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Abstract. Provable security usually makes the assumption that a source
of perfectly random and secret data is available. However, in practical
applications, and especially when smart cards are used, random genera-
tors are often far from being perfect or may be monitored using probing
or electromagnetic analysis. The consequence is the need of a careful
evaluation of actual security when idealized random generators are im-
plemented.
In this paper, we show that Esign signature scheme, like many cryptosys-
tems, is highly vulnerable to so called partially known nonces attacks.
Using a 1152-bit modulus, the generation of an Esign signature requires
to draw at random a 768-bit integer. We show that the exposure of only
8 bits out of those 768 bits, for 57 signatures, is enough to recover the
whole secret signature key in a few minutes.
It should be clear that we do not cryptanalyze a good implementation
of Esign nor do we find a theoretical flaw. However, our results show
that random data used to generate signatures must be very carefully
produced and protected against any kind of exposure, even partial.
As an independent result, we show that the factorization problem is
equivalent to the existence of an oracle returning the most or least sig-
nificant bits of S mod p, on input S randomly chosen in Zpq.

Keywords: Esign signature scheme, Lattice reduction, LLL algorithm, Factoriza-

tion problem.

1 Introduction

Most cryptographic systems make use of random sources for a range of applica-
tions. Random data may, for example, be transformed into secret or private keys



for encryption or signature. From a provable security point of view, it is common
to assume one has access to a source of perfect randomness. However, such an
assumption is far from being totally realistic in many practical applications. The
first problem is that a true random number generator must be based on some
kind of physical noise source. Such a generator is not commonly accessible on
standard computers. When smart cards are used, the situation is even worse
since such devices only have access to a very poor and constrained environment.
The consequence is that random data is often simulated using a pseudo-random
number generator.

In practical applications, there is a danger of adding weaknesses by using a
biased generator or a weak pseudo-random number generator. Furthermore, with
devices such as smart cards, the risk of secret data exposure by the way of probing
or electromagnetic analysis may be increased if the random number generator is
separated from the rest of the chip. As a consequence, a crucial question, when
we consider practical security, is the impact of partial exposure of this random
data for systems which have been proved secure under the assumption that a
source of perfectly random and secret data is available.

The answer strongly depends on the application one considers. Usually, key
generation is viewed as a crucial issue and people agree that a lot of care must
be applied to the production of key material. However, does the exposure of one
third of a 128-bit AES key have any real practical implication in usual appli-
cations? Such a question is of course rather controversial, but the complexity
of an exhaustive search on the remaining secret bits, about 285 block encryp-
tions, might still be thought prohibitive. The same reasoning may be applied
to other applications such as the choice of nonces or initial vectors. However,
in some cases, partial exposure of secret information can have a far more dra-
matic consequence on the security of the system. Our first example is related
to RSA with short public exponent. Boneh, Durfee and Frankel [6] have shown
that the exposure of a quarter of the secret exponent enables one to factor the
modulus in polynomial time. Similar results on DSA signature scheme are even
more impressive. This scheme uses 160 bits of fresh random data, often called
on-time key or ephemeral key, for each signature generation. It is well known
that the exposure of those data enables to recover the secret signature key very
easily. Howgrave-Graham and Smart [16] applied lattice reduction techniques to
prove that the knowledge of only 8 bits out of the 160 bits of ephemeral keys
for 30 signed messages enables to recover the secret key in a few seconds! In the
same vein, following Boneh and Venkatesan [7], Nguyen and Shparlinski [19] have
shown that indeed only 3 bits out of the 160 bits of each one-time key, for 100
messages, are enough to make the attack feasible. Finally, Bleichenbacher [3] has
shown that if just one bit out of the 160 bits is biased, as was the case with the
pseudo-random generator initially proposed by NIST [21], it is possible to mount
an attack with time complexity 264, memory complexity 240 and 222 signatures.

Another analysis of the security of DSA in practical implementations, was
done by Bellare, Goldwasser and Micciancio [2]. They did not assume partial
exposure of ephemeral keys but their randomness was generated by a weak



pseudo-random number generator, namely the linear congruential generator. In
this case, DSA is totally insecure and the knowledge of a few signatures leads to
the computation of the secret signature key.

