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Abstract. The OAEP construction is already 10 years old and well-
established in many practical applications. But after some doubts about
its actual security level, four years ago, the first efficient and provably
IND-CCA1 secure encryption padding was formally and fully proven to
achieve the expected IND-CCA2 security level, when used with any trap-
door permutation. Even if it requires the partial-domain one-wayness
of the permutation, for the main application (with the RSA permuta-
tion family) this intractability assumption is equivalent to the classical
(full-domain) one-wayness, but at the cost of an extra quadratic-time
reduction. The security proof which was already not very tight to the
RSA problem is thus much worse.

However, the practical optimality of the OAEP construction is two-fold,
hence its attractivity: from the efficiency point of view because of two ex-
tra hashings only, and from the length point of view since the ciphertext
has a minimal bit-length (the encoding of an image by the permutation.)
But the bandwidth (or the ratio ciphertext/plaintext) is not optimal be-
cause of the randomness (required by the semantic security) and the
redundancy (required by the plaintext-awareness, the sole way known to
provide efficient CCA2 schemes.)

At last Asiacrypt ’03, the latter intuition had been broken by exhibit-
ing the first IND-CCA2 secure encryption schemes without redundancy,
and namely without achieving plaintext-awareness, while in the random-
oracle model: the OAEP 3-round construction. But this result achieved
only similar practical properties as the original OAEP construction: the
security relies on the partial-domain one-wayness, and needs a trapdoor
permutation, which limits the application to RSA, with still a quite bad
reduction.

This paper improves this result: first we show the OAEP 3-round actu-
ally relies on the (full-domain) one-wayness of the permutation (which
improves the reduction), then we extend the application to a larger class
of encryption primitives (including ElGamal, Paillier, etc.) The extended
security result is still in the random-oracle model, and in a relaxed CCA2

model (which lies between the original one and the replayable CCA sce-
nario.)
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1 Introduction

The OAEP construction [4, 12, 13] is now well-known and widely used, since
it is an efficient and secure padding. However, the latter property had been
recently called into question: indeed, contrarily to the widely admitted result,
the security cannot be based on the sole one-wayness of the permutation [28],
but the partial-domain one-wayness [12, 13]. For an application to RSA, the
main trapdoor one-way permutation, the two problems are equivalent, but the
security reduction is much worse than believed, because of a quadratic reduction
between the two above problems.

There is also a second drawback of the OAEP construction, since its use is
limited to permutations. It can definitely not apply to any function, as tried and
failed on the NTRU primitive [15].

Finally, the optimality, as claimed in the name of the construction, is ambigu-
ous and not clear: from the efficiency point of view, the extra cost for encryption
and decryption is just two more hashings which is indeed quite good. But the
most important optimality was certainly from the length point of view: the ci-
phertext is just an image by the permutation, and thus the shortest as possible.
However, another important parameter is the bandwidth, or the ratio cipher-
text/plaintext, which is not optimal: the construction requires a randomness
over 2k bits for a semantic security in 2−k, and redundancy over k bits for pre-
venting chosen-ciphertext attacks (plaintext-awareness): the ciphertext is thus
at least 3k bits as large as the plaintext.

1.1 Related Work

Right after the Shoup’s remark about the security of OAEP [28], several alter-
natives to OAEP have been proposed: OAEP+ (by Shoup himself) and SAEP,
SAEP+ (by Boneh [6]) but either the bandwidth, or the reduction cost remain
pretty bad. Furthermore, their use was still limited to permutations.

About generic paddings applicable to more general encryption primitives,
one had to wait five years after the OAEP proposal to see the first efficient
suggestions: Fujisaki–Okamoto [10, 11] proposed the first constructions, then
Pointcheval [23] suggested one, and eventually Okamoto–Pointcheval [18] in-
troduced the most efficient construction, called REACT. However, all these
proposals are far to be optimal for the ciphertext size. They indeed apply, in
the random-oracle model, the general approach of symmetric and asymmet-
ric components integration [27]: an ephemeral key is first encrypted using key-
encapsulation, then this key is used on the plaintext with a symmetric encryp-
tion scheme (which is either already secure against chosen-ciphertext attacks, or
made so by appending a MAC – or a tag with a random oracle, for achieving
plaintext-awareness.)

