded as Lk,x(sI) ≤ εs, except for fraction δI of αI ∈ D((ZZ∗

p)
ts). It then

follows that Lk,x(sI) ≤ εs for all I ⊆ [n] with #I = ts except for a fraction
δ ≤

(
n
ts

)
δI ≤ δs of α ∈ D((ZZ∗

p)
n) assuming that k ≥ k0, which proves the

theorem.
Reduction to Lattice Point Counting. It remains to derive the desired prob-

abilistic upper and lower bounds on #S
ŝ,p̂

. The following lemma shows that

#S
ŝ,p̂

is equal to the number of points of a certain lattice LSha (closely related

to the lattice used in our subshare combiner algoritm) contained in a (ts + t)-
dimensional box of side length 2H , centered on a certain non-lattice vector ŝI .

Lemma 2. Fix positive integers (t, ts, p, H, p̂) such that p ≥ 2H and p̂ is a di-
visor of p. Let ŝ ∈ ZZ

p̂
, αI = (αi[1], . . . , αi[ts]) ∈ ZZ

n
p and sI = (si[1], . . . , si[ts]) ∈

ZZ
ts

p .Define LSha(αI , t, p, H, p̂) as the full-rank lattice in Qts+t with basis consist-
ing of the rows of the matrix

MSha(αI , t, p, H, p̂) =




p 0 . . . 0 0 0 . . . 0
0 p . . . 0 0 0 . . . 0
...

...
. . .

...
...

...
...

...
0 0 . . . p 0 0 . . . 0

p̂αi[1] p̂αi[2] . . . p̂αi[ts] 2H/(p/p̂) 0 . . . 0
α2

i[1] α2
i[2] . . . α2

i[ts] 0 2H/p . . . 0
...

...
. . .

...
...

...
. . .

...
αt

i[1] αt
i[2] . . . αt

i[ts] 0 0 . . . 2H/p




,

and define the vector ŝI ∈ Qts+t by

ŝI
def
=

(
si[1] − ŝαi[1], . . . , si[ts] − ŝαi[ts], H(1 −

1 + 2ŝ

p
), H(1 −

1

p
), . . . , H(1 −

1

p
)

)
.

Then the sizes of the following two sets are equal:

S
ŝ,p̂

(αI , t, p, H, sI)
def
= {a ∈ ZZp[x; t − 1] : ‖αi[j]a(αi[j]) − si[j]‖L,p < H∀j ∈ [ts]

and a(0) ≡ ŝ (mod p̂)},

and

V
ŝ,p̂

(αI , t, p, H, ŝI)
def
= {v ∈ LSha(αI , t, p, H, p̂) : ‖v − ŝI‖∞ < H}.

Finding a Lower Bound on #V0,1. Lower bounding the number #V0,1 of

points of the lattice LSha in a symmetric box TsI
(H)

def
= {v ∈ Qts+1 : ‖v −
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ŝI‖∞ < H} centered on vector ŝI seems a difficult ‘non-homogenous’ problem
because ŝI is in general not a lattice vector. But by ‘rounding’ ŝI to a nearby
lattice vector ŝ′I (with rounding error ε = ‖ŝ′I − ŝI‖∞), we reduce the problem
to two simpler problems: (1) The ‘homogenous’ problem of lower bounding the

number of lattice points in an origin-centered box T0

def
= {v ∈ Qts+t : ‖v‖∞ <

H − ε}, and (2) Upper bounding the largest Minkowski minimum λts+t(LSha)
of the lattice. This general reduction is stated precisely as follows.

Lemma 3. For any full-rank lattice L in IRn, vector s ∈ IRn, and H > 0, we
have

#{v ∈ L : ‖v − s‖∞ < H} ≥ #{v ∈ L : ‖v‖∞ < H − ε},

where ε = n
2 · λn(L).

To solve the ‘homogenous’ counting problem (1) above we directly apply the
Blichfeldt-Corput theorem (Theorem 2 in Sec. 2). To solve the problem (2) above
of upper bounding λts+t(LSha), we apply Minkowski’s “second theorem” (Theo-
rem 3 in Sec. 2) to reduce this problem further to the problem of lower bounding
the first Minkowski minimum λ1(LSha). Namely, since λi(LSha) ≥ λ1(LSha) for

all i ∈ [ts], then Minkowski’s second theorem gives λts+t(LSha) ≤ 2ts+t det(LSha)
λ1(LSha)ts+t−1 .

Finally, to lower bound λ1(LSha) (i.e. the infinity norm of the shortest non-zero
vector in LSha), we use a probabilistic argument based on the algebraic counting
lemma 1 (similar to the argument used in proving Theorem 4), to obtain the
following result.