All these results show that in some applications, such as DSA, data must
be perfectly random and must remain completely secret. This does not mean
that DSA is not secure but it points out a potential source of weakness. In
actual implementations, the mechanism used to generate random data must be
carefully chosen and evaluated, both from an algorithmic point of view and from
a technological point of view. For example, electromagnetic analysis or probing
techniques may enable one to learn a few random bits, even if it is not possible
to recover the whole secret by these means. The above mentioned results show
that the knowledge of a very small part of those bits is enough to totally break
systems such as DSA.

Our results

In this paper, we focus on the practical security of the Esign signature scheme [11].
Of course, in practical applications, this scheme is much less used than DSA.
However, Esign could be preferred in many scenarios from a computational ef-
ficiency point of view. This is important when the signature device has low
computing resources, which is the case with smart cards for instance. For ap-
plications such as on the fly signature with a contactless card (typical for fast
and secure payment in the subway), Esign may be a very good candidate. Its
practical security must consequently be carefully analyzed.

The technique we develop, and apply to careless Esign implementations, is
of independent interest. It may be applied to other factorization based cryp-
tosystems. Assuming partial exposure of a very small part of some secret data,
our lattice reduction based technique allows one to factor the modulus very ef-
ficiently. Typically, this may be applied to the optimization of some SPA/DPA
attacks on RSA systems [22, 10].

In this paper, we describe an efficient technique based on the partial exposure
of a few bits of Esign ephemeral keys. More precisely, using a 1152-bit modulus,
the generation of an Esign signature requires to draw at random a 768-bit integer.
We show that the exposure of only 8 bits out of those 768 bits for 57 signatures
is enough to recover the all secret signature key in a few minutes.

It should be clear that we do not propose neither a cryptanalysis of Esign nor
a theoretical flaw. However, our results show that random data used to generate
signatures must be very carefully produced and protected against any kind of
exposure, even partial.

Previous works

The hidden number problem (HNP) has been described by Boneh and Venkate-
san in [7] in order to prove the hardness of the most significant bits of secret
keys in Diffie-Hellman and related schemes in prime fields. The HNP can be



defined as follows: given s1, . . . , sd chosen uniformly and independently at ran-
dom in Zq

? and MSB`(αsi mod q) for all i, the problem is to recover α ∈ Zq
?.

Here, MSB`(x) for x ∈ Zq denotes any integer z satisfying |x − z| < q/2`+1.
In [7], the authors present a simple solution to this problem by reducing HNP
to a lattice closest vector problem (CVP). In particular, they show that the
HNP can be solved if ` ≥

√
log(q) + log(log(q)) and d = 2

√
log(q). According

to [20], using the best known polynomial-time CVP approximation algorithm
due to Ajtai et al. [1] and Kannan [17], ` can be asymptotically improved to
O(

√
log(q) log(log(log(q)))/ log(log(q))).

In this paper we consider a problem related to a HNP problem modulo a
secret value and we propose an algorithm to solve it. In [4], Boneh also mentions
the HNP modulo N = pq. Now, p and q denote the factors of a modulus N .
Our problem can be formulated as follows: given s1, . . . , sd chosen uniformly
and independently at random in ZN

? and MSB`(si mod p) for all i, the problem
is to recover p. Our algorithm uses the orthogonal lattice theory of [20] to obtain
several small lattice vectors. Moreover, we also use the extension of Nguyen and
Shparlinski [19] if the distribution of the si is not necessarily perfectly uniform
using the discrepancy notion. Indeed, if we note |s|p = minb∈Z |s − bp| for any
integer s, the values si in the lattice are such that |si|p < p/2` and are thus not
uniformly distributed in Zp. If N is a 1024-bit modulus, then the results of the
HNP say that with d = 64 and ` = 9, N can be factored. We get similar results
with our algorithm.