Plaintext-awareness [4, 3] was indeed the essential ingredient to achieve IND-
CCA2 security in the random-oracle model: it makes the simulation of the de-
cryption oracle quite easy, by rejecting almost all the decryption queries, unless
the plaintext is clearly known. But this property reduces the bandwidth since
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“unnecessary” redundancy is introduced. Randomness is required for the seman-
tic security, but this is the sole mandatory extra data for constructing a secure
ciphertext. At last Asiacrypt [21], the first encryption schemes with just such a
randomness, but no redundancy, has been proposed: plaintext-awareness is no
longer achieved, since any ciphertext is valid and corresponds to a plaintext. But
this does not exclude the IND-CCA2 security level. In that paper [21], we indeed
proved that an extension of OAEP, with 3 rounds but without redundancy, pro-
vides an IND-CCA2 secure encryption scheme, with any trapdoor permutation,
but again under the partial-domain one-wayness. Hence a bad security reduction.

Note 1. The classical OAEP [4] construction can be seen as a 2-round Feistel
network, while our proposal [21] was a 3-round network, hence the name OAEP

3-round. By the way, one should notice that SAEP [6] can be seen as a 1-round
Feistel network.

1.2 Achievements

In this paper, we address the two above problems: the bad security reduction of
the OAEP constructions, because of the need of the intractability of the partial-
domain one-wayness; and the restriction to permutations.

First, we show that, contrarily to the OAEP (2-round) construction which
cannot rely on the (full-domain) one-wayness, the OAEP 3-round simply requires
the (full-domain) one-wayness: because of the third round, the adversary looses
any control on the r value. It is not able to make ciphertexts with the same r,
without querying it.

Then, we extend the application of OAEP 3-round to a larger class of encryp-
tion primitives: it applies to any efficiently computable probabilistic injection
f : E× R → F, which maps any x ∈ E into F in a probabilistic way according
to the random string ρ ∈ R. We need this function to be one-way: given y ∈ F,
it must be hard to recover x ∈ E (we do not mind about the random string
ρ); this probabilistic function also needs to satisfy uniformity properties which
are implied by a simple requirement: f is a bijection from E× R onto F. Some
additional restrictions will appear in the security proof:

– we cannot really consider the CCA2 scenario, but a relaxed one denoted
RCCA, which is between the usual one and the replayable CCA2 introduced
last year [7] and considered enough in many applications.

– the simulation will need a decisional oracle which checks whether two ele-
ments in F have the same pre-images in E. The security result will thus be
related to the well-known gap-problems [19, 18].

This extension allows almost optimal bandwidths for many very efficient asym-
metric encryption schemes, with an IND-RCCA security level related to gap-
problems (e.g. an ElGamal variant related to the Gap Diffie-Hellman problem.)
Note that the application to trapdoor one-way permutations like RSA results
in a much more efficient security result, and provides an IND-CCA2 encryption
scheme under the sole one-wayness intractability assumption.
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This paper is then organized as follows: in the next section, we review the
classical security model for asymmetric encryption, and present our new CCA-
variant. In section 3, we present the OAEP 3-round construction for any prob-
abilistic injection, with some concrete applications. The security result is pre-
sented and proven in section 4.

2 Security Model

In this section, we review the security model widely admitted for asymmetric
encryption. Then, we consider some relaxed CCA-variants. First, let us briefly
remind that a public-key encryption scheme S is defined by three algorithms:
the key generation algorithm K(1k), which produces a pair of matching public
and private keys (pk, sk); the encryption algorithm Epk(m; r) which outputs a
ciphertext c corresponding to the plaintext m ∈ M, using random coins r ∈ R;
and the decryption algorithm Dsk(c) which outputs the plaintext m associated
to the ciphertext c.

