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Abstract. We propose a new public key trace and revoke scheme secure
against adaptive chosen ciphertext attack. Our scheme is more efficient
than the DF scheme suggested by Y. Dodis and N. Fazio[9]. Our scheme
reduces the length of enabling block of the DF scheme by (about) half.
Additionally, the computational overhead of the user is lower than that
of the DF scheme; instead, the computational overhead of the server is
increased. The total computational overhead of the user and the server
is the same as that of the DF scheme, and therefore, our scheme is more
practical, since the computing power of the user is weaker than that of
the server in many applications. In addition, our scheme is secure against
adaptive chosen ciphertext attack under only the decision Diffie-Hellman
(DDH) assumption and the collision-resistant hash function H assump-
tion, whereas the DF scheme also needs the one-time MAC (message
authentication code) assumption.

1 Introduction

A broadcast encryption scheme enables a center to send encrypted data to a
large group of users over an insecure channel, where only legitimate users can
decrypt the data. The set of legitimate users is dynamically changing, so it
should be possible to prevent some revoked users from decrypting the data.
The broadcast encryption scheme has numerous applications, such as pay-TV
systems, the distribution of copyrighted materials, internet multicasting of video,
music, magazines, and so on.

A. Fiat and M. Naor first formalized the basic definitions and paradigms
of the broadcast encryption scheme [11]. Afterwards, many variants have been
investigated. One example is the scheme of tracing traitors [6]. In this setting,
the center can trace the traitors after a pirate decoder is confiscated. There are
two types of approaches to the traitor-tracing scheme. One is a scheme that uses
a secret key and coding approach [4, 6, 12, 16–19] and the other uses a public key
[3, 14]. In the secret key scheme, the keys in the pirate decoder can be identified
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by combinatorial methods. In the public key approach, the size of the enabling
block is independent of the number of subscribers. In addition, the public key
traitor tracing schemes enable the center to prepare a public key that allows
any entity to broadcast data to users. There is another variant of broadcast
encryption, the revoke system, which concentrates on the problem of excluding
a certain subset of users from receiving the data in a dynamically changing set
of users. There are many revoke systems that use the secret key setting. These
schemes are also divided into two categories. One is for stateless receivers [15,
13, 2] and the other is for non-stateless receivers [21, 22].

Recently, a public key traitor-tracing scheme with the revocation capability
was introduced by W. Tzeng and Z. Tzeng [20]. They also proposed a vari-
ant of their basic scheme to be secure against adaptive chosen ciphertext attack
(CCA2). However, Dodis and Fazio noted that W. Tzeng and Z. Tzeng’s scheme
was not secure against CCA2 even if a single user is corrupted [9]. Dodis and
Fazio also proposed their own scheme secure against CCA2 under the decision
Diffie-Hellman (DDH) assimption, the collision-resistant hash function H as-
sumption, and the one-time MAC assumption [9].

Our results We propose a new public key trace and revoke scheme secure
against CCA2. Our scheme does not use the additional one-time MAC, so its
security does not depend on the one-time MAC assumption. The length of the
enabling block of our scheme is about half that of the DF scheme. Additionally,
the computational overhead of the user is lower than that of the DF scheme
instead the computational overhead of the server is increased. The total com-
putational overhead of the user and the server is the same as that of the DF
scheme. (We only consider the computation of exponentiation computed by the
server and the user. If we did the analysis more precisely, our scheme is more
efficient than the DF scheme because it does not require computational overhead
for the MAC). Our scheme is more practical, since the computing power of the
user is weaker than that of the server in many applications.

By slightly modifying standard tracing algorithms from previous schemes
(e.g. [20]), our scheme can be a fully functional trace and revoke scheme. How-
ever, due to space limitations we will omit the tracing part and focus only on
the revoke scheme, which is the original contribution of this paper.

2 Preliminaries

In this section, we review the Lagrange interpolation in the exponent, the de-
cision Diffie-Hellman (DDH) assumption, and public key encryption schemes
secure against CCA2.

The Lagrange Interpolation in the Exponent Let q be a prime and
f(x)=

∑z
t=0 atxt a polynomial of degree z over Zq. Let x0, . . . , xz be distinct

elements in Zq. Then using the Lagrange interpolation, we can express f(x)



as
∑z

t=0(f(xt) · λt(x)), where λt(x) =
∏

0≤j 6=t≤z
xj−x
xj−xt

, 0 ≤ t ≤ z. We de-
fine the Lagrange interpolation operator as: LI(x0, . . . , xz; f(x0), . . . , f(xz))(x)
=

∑z
t=0(f(xt) · λt(x)) .