Finally, contrary to the lattice based algorithm used by Boneh, Durfee and
Howgrave-Graham [5], our factorization algorithm uses an oracle. In some cases,
this oracle can be found in practical implementations. For example, if the pseu-
dorandom generator of the nonces used in Esign implementation is biased such
that the MSBs can be learned, then we can break the signature scheme by factor-
ing the modulus. In this application, the secret modulus is a composite number
pq and N = p2q. This paper can be seen as an extension of previous attacks on
signature schemes, based on the discrete log such as DSA in [19, 16], to some
factorization based signature schemes.

The results in this paper were independently discovered, but are of a similar
vein to those found in the Esign technical review [15].

2 Description of Esign

Esign is a signature scheme proposed by Okamoto and Shiraishi in 1985 [23]. It is
based on modular computations with special form modulus. The main advantage
of Esign is its efficiency. Compared to RSA or EC based scheme, Esign is several
times faster in terms of signature and verification performance.

Let N = p2q a 3k-bit integer, with p and q two primes of roughly the same
length. The secret key consists in the two k-bit primes p and q. The public key
is (N, e), where e is an integer larger than 4. The scheme uses a cryptographic
hash function H to compute (k − 1)-bit long message digests. The signature of
a message M is performed as follows:



1. the message M is first hashed into H(M). We denote by y the integer corre-
sponding to the 3k-bit string 0‖H(M)‖02k, where 02k denotes the concate-
nation of 2k null bits,

2. An integer r is randomly chosen in Z?
pq,

3. Compute:
(a) z = y − re mod N ,
(b) w0 =

⌈
z
pq

⌉
,

(c) w1 = w0pq − z. If w1 > 22k−1, then come back to step 2,
(d) u = w0(ere−1)−1 mod p,
(e) s = r + upq,

4. Return s as a signature for M .

Note that in the rest of this paper, we often write signatures as the sum of the
random nonce r and a multiple u× pq of the secret key pq.

To verify if a signature s is valid for the message M , a verifier simply checks
if the k most significant bits of se mod N are equal to 0‖H(M). The verification
algorithm is consistent since:

se = (r + upq)e mod N

= re + ere−1upq mod N

= (y − z) + w0pq mod N

= y + w1 mod N

Since w1 < 22k−1, and N is exactly 3k bits long, the k most significant bits of
se mod N are those of y, i.e. 0‖H(M).

The security of Esign is based on a variant of the RSA problem which con-
sists in computing modular e-th roots. More precisely, even the computation of
approximations of such roots seems to be difficult. The Approximate e-th Root
(AER) problem is formally defined as follows:

Given a modulus N = p2q, an exponent e ≥ 4 and y ∈ Z?
N , find x ∈ Z?

N

such that xe ∈ [y, y + 22k−1].

The knowledge of the factorization of N gives an efficient solution to this prob-
lem. Without p or q, this problem is supposed to be hard. The AER assumption
is that the AER problem is intractable.

The initial scheme proposed in [23] was based on the exponent e = 2. This
version has been cryptanalyzed the same year by Brickell and DeLaurentis in [8].
The cubic scheme has also been broken using lattice reduction (see in particu-
lar [9, 13, 26]). However, for e ≥ 4, no attack has been reported for the moment.
A potential way to break the signature scheme is to factor the modulus N and
then to recover the secret key. This constitutes a total break of the scheme. Note
that if the random value r is compromised for just one signature, the factoriza-
tion can be easily recovered. Indeed, since s = r + upq, if r is known, then the
GCD of the modulus N = p2q and s− r reveals pq.

We also notice that the knowledge of re mod N allows to recover the prime
factors p and q. Indeed, se can be written as re − ere−1upq mod N and the



GCD of N and se − re mod N gives pq. The secrecy of the random values is
consequently a crucial issue for Esign.