2.1 Classical Security Notions

Beyond one-wayness, which is the basic security level for an encryption scheme,
it is now well-admitted to require semantic security (a.k.a. polynomial security

or indistinguishability of encryptions [14], denoted IND): if the attacker has some
a priori information about the plaintext, it should not learn more with the view
of the ciphertext. More formally, this security notion requires the computational
indistinguishability between two messages, chosen by the adversary, one of which
has been encrypted, which one has been actually encrypted with a probability
significantly better than one half: the advantage Advind

S (A), where the adversary
A is seen as a 2-stage Turing machine (A1, A2), should be negligible, where
Advind

S (A) is formally defined as

2× Pr

[

(pk, sk)← K(1k), (m0,m1, s)← A1(pk),

b
R
← {0, 1}, c = Epk(mb) : A2(m0,m1, s, c) = b

]

− 1.

Stronger security notions have also been defined thereafter (namely the non-

malleability [8]), but we won’t deal with it since it is similar to the semantic
security in several scenarios [3, 5].

On the other hand, an attacker can use many kinds of attacks, according
to the available information: since we are considering asymmetric encryption,
the adversary can encrypt any plaintext of its choice with the public key, hence
the basic chosen-plaintext attack. But the strongest attack is definitely when
the adversary has an unlimited access to the decryption oracle itself, adaptive

chosen-ciphertext attacks [25], denoted CCA or CCA2 (by opposition to the earlier
lunchtime attacks [17], denoted CCA1, where this oracle access is limited until
the challenge is known.) From now, we simply use CCA instead of CCA2 since
we focus on adaptive adversaries.
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The strongest security notion that we now widely consider is the semantic

security against adaptive chosen-ciphertext attacks denoted IND-CCA —where
the adversary just wants to distinguish which plaintext, between two messages
of its choice, had been encrypted; it can ask any query to a decryption oracle
(except the challenge ciphertext).

2.2 Relaxed CCA-Security

First, at Eurocrypt ’02, An et al [1] proposed a “generalized CCA” security
notion, where the adversary is restricted not to ask, to the decryption oracle, ci-
phertexts which are in relation with the challenge ciphertext. This relation must
be an equivalence relation, publicly and efficiently computable, and decryption-
respecting: if two ciphertexts are in relation, they necessarily encrypt identical
plaintexts. This relaxation was needed in that paper, so that extra bits in the
ciphertext, which can be easily added or suppressed, should not make the scheme
theoretical insecure, while its security is clearly the same from a practical point
of view.

More recently, another relaxation (an extra one beyond the above one) has
been proposed by Canetti et al [7]: informally, it extends the above relation
to the (possibly non-computable) equality of plaintexts. More precisely, if the
adversary asks for a ciphertext c to the decryption oracle, c is first decrypted
into m. Then, if m is one of the two plaintexts output in the first stage by the
adversary, the decryption oracle returns test, otherwise the actual plaintext m is
returned. They called this variant the “replayable CCA” security. They explain
that this security level, while clearly weaker than the usual CCA one, is enough
in most of the practical applications. The classical CCA security level is indeed
very strong, too strong for the same reasons as explained above for the first
relaxation.

In this paper, we could work with the latter relaxation, the “replayable CCA”
scenario. But for a simpler security proof, as well as a more precise security result
(with nice corollaries for particular cases, such as the RSA one) we restrict it
a little bit into the “relaxed CCA” scenario, denoted RCCA. A scheme which
is secure in this scenario is trivially secure in the “replayable CCA” one, but
not necessarily in the “generalized CCA” or the usual CCA scenario. The actual
relations between these scenarios depend on the way the random string is split. In
the formal notation of the encryption algorithm, we indeed split the randomness
in two parts r and ρ: c = Epk(m; r, ρ). The encryption algorithm is thus a function
fromM×R×R into the ciphertext set. We know that for being an encryption
scheme, this function must be an injection with respect toM (several elements in
M×R×R can map to the same ciphertext, but all these elements must project
uniquely on M: the plaintext.) In our new relaxation, we split the randomness
in R×R so that this function is also an injection with respect to M×R.