Lemma 4. Fix positive integers (t, ts, p, H, p̂) and a positive real number β, such
that p ≥ max(2H, 2ts) is prime and p̂ ∈ {1, p}. For each αI ∈ D((ZZ∗

p)
ts), let

LSha(αI , p̂) denote the lattice in Qts+t with basis matrix MSha(αI , p̂) defined
in Lemma 2, and let L′

Sha(αI) denote the lattice in Qts+t−1 with basis matrix
M ′

Sha(αI) obtained from MSha(αI , p̂) by removing the (ts+1)th row and column.
In the case p̂ = 1, if

1 ≤ 2−[β+3+ ts log t

ts+t
] det (LSha(αI , 1))

1
ts+t ≤ H

then, for at least a fraction 1 − 2−β(ts+t) of αI ∈ D((ZZ∗
p)

ts) we have

λ1(LSha(αI , 1)) ≥ 2−[β+3+ ts log t

ts+t
] det(LSha(αI , 1))

1
ts+t .

In the case p̂ = p, if

1 ≤ 2−[β+3+ ts log t

ts+t−1 ] det(L′
Sha(αI))

1
ts+t−1 ≤ H

then, for at least a fraction 1 − 2−β(ts+t−1) of αI ∈ D((ZZ∗
p)

ts) we have

λ1(L
′
Sha(αI )) ≥ λ1(LSha(αI , p)) ≥ 2−[β+3+ ts log t

ts+t−1 ] det(L′
Sha(αI))

1
ts+t−1 .
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Combining the above results (for (ŝ, p̂) = (0, 1)) we obtain the desired lower
bound on #V0,1.

Finding an Upper Bound on #Vs,p. We first reduce the point counting prob-
lem in LSha(αI , p) to a point counting problem in the lower-dimensional lat-
tice L′

Sha(αI ) defined in Lemma 4. This is possible because all the vectors of
LSha(αI , p) in the desired box have their (ts + 1)th coordinate equal to 0.

Lemma 5. Let LSha(αI , p) ⊆ Qts+t and L′
Sha(αI ) ⊆ Qts+t−1 be the lattices

defined in Lemma 4, let ŝI be the vector in Qts+t defined in Lemma 2, and let ŝ′I
be the vector in Qts+t−1 obtained from ŝI by removing the (ts + 1)th coordinate.

Then #Vs,p ≤ #V ′
s,p, where Vs,p

def
= {v ∈ LSha(αI , p) : ‖v − ŝI‖∞ < H} and

V ′
s,p

def
= {v ∈ L′

Sha(αI ) : ‖v − ŝ′I‖∞ < H}.

By comparing the total volume of the #Vs,p disjoint boxes of sidelength λ1(L′
Sha)

centered on the lattice points in T
ŝ′

I

(H)
def
= {v ∈ Qts+t−1 : ‖v − ŝ′I‖∞ < H}, to

the volume of T̂̂
s′

I

(H)
def
= {v ∈ Qts+t−1 : ‖v − ŝ′I‖∞ < H + λ1(L′

Sha)/2} which

contains those disjoint boxes, we reduce the problem of upper bounding #Vs,p

to the problem of lower bounding the λ1(L′
Sha). This general reduction can be

stated as follows.

Lemma 6. For any lattice L in IRn, vector s ∈ IRn, and H > 0, we have

#{v ∈ L : ‖v − s‖∞ < H} ≤

[
2H

λ1(L)
+ 1

]n

.

Now we apply the probabilistic lower bound on λ1(L′
Sha) from Lemma 4 in

Lemma 6 (with (ŝ, p̂) = (s, p)) to get the desired upper bound on #Vs,p.
After some straightforward calculation (see full paper), we find that the prob-

abilistic lower and upper bounds on #V
ŝ,p̂

obtained above hold for all except a

fraction δI ≤ δs/
(

n
ts

)
of ‘bad’ choices for αI ∈ D((ZZ∗

p)
ts) assuming k ≥ k0 (with

ts, δs and k0 defined in the theorem statement), and plugging the bounds in
(5) gives the desired bound Pk,x(s|sI) ≤ 2εs/p for all s (with εs defined in the
theorem statement). This completes the proof sketch. ut

An immediate consequence of the above results is the following.

Corollary 1. For any (t, n) and t′ > t, the standard Shamir (t, n)-threshold
secret-sharing scheme ShaTSS is asymptotically threshold-changeable to
(Int(t′ − t′/t), t′) with respect to the uniform secret distribution.

5 Conclusions

We presented a new cryptographic application of lattice reduction techniques to
achieve threshold-changeability for the standard Shamir (t, n)-threshold scheme.
We proved concrete bounds on the correctness and security of our method, mak-
ing use of fundamental results from lattice theory in our analysis.
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