Moreover, the scheme with e ≥ 4 and e prime with φ(N) = p(p− 1)(q − 1),
is provably secure in the random oracle model. More precisely, it is proved se-
cure against existential forgeries in Single Occurrence Chosen Message Attacks
scenarios, under the AER assumption (see [25]). An adversary querying a sig-
nature oracle for messages of his choice, but with the restriction that a message
cannot be submitted twice to the oracle, cannot forge a signature for a message.
Otherwise, he can solve the AER problem, supposed to be intractable. Extend-
ing the proof to the stronger adaptive chosen message attacks model is an open
problem. Thus, two different ways have been proposed to make Esign provably
secure in the strong sense [14]. The first method, called Esign-D, is determinis-
tic: the random nonce r is generated from the message to sign and an additional
secret string, included in the private key. The second one, called Esign-R, uses
another random nonce ρ, given as part of the signature, to generate the hash of
the message as H(M‖ρ). In the following, the attacks we present are not cho-
sen message ones, but are based on flawed implementations. Hence, they do not
depend on the version used. So without lost of generality, we focus on the first
scheme described above.

3 Lattice based attacks

In this section we first recall some basic facts about lattices and reduction algo-
rithms. Then, we detail how to use lattice reduction in order to factor modulus
such as N under some assumptions on the random data used in Esign.

3.1 Lattice reduction

Notations. Let N = p2q an Esign modulus. Then any integer s in ZN can be
written as s = r + upq with 0 ≤ r < pq and 0 ≤ u < p.

Definitions. In the following, we denote by ‖x‖ the Euclidean norm of the vector

x = (x1, . . . , xd+1), defined by ‖x‖ =
√∑d+1

i=1 x2
i . Let v1, . . . ,vd, be d linearly

independent vectors such that for 1 ≤ i ≤ d, vi ∈ Zd+1. We denote by L, the
lattice spanned by the matrix V whose rows are v1, . . . ,vd. L is the set of all
integer linear combinations of v1, . . . ,vd:

L =

{
d∑

i=1

civi, ci ∈ Z
}

Geometrically, det(L) = det(V ×V T ) is the volume of the parallelepiped spanned
by v1, . . . ,vd. The Hadamard’s inequality says that det(L) ≤ ‖v1‖× . . .×‖vd‖.



Given 〈v1, . . . ,vd〉 the LLL algorithm [18] will produce a so called “reduced”
basis 〈b1, . . . ,bd〉 of L such that

‖b1‖ ≤ 2(d−1)/2 det(L)1/d (1)

in time O(d4 log(M)) where M = max1≤i≤d‖vi‖. Consequently, given a basis of
a lattice, the LLL algorithm finds a short vector b1 of L satisfying equation (1).
Moreover, we assume in the following that the new basis vectors are of the same
length and also have all their coordinates of approximatively the same length.
Indeed, a basis for a random lattice can be reduced into an almost orthonormal
basis. Therefore, ‖bi‖ ≈ ‖b1‖ for 1 ≤ i ≤ d, and so ‖bi‖d ≈ det(L).

3.2 Lattice-based Factoring Algorithm

In this subsection, we present a lattice technique to factor a modulus N = p2q,
where p and q are two k-bit primes, given an oracle O`,pq that, on input s̃ ∈
ZN , returns the ` MSBs of s̃ mod pq. We will see in section 4 that in practical
applications it is sometimes possible to realize such an oracle. In the following
we denote by n = 3k the bit length of N .

Let s̃ ∈ ZN be an integer smaller than N . If an O`,pq oracle is available, let
us query the ` most significant bits of s̃ mod pq; we denote by t the answer of
the oracle. Then, s = s̃− t× 22k−` may always be written as r + upq with 0 ≤
r < pq/2` and 0 ≤ u < p. Finally, after d queries to the oracle, we may consider
that we know d integers si ∈ ZN such that si = ri + uipq with 0 ≤ ri < pq/2`

and 0 ≤ ui < p. However, the ri and ui values are unknown. Our objective is to
recover pq.