Let us assume that the challenge ciphertext is c? = Epk(m
?; r?, ρ?). Let

us consider the ciphertext c = Epk(m; r, ρ). According to the above comment,
(m?, r?) and (m, r) are uniquely defined from c? and c respectively, while ρ? and
ρ may not be unique. Upon receiving c, the relaxed decryption oracle first checks
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whether (m?, r?) = (m, r) in which case it outputs test. Otherwise, it outputs
m.

Definition 2 (Relaxed CCA). In the “relaxed CCA” scenario, an adversary

has an unlimited access to the relaxed decryption oracle.

Property 3. Security in the “relaxed CCA” scenario implies security in the “re-
playable CCA” one.

Proof. As already noticed, this is a trivial relation, since the decryption oracle in
the latter scenario can be easily simulated by the relaxed decryption oracle: if its
output is test, this value is forwarded, else the returned plaintext m is compared
to the output of the adversary at the end of the first stage. According to the
result of the comparison, either a test-answer is also given (if m ∈ {m0,m1}), or
m.

This property was just to make clear that we do not relax more the CCA security,
but still keep it beyond what is clearly acceptable for practical use. Namely, note
that if R is the empty set, then the RCCA scenario is exactly the usual CCA one:
if f is a permutation from E onto F (the RSA case.)

3 OAEP 3-Round: A General and Efficient Padding

3.1 The Basic Primitive

Our goal is to prove that OAEP 3-round can be used with a large class of
one-way functions. More precisely, we need an injective probabilistic trapdoor
one-way function family (ϕpk)pk from a set Epk to a set Fpk, respectively to the
index pk: almost any encryption primitive, where the plaintext set is denoted
Epk and the ciphertext set is denoted Fpk, is fine: for any parameter pk (the
public key), there exists the inverse function ψsk (where sk is the private key)
which returns the pre-image in Epk. An injective probabilistic trapdoor one-way
function f from E to F is actually a function f : E × R → F, which takes
as input a pair (x, ρ) and outputs y ∈ F. The element x lies in E and is the
important input, ρ is the random string in R which makes the function to be
probabilistic. Injectivity means that for any y there is at most one x (but maybe
several ρ) such that y = f(x, ρ). The function g which on input y outputs x is
the inverse of the probabilistic function f . Clearly, we need the function f to be
efficiently computable, but the one-wayness means that computing the unique x
(if it exists) such that y = f(x, ρ) is intractable (unless one knows the trapdoor
g.) These are the basic requirement for an asymmetric encryption primitive. But
for our construction to work, we need two additional properties:

– the function f : E×R→ F is a bijection;
– without knowing the trapdoor, it is intractable to invert f in E, even for

an adversary which has access to the decisional oracle Samef (y, y′) which
answers whether g(y) = g(y′).
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The latter property is exactly the “gap problem” notion, which is defined
by the following success probability Succ

gap
f (t, q), for any adversary A whose

running time is limited by t, and the number of queries to the decisional oracle
Samef is upper-bounded by q:

Succ
gap
f (t, q) = max

A
{x

R
← E, ρ

R
← R, y = f(x, ρ) : ASamef (y) = x}.

For a family of functions, this success probability includes the random choice of
the keys in the probability space, and assumes the inputs randomly drawn from
the appropriate sets, hence the notation Succgap

ϕ (t, q) for a family (ϕpk)pk.