First we note that if we are able to recover one of the ui, then recovering
the factors p and q of N can be efficiently done. Indeed, we suppose first that
the recovered ui value is larger than p/2`. This occurs with probability 1− 1/2`

and if this is not true, we can recover another ui until this event occurs. Thus,
we have p/2` < ui < p and we can write si/ui = ri/ui + pq where ri/ui is at
most k bits. Consequently, the k most significant bits of si/ui are those of pq.
We denote by A the integer matching pq on its k MSBs and zeroing the k least
significant bits. The 2k-bit value A is known and we can write pq = A+α where
α < 2k is unknown. Finally, since N = p× pq = p× (A + α), we have:

N

A
= p +

pα

A
(2)

where 0 ≤ pα
A < 2, since pα is at most of 2k bits and A is exactly 2k bits. Thus,

p equals either bN/Ac or bN/Ac − 1.
In the following, we present an algorithm to recover all the ui. In a first

phase, the algorithm looks for small linear integer combinations of the si using
the LLL algorithm. Then, in a second phase, we solve a linear system to recover
the ui. In the sequel, we describe these two phases.



Finding Small Linear Integer Combinations of the ui. The following lemma
shows that searching a small linear integer combination of the si with small
coefficients is sufficient to find a null linear combination of the ui.

Lemma 1. Let N = p2q be a n-bit modulus with p and q of roughly the same
length. Let s1, . . . , sd be d random integers in ZN , si = ri + uipq such that
|ri| < pq/2`.

If there exist d integers ci, for 1 ≤ i ≤ d, such that c = max1≤i≤d|ci| < 2`/d

and |∑d
i=1 cisi| < pq, then

∑d
i=1 ciui ∈ {−1, 0, 1}.

Moreover, if c < 2`/2d and |∑d
i=1 cisi| < pq/2, then

∑d
i=1 ciui = 0.

Proof. By definition, we have
∑d

i=1 cisi =
∑d

i=1 ciri +pq
∑d

i=1 ciui. Thus by the
triangle inequality, we can write:

pq

∣∣∣∣∣
d∑

i=1

ciui

∣∣∣∣∣ ≤
∣∣∣∣∣

d∑

i=1

cisi

∣∣∣∣∣ +

∣∣∣∣∣
d∑

i=1

ciri

∣∣∣∣∣ (3)

Moreover, since c < 2`/d and |ri| < pq/2` for 1 ≤ i ≤ d, then
∣∣∣∣∣

d∑

i=1

ciri

∣∣∣∣∣ ≤
d∑

i=1

|ciri| ≤ d×
(

2`

d
× pq

2`

)
≤ pq

Now we know that |∑d
i=1 cisi| < pq. Then from equation (3), pq|∑d

i=1 ciui| <

2pq and |∑d
i=1 ciui| < 2. This proves the first part of the lemma. The second

part of the lemma can be easily deduced from the previous computations. ut
Therefore, we look for small integer linear combination of the si, i.e. such that
|∑d

i=1 cisi| ≤ pq and c < 2`/d. From previous lemma, finding such a combination
gives a linear equation in the ui variables.

Now we present a lattice-based method to recover the coefficients of a small
combination of the si. Suppose K is an integer less than N , whose exact value
will be defined later. We consider the following d× (d + 1)-matrix:

M =




s1 K 0 . . . 0

s2 0 K
. . .

...
...

...
. . . . . . 0

sd 0 . . . 0 K




The size of the original basis vector is approximately N since the si are integers
in ZN . In order to estimate the size of a small vector returned by LLL, we upper
bound the volume of the lattice L, spanned by the rows of M . In the following,
we upperbound the determinant of the lattice L and show that

det(L)2 = K2d−2(K2 +
d∑

j=1

s2
j )



Since L is not a full lattice, its volume is the square root of the determinant
of the Gramian matrix [12], M ×MT . Thus, we have:

det(L)2 = det(M ×MT ) =

s2
1 + K2 s1 × s2 s1 × s3 . . . s1 × sd

s2 × s1 s2
2 + K2 s2 × s3 . . . s2 × sd

s3 × s1 s3 × s2
. . . . . .

...
...

. . . . . . sd−1 × sd

sd × s1 . . . . . . sd × sd−1 s2
d + K2

We can factor the first row by s1, the second by s2, . . ., sd and similarly for the
columns. Therefore the determinant can be written as

det(L)2 =
d∏

i=1

s2
i ×

1 + K2/s2
1 1 1 . . . 1

1 1 + K2/s2
2 1 . . . 1

1 1
. . . . . .