3.2 Examples

Let us see whether the two above additional properties are restrictive or not in
practice:

– The first example is clearly the RSA permutation [26], where for a given
public key pk = (n, e), the sets are E = F = Z?

n and R is the empty set. Then,
this is clearly an injective (but deterministic) function, which is furthermore
a bijection. Because of the determinism, the decisional oracle Same(y, y′)
simply checks whether y = y′: the gap problem is thus the classical RSA
problem.

– The goal of our extension of OAEP is to apply it to the famous ElGamal
encryption [9] in a cyclic group G of order q, generated by g. Given a public
key pk = y ∈ G, the sets are E = G, R = Zq and F = G × G: ϕy(x, ρ) =
(gρ, x× yρ), which is a probabilistic injection from E onto F, and a bijection
from E× R onto F. About the decisional oracle, it should check, on inputs
(a = gρ, b = x × yρ) and (a′ = gρ′

, b′ = x′ × yρ′

), whether x = x′, which
is equivalent to decide whether (g, y, a′/a = gρ′

−ρ, b′/b = (x′/x) × yρ′
−ρ)

is a Diffie-Hellman quadruple: the gap problem is thus the well-known Gap
Diffie-Hellman problem [18, 19].

– One can easily see that the Paillier’s encryption [20] also fits this formalism.

3.3 Description of OAEP 3-Round

Notations and Common Parameters. For a simpler presentation, and an
easy to read analysis, we focus on the case where E = {0, 1}n (is a binary set).
A similar analysis as in [21] could be performed to deal with more general sets.
On the other hand, any function can be mapped into this formalism at some low
cost [2].

The encryption and decryption algorithms use three hash functions: F , G,
H (assumed to behave like random oracles in the security analysis) where the
security parameters satisfy n = k + `:

F : {0, 1}k → {0, 1}` G : {0, 1}` → {0, 1}k H : {0, 1}k → {0, 1}`.
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The encryption scheme uses any probabilistic injection family (ϕpk)pk, whose
inverses are respectively denoted ψsk, where sk is the private key associated to
the public key pk. The symbol “‖” denotes the bit-string concatenation and
identifies {0, 1}k × {0, 1}` to {0, 1}n.

Encryption Algorithm. The space of the plaintexts is M = {0, 1}`, the en-
cryption algorithm uses random coins, from two distinct sets r ∈ R = {0, 1}k

and ρ ∈ R, and outputs a ciphertext c into F: on a plaintext m ∈ M, one
computes

s = m⊕F(r) t = r ⊕ G(s) u = s⊕H(t) c = ϕpk(t‖u, ρ).

Decryption Algorithm. On a ciphertext c, one first computes t‖u = ψsk(c),
where t ∈ {0, 1}k and u ∈ {0, 1}`, and then

s = u⊕H(t) r = t⊕ G(s) m = s⊕F(r).

4 Security Result

In this section, we state and prove the security of this construction. A sketch
is provided in the body of the paper, the full proof can be found in the full
version [22].

Theorem 4. Let A be an IND-RCCA adversary against the OAEP 3-round con-

struction with any trapdoor one-way probabilistic function family (ϕpk)pk, within

time τ . Let us assume that after qf , qg, qh and qd queries to the random oracles

F , G and H, and the decryption oracle respectively, its advantage Adv ind-rcca
oaep-3 (τ)

is greater than ε. Then, Succgap
ϕ (τ ′, qd(qgqh + qd)) is upper-bounded by

ε

2
− q2d ×

(

1

2`
+

6

2k

)

− (4qd + 1)×
(qg

2`
+
qf
2k

)

− qd ×
qf + 1

2k
,

with τ ′ ≤ τ + (qf + qg + qh + qd)Tlu + q2dTSame + (qd + 1)qgqh(Tϕ + TSame), where

Tϕ is the time complexity for evaluating any function ϕpk, TSame is the time for

the decisional oracle Sameϕpk
to give its answer, and Tlu is the time complexity

for a look up in a list.