...
...

. . . . . . 1

1 . . . . . . 1 1 + K2/s2
d

The last determinant can be computed exactly and is equal to

d∏

i=1

K2

s2
i

+
d∑

i=1

d∏

j=1,j 6=i

K2

s2
j

and consequently,

det(L)2 = K2d−2(K2 +
d∑

j=1

s2
j )

Therefore, since for all i, |si| ≤ N and K ≤ N , the size of the small vector
returned by LLL on this lattice is less than

2(d−1)/2 × (d + 1)1/2d ×K
d−1

d N
1
d

For the present discussion we ignore factors like 2(d−1)/2 dependent only on the
size of the matrix. Indeed, in practice, LLL returns a short vector much smaller
than theoretical upperbounds. Consequently, we can assume that the shortest
vector returned by LLL is of length about (d + 1)1/2d ×K

d−1
d N

1
d .

Now we fix K =
⌈
N

2
3− 1

3(d−1) /2
⌉
. As a consequence, a simple computation

shows that, in this case, the length of a short vector returned by LLL is less than

(d + 1)1/2d ×N
2
3− 1

3d



which is less than pq since
√

d + 1 ¿ N1/3. Therefore a short vector has all its
coordinates smaller than pq.

In the following, we show how a short vector b1 returned by LLL allows us
to determine the coefficients of a short linear combination of the si. Due to the
form of the matrix M , b1 can be written as

b1 =

(
d∑

i=1

ci · si,K · c1, . . . , K · cd

)
(4)

where the ci are integers. We denote by c the maximum of the |ci|. If b1 is a
short vector returned by LLL, then all its coordinates are smaller than pq. In
particular, we have Kc < pq. Consequently, c < 2pq/N

2
3− 1

3(d−1) . Furthermore, if
` > n

3(d−1) + log(d) + 1, then

c <
2N2/3

N
2
3− 1

3(d−1)
≤ 2N

1
3(d−1) <

2`

d

Therefore, since
∑d

i=1 ci · si < pq and c < 2`/d, then lemma 1 implies that∑d
i=1 ciui ∈ {−1, 0, 1}.
As a consequence, if we have d random values si = ri + uipq, where |ri| <

pq/2` and ` >
⌈

n
3(d−1) + log(d) + 1

⌉
, then the shortest vector returned by LLL

gives us the coefficients of a very small combination of the ui and we finally have
a linear equation in the ui variables.

However, one equation is not sufficient to recover at least one ui. In the
second phase of our algorithm, we show that in fact we can obtain d very small
linear combinations of the ui.

Recovering the ui. The vectors of the new lattice basis have the property to
be all of about the same length. Consequently, each vector bi of the new basis
gives a small integer combination of the si and so of the ui. Experimentally, we
observe that the linear combination of the ui is null except for the last one which
is equal to ±1.

Thus, each short vectors returned by LLL gives a small linear combination
of the si. The matrix returned by the LLL algorithm can be expressed as C×M
where

C =




c1,1 c1,2 . . . c1,d

...
...

. . .
...

cj,1 cj,2 . . . cj,d

...
...

. . .
...

cd,1 cd,2 . . . cd,d






Each row of C contains the coefficients of a small linear combination of the
si. The matrix C is invertible since its determinant is ±1 and thus solving the
system u · CT = (0, . . . , 0, 1), where u = (u1, . . . , ud) allows to recover the ui.

Once the ui are obtained, recovering half of the bits of pq is easy by computing⌊
si

ui

⌋
for one of the value si. Then p is computed according to equation 2. Finally,

we have the following theorem:

Theorem 1. Let N = p2q be a n-bit modulus. Given an oracle O`,pq that
on input s ∈ ZN , returns the ` most significant bits of s mod pq where ` ≥⌈

n
3(d−1) + log(d) + 1

⌉
and d < n, there exists a probabilistic polynomial-time

algorithm in n to factor N from d random and independent numbers s in ZN .