4.1 Trapdoor Permutations

Before proving this general result, let us consider the particular case where ϕpk is
a permutation from E onto F (i.e., a deterministic function.) The general result
has indeed several drawbacks:

– the reduction cost introduces a cubic factor qdqgqh which implies larger keys
for achieving a similar security level as for some other constructions;
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– the security relies on a gap problem, which is a strong assumption in many
cases;

– and we cannot achieve the usual IND-CCA security level.

These drawbacks are acceptable as the price of generality: this becomes one
of the best padding for ElGamal or Paillier strongly secure variants. However,
for trapdoor permutations, such as RSA, several OAEP variants achieve much
better efficiency.

But one should interpret the above result in this particular case: first, the
gap-problem becomes the classical one-wayness, since the decisional oracle is
simply the equality test; Furthermore, the RCCA scenario becomes the classical
CCA one; Finally, because of the determinism of the permutation, with proper
bookkeeping, one can avoid the cubic factor, and fall back to the usual quadratic
factor qgqh, as for any OAEP-like constructions (OAEP+, SAEP and SAEP+).
Then, one can claim a much better security result:

Theorem 5. Let A be an IND-CCA adversary against the OAEP 3-round con-

struction with a trapdoor one-way permutation family (ϕpk)pk, within time τ . Let

us assume that after qf , qg, qh and qd queries to the random oracles F , G and

H, and the decryption oracle respectively, its advantage Advind-cca
oaep-3 (τ) is greater

than ε. Then, Succow
ϕ (τ ′) is upper-bounded by

ε

2
− q2d ×

(

1

2`
+

6

2k

)

− (4qd + 1)×
(qg

2`
+
qf
2k

)

− qd ×
qf + 1

2k
,

with τ ′ ≤ τ + (qf + qg + qh + qd)Tlu + qgqhTϕ, where Tϕ is the time complexity

for evaluating any function ϕpk and Tlu is the time complexity for a look up in

a list.

4.2 Sketch of the Proof

The proof is very similar to the one in [21], but the larger class (injective proba-
bilistic functions), and the improved security result (relative to the one-wayness)
make some points more intricate: for a permutation f , each value x maps to a
unique image y = f(x); whereas for a function f , each value x maps to several
images y = f(x, ρ), according to the random string ρ. Consequently, when used
as an asymmetric encryption primitive, the adversary may have the ability to
build another y′ whose pre-image is identical to the one of y: x = g(y) = g(y′).
Such a query to the decryption oracle is not excluded in the CCA scenario, while
we may not be able to either detect or answer. Hence the relaxed version of
chosen-ciphertext security, and the decisional oracle Samef : the latter helps to
detect ciphertexts with identical pre-images, the relaxed scenario gives the abil-
ity to answer test in this case. Granted the decisional oracle Samef , we can also
detect whether a decryption query c has the same pre-image as a previous de-
cryption query c′ in which case we output the same plaintext. If it is a really new
ciphertext, by using again the decisional oracle Samef , we can check whether s
and t have both been asked to G and H, respectively, which immediately leads to
the plaintext m. In the negative case, a random plaintext can be safely returned.
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4.3 More Details

The full proof can be found in the full version [22], but here are the main steps,
since the proof goes by successive games in order to show that the above decryp-
tion simulation is almost indistinguishable for the adversary. Then, a successful
IND-RCCA adversary can be easily used for inverting the one-way function.

G0: We first start from the real IND-RCCA attack game.
G1–G2: We then simulate the view of the adversary, first, as usual with lists for the

random oracles and the decryption oracle (see figures 1 and 2.)
We then modify the generation of the challenge ciphertext, using a random
mask f?, totally independent of the view of the adversary: the advantage of
any adversary is then clearly zero. The plaintext is indeed unconditionally
hidden.

The only way for any adversary to detect this simulation is to ask F(r?) and
then detect that the answer differs from any possible f ?. We are thus interested
in this event, termed AskF, which denotes the event that r? is asked to F .