3.3 Extending the attack to the Least Significant Bits

In this paper, we focus on the importance of MSBs confidentiality. However, such
a presentation has been chosen for simplicity reasons since the same analysis can
be done with the least significant bits. More precisely the knowledge of the ` least
significant bits of Si mod pq, for d values Si ∈ ZN , also allows us to factor N
for the obvious reason that the knowledge of the least significant bits can be
reduced to the knowledge of the most significant bits, as explained below.

Consider a 3k-bit Esign modulus N = p2q. A value S randomly chosen in
ZN can always be written as S = r + upq where 0 ≤ r < pq and u < p.
Assume now that the ` LSBs of r, denoted by r0, are known. Then, the ` LSBs
of S − r0 mod pq = r − r0 are zero. We now denote by r1 the (2k − `)-bit value
(r − r0)/2`. Let a be the inverse of 2` mod N . We can note that a is also the
inverse of 2` modulo pq. Consequently, we can compute

a× (S − r0) = a× (r − r0) mod pq

= a× 2` × (r − r0)
2`

mod pq

= (1 mod pq)× r1 mod pq

= r1 mod pq

Therefore, s = a(S − r0) mod N can be written as r1 + u1pq for u1 < p and
r1 < pq/2`. Thus s is a candidate input for the matrix M of the algorithm of
the previous subsection.

3.4 Application to RSA modulus

It is worth noticing that this algorithm is independent of the special form N =
p2q of the modulus. It also works for any RSA modulus N = pq as soon as:

` ≥
⌈

n

2(d− 1)
+ log(d) + 1

⌉



If si ∈ ZN is written as si = ri + uip, for ri < p/2` and ui < q, then we can
recover the ui and computing p from b si

ui
c.

As a consequence, if there exists an oracle O`,p which on input S ∈ ZN

returns the ` most significant bits of S mod p where p is a factor of the modulus
N , then we can factor N in polynomial time in log(N). Therefore the problem
of finding the ` MSBs of S mod p for d different random and independent values
S ∈ ZN , is equivalent to the factorization problem.

4 Partially known nonces in Esign signature scheme

In the following we describe some potential flaws in practical implementations
of Esign. The main idea is to notice that the secrecy and the randomness of all
the nonces is a crucial security point: the knowledge of only a few bits of these
random values is enough to efficiently recover the secret signature key.

Let N = p2q an Esign modulus where p and q are two k-bit primes such that
q < p. The signature scheme is fully described in section 2.

We first consider an attack on Esign when the random nonces are not full-size.
Suppose the random number generator is biased so that the most significant bits
of the random values are always zero. We show how to efficiently factor the mod-
ulus from a small set of signatures by using the technique described in section 3.2.
Precisely, suppose the random number generator produces nonces smaller than
pq/2`, for an integer ` ≥ 1, instead of randomly drawing uniformly distributed
integers in the interval [0, pq[. We know that all the generated signatures may
be written as s = r + upq where r is the random nonce. Thus, a signature is a
noisy multiple of the secret factor pq. If the number ` of null most significant
bits of r is sufficiently large, then we can factor N by recovering p with the
technique presented above. The attack goes as follows: suppose we have a set of
d Esign signatures si, for any messages. Each can be written as si = ri + uipq,
for 1 ≤ i ≤ d, and where ri ≤ pq/2` and ui < p. As shown in section 3.2 we can
recover the ui by reducing a lattice with the LLL algorithm. As soon as we have
` ≥

⌈
n

3(d−1) + log(d) + 1
⌉
, where n is the bit size of the modulus N . Then we

can write:
si

ui
=

ri

ui
+ pq

We remark that
⌊

ri

ui

⌋
is at most a k-bit integer. Thus, we can finally recover

p according to equation 2. Experimented results are provided below. The tests
have been run on an Intel Pentium IV, XEON 1.5 GHz, with the Shoup’s library
NTL ([24]). For each modulus length n, we give the length of pq (that is also
the expected length for the random r), the effective length of the nonce r, the
experimental and theoretical bounds for `, and the time needed to recover p and
q. The number of required signatures is d.