The main difference with the OAEP 2-round construction, as shown by Shoup
with his counter-example [28], is that here an adversary cannot make another
ciphertext with the same r as r?, in the challenge ciphertext, but either by
chance, or if it had asked for both G(s?) and H(t?). We now try to show this
fact.

G3–G8: We thus modify the decryption process so that it makes no new query to G
and H. The sequence of games leads to the following new rules:

IRule Decrypt-noT(8)

Choose m
R
← {0, 1}`.

IRule Decrypt-TnoS(8)

Choose m
R
← {0, 1}`.

IRule Decrypt-TSnoR(8)

If s = s? but s? has not been directly asked by the adversary

yet: m
R
← {0, 1}`.

Else, one chooses m
R
← {0, 1}`, computes f = m ⊕ s and

adds (r, f) in F-List.

IRule EvalGAdd(8)

For each (t, h) ∈ H-List and each (m, c) ∈ D-List, choose an
arbitrary random ρ ∈ R and ask for (c, c′ = ϕpk(t‖h⊕ s, ρ))
to the decisional oracle Sameϕpk

. If the record is found (the
decisional oracle Sameϕpk

answers “yes”), we compute r =
t⊕ g and f = m⊕ s, and finally add (r, f) in F-List.

Some bad cases may appear, which make our simulation to fail. But they are
very unlikely, we thus can safely cancel executions, applying the following
rule
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F
,
G

a
n
d
H

O
ra

cl
es

Query F(r): if a record (r, f) appears in F-List, the answer is f .
Otherwise the answer f is chosen randomly in {0, 1}k and the record (r, f) is
added in F-List.
Query G(s): if a record (s, g) appears in G-List, the answer is g.
Otherwise the answer g is chosen randomly in {0, 1}` and the record (s, g) is
added in G-List.

IRule EvalGAdd(1)

Do nothing % To be defined later

Query H(t): if a record (t, h) appears in H-List, the answer is h.
Otherwise the answer h is chosen randomly in {0, 1}k and the record (t, h) is
added in H-List.

D
O

ra
cl

e Query Dsk(c): first, if we are in the second stage (the challenge c? as been
defined), ask for (c, c?) to the decisional oracle Sameϕpk

. In case of positive
decision, the answer is test.
Else, for each (m′, c′) in D-List, ask for (c, c′) to the decisional oracle Sameϕpk

.
In case of a positive decision, the answer is the corresponding‘m′.
Otherwise, the answer m is defined according to the following rules:

IRule Decrypt-Init(1)

Compute t‖u = ψsk(c);

Look up for (t, h) ∈ H-List:

• if the record is found, compute s = u⊕ h.
Look up for (s, g) ∈ G-List:
∗ if the record is found, compute r = t⊕ g.

Look up for (r, f) ∈ F-List:
· if the record is found

IRule Decrypt-TSR(1)

h = H(t),
s = u ⊕ h, g = G(s),
r = t⊕ g, f = F(r),
m = s⊕ f .

· else
IRule Decrypt-TSnoR(1)

same as rule Decrypt-TSR(1).
∗ else

IRule Decrypt-TnoS(1)

same as rule Decrypt-TSR(1).
• else

IRule Decrypt-noT(1)

same as rule Decrypt-TSR(1).

Answer m and add (m, c) to D-List.

Fig. 1. Formal Simulation of the IND-RCCA Game: Oracles



72

C
h
a
ll
en

g
er

For two messages (m0,m1), flip a coin b and set m? = mb, choose randomly
r? then answer c? where

IRule Chal(1)

f? = F(r?), s? = m? ⊕ f?,

g? = G(s?), t? = r? ⊕ g?,

h? = H(t?), u? = s? ⊕ h?.

IRule ChalC(1)

and c? = ϕpk(t
?‖u?, ρ?), for random string ρ?.

Fig. 2. Formal Simulation of the IND-RCCA Game: Challenger

IRule Abort(8)

Abort and output a random bit:

• If s? has been asked to G by the adversary, while the
latter did not ask for H(t?).

• If a Decrypt-TSR/Decrypt-TSnoR rule has been applied
with t = t?, while H(t?) had not been asked by the
adversary yet.

• If a Decrypt-TSR rule has been applied with s = s?, while
G(s?) had not been asked by the adversary yet.

The remaining bad case (termed AskGHA) is if both s? and t? have been
asked to G and H by the adversary. Such a case helps the adversary to
distinguish our simulation. On the other hand, this case helps to invert ϕpk.

G9: With these new rules for decryption, the simulation of the decryption oracle
does not use at all the queries previously asked to G and H by the generation
of the challenge, but just the queries directly asked by the adversary, which
are available to the simulator (we remind that we are in the random-oracle
model.) One can thus make g? and h? to be values independent to the view
of the adversary:

IRule Chal(9)

The two values r+
R
← {0, 1}k and f+ R

← {0, 1}` are given,

as well as g+ R
← {0, 1}k and h+ R

← {0, 1}` then r? = r+,
f? = f+, s? = m? ⊕ f+, g? = g+, t? = r+ ⊕ g?, h? = h+

and u? = s? ⊕ h?.

And then the decryption oracle can be simply replaced by the classical
plaintext-extractor which looks up in the lists G-List and H-List (which only
contain the queries directly asked by the adversary) to obtain the values
(s, g) and (t, h) which match with c = ϕpk(t‖s ⊕ h, ρ), using the decisional
oracle Sameϕpk

, but without using anymore ψsk. In case of failure, one answers
a random plaintext m.
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We simply conclude, since our reduction does not use any oracle, but can
answer any query of the adversary, in an indistinguishable way, unless the
bad case AskGHA happens: in which case we have inverted ϕsk.

The time complexity of one simulation is thus upper-bounded by qgqh ×
(Tϕ + TSame), where Tϕ is the time to evaluate one function in the ϕ family, and
TSame the time for the decisional oracle, plus the initial look up in the D-List:
Tlu + qdTSame. Thus the global running time is bounded by (including all the list
look up):

τ ′ ≤ τ + qdqgqh × (Tϕ + TSame) + q2d × TSame + (qf + qg + qh + qd)× Tlu.

In the particular case where ϕpk is a permutation from E onto F (a deter-
ministic one), one can improve it, using an extra list of size qgqh, which stores
all the tuples (s, g = G(s), t, h = H(t), c′ = ϕpk(t‖s ⊕ h)). The time complexity
then falls down to τ + qgqh × Tϕ + (qf + qg + qh + qd)× Tlu.

5 Conclusion

All the OAEP variants [28, 6] applied to RSA, with general exponents (i.e., not
Rabin nor e = 3) admit, in the best cases, reductions to the RSA problem with a
quadratic loss in time complexity [24] – the original OAEP is even worst because
of the reduction to the partial-domain case, which requires a more time consum-
ing reduction to the full-domain RSA problem. Furthermore, for a security level
in 2−k, a randomness of 2k bits is required, plus a redundancy of k bits.

In this paper, we show that the variant of OAEP with 3 rounds admits a
reduction as efficient as the best OAEP variants (to the full-domain RSA, when
applied to the RSA family) without having to add redundancy: one can thus
earn k bits. But this is not the main advantage.

Considering any criteria, OAEP with 3 rounds is at least as good as all the
other OAEP variants, but from a more practical point of view

– since no redundancy is required, implementation becomes easier, namely for
the decryption process [16];

– it applies to more general families than just (partial-domain) one-way trap-
door permutations, but to any probabilistic trapdoor one-way function. It is
thus safer to use it with a new primitive [15].

As a conclusion, OAEP with 3 round is definitely the most generic and the
simplest padding to use with almost all the encryption primitives.
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