We observe that the experimental bound for ` is better than expected. This
can be simply explained by the good performances of the LLL algorithm. In



experimental theoretical
n = 3k 2k log(r)

value for ` bound for `
d time to factor

512 340 335 5 8 55 2 min 10

768 512 506 6 9 55 2 min 20

1024 682 674 8 11 56 2 min 30

1152 768 760 8 11 57 3 min

1536 1024 1013 11 14 57 4 min 10

2048 1364 1349 15 17 57 5 min 50

Fig. 1. Experimental results on Esign with partially known nonces.

practice, this algorithm works indeed better than expected and the vectors re-
turned are shorter than the provable upper bounds. Another explanation can
be made for this fact: in section 3.2, we have used a theoretical bound on the
sum

∑d
i=1 cisi ≤ dcN . This bound has then been used to find the theoretical

bound on `. However, in practice, the sum
∑d

i=1 cisi is approximately
√

d ·cN on
average. Thus, this gives a smaller bound on `: the algorithm works as soon as
` ≥

⌈
n

3(d−1) + log(d)
2 + 1

⌉
. This gives results closer to the experimental results.

This bound is given in figure 1.
Hence, if the random number generator produces nonces in an interval smaller

than expected, then recovering the secret key can be made from a small set of
signatures, for any messages. However, even if the random values are generated
in all the interval [0, pq[, the difference between two consecutive nonces should
not be too small. Indeed, in this case, the same attack applies: considering the
differences si+1 − si whose most significants bits modulo pq are small, gives the
same results.

Thus, the random number generator is a crucial security point and the nonces
should be generated uniformly and independently in the range [0, pq[. If we now
consider physical attacks on probing or electromagnetic analysis, the attack can
also be mounted as soon as the observation of the ` MSB or LSB of the random
nonces is feasible. This may be realistic using smart cards.

5 Other potential weaknesses in Esign implementations

In [2], Bellare, Goldwasser and Miccianco have pointed out that using linear
congruential generator in DSS signature scheme is totally insecure. The secret
key can be easily recovered in this case, and even if the outputs of the generator
are truncated. As for DSS, using a linear congruential generator (LCG) with
public parameters leads to insecure implementations of Esign.



Such a generator is parameterized by integers a, b, M and is based on a linear
recurrence: ri+1 = ari + b mod M . The initial seed r0 is the secret. We consider
the security of Esign in this case and we show that the knowledge of only two
signatures allows to recover the secret signature key. Suppose that Esign is used
with the pseudo-random generator defined by ri+1 = ari + b mod M where M is
a secret multiple of pq, less than N , and a and b are public integers in ZM . The
initial state r0, that should not be reset, is kept secret as part of the private key.
The modulus M is chosen to be a multiple of pq so that after reduction modulo
pq in the signature generation, the generated random values are still uniformly
distributed in the range [0, pq[. Such a choice seems to be the most natural one.

For any positive index i, we have si = ri + uipq. Thus the following equality
holds:

si+1 = ri+1 + ui+1pq = ((ari + b) mod M) mod pq + ui+1pq

Thus, since a and b are public and M is a multiple of pq, one can compute
si+1− asi− b which is a multiple of pq. Its GCD with the modulus N is pq, and
the secret key is found.

Note that this can also be applied even if the parameter b is secret. With only
four signatures si, si+1, sj and sj+1, the secret factor pq can also be recovered.
Indeed, it suffices to compute (si−1 − si) − (sj+1 − sj) = (ui+1 − ui + uj+1 −
uj +K)pq where K is an integer. The GCD of N with this difference reveals pq.

Finally, using a linear congruential generator is insecure in this case.

6 Conclusion

In conclusion we have shown in this paper that Esign must be carefully imple-
mented since like many other public key cryptosystems, security of ephemeral
keys is of crucial importance. We also insist on the idea that physical techniques
like probing or electromagnetic analysis can be very efficiently combined with
more theoretical algorithmic cryptanalysis methods, for example based on LLL.
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