Next, we consider a cyclic group G of order q and a generator g of G. Let vt

= gf(xt), 0 ≤ t ≤ z, where xt ∈ Zq and vt ∈ G. Then we define the Lagrange
interpolation operator in the exponent as: EXP−LI(x0, . . . , xz; v0, . . . , vz)(x) =
gLI(x0,...,xz ;f(x0),...,f(xz)) =

∏z
t=0 g(f(xt)·λt(x)) =

∏z
t=0 v

λt(x)
t . We also remark that

EXP − LI(x0, . . . , xz; vr
0, . . . , v

r
z)(x) = [EXP − LI(x0, . . . , xz; v0, . . . , vz)(x)]r.

In what follows, we will refer to a function of the form gf(x), where f(x) is
polynomial, as an EXP - polynomial.

The Decision Diffie-Hellman Assumption Let G be a group of large prime
order q, and consider the following two distributions:

- the distribution R of random quadruples (g1, g2, u1, u2) ∈ G4,
- the distribution D of quadruples (g1, g2, u1, u2) ∈ G4, where g1, g2 are random,
and u1 = gr

1 and u2 = gr
2 for random r ∈ Zq.

The decision Diffie-Hellman (DDH) assumption is that it is computationally
hard to distinguish these two distributions. That is, we consider an algorithm
that should output 0 or 1, given a quadruple coming from one of the two distri-
butions. Then the difference between the probability that it outputs a 1 given
an input from R, and the probability that it outputs a 1 given an input from D
is negligible.

Our scheme is based on the modified Cramer-Shoup (M-CS) scheme [5] and
the DF scheme is based on the Cramer-Shoup (CS) scheme [7]. The M-CS scheme
is a variant of the CS scheme. We briefly review these schemes.

The Cramer-Shoup scheme Given a security parameter 1λ, the secret key is
(x1, x2, y1, y2, z) and the public key is (p, q, g1, g2, c, d, h,H), where p is a λ-bit
prime, g1, g2 are generators of G(a subgroup of Z∗p of a large prime order q),
function H is a hash function chosen from a collision-resistant hash function
family, x1, x2, y1, y2, z

R← Zq, c = gx1
1 gx2

2 , d = gy1
1 gy2

2 , and h = gz
1 .

Given a message m ∈ G, the encryption algorithm runs as follows. First, it
chooses r

R← Zq and computes u1 = gr
1, u2 = gr

2, e = hrm,α = H(u1, u2, e), v =
crdrα. The ciphertext is (u1, u2, e, v). Given a ciphertext, the decryption algo-
rithm runs as follows. First, it computes v′ = ux1+y1α

1 ·ux2+y2α
2 . Next, it performs

a validity check. If v 6= v′, then it outputs an error message, denoted ‘⊥’; oth-
erwise, it outputs m = e

uz
1
. The security of this scheme against CCA2 is proven,

based on DDH assumption, in [7].

The Modified Cramer-Shoup scheme R. Canetti and S. Goldwasser slightly
modified the above CS scheme as follows, without losing in security [5]. If the



decryption algorithm finds v 6= v′, instead of outputting ‘⊥’ it outputs a random
value in G. In a sense, the modified scheme is even “more secure” since the
adversary is not notified by the decryption algorithm whether a ciphertext is
valid.

Now that the decryption algorithm does not explicitly check validity, given
(u1, u2, e, v) it outputs ( e

uz
1
) · (v′

v )s instead, where v′is computed as in the CS

scheme and s
R← Zq. Note that the decryption algorithm is now randomized. To

see the validity of this modification, notice that if v = v′ then ( v
v′ )

s=1 for all
s, and the correct value is outputted. If v 6= v′, then the decryption algorithm
outputs a uniformly distributed value in G, independent of m. The security of
M-CS scheme against CCA2 is proven, based on the DDH assumption, in [5].

3 Public key broadcast encryption scheme

We use the definition in [9]. In a public key broadcast encryption scheme BE,
a session key s is encrypted and broadcasted with the symmetric encryption of
the “actual” message. Generally, the encryption of s is called the enabling block.

3.1 Public key broadcast encryption scheme

A public key broadcast encryption scheme BE consists of a 4-tuple of poly-time
algorithms (KeyGen, Reg, Enc, Dec):

- KeyGen, the key generation algorithm, is a probabilistic algorithm used by
the center to set up all the parameters of the scheme. KeyGen takes as input a
security parameter 1λ and a revocation threshold z (i.e. the maximum number
of users that can be revoked) and generates the public key PK and the master
secret key SKBE .
- Reg, the registration algorithm, is a probabilistic algorithm used by the center
to compute the secret initialization data needed to construct a new decoder each
time a new user subscribes to the system. Reg receives as input the master secret
key SKBE and a (new) index i associated with the user; it returns the user’s
secret key SKi.
- Enc, the encryption algorithm, is a probabilistic algorithm used to encapsulate
a given session key s within an enabling block T. Enc takes as input the public
key PK, the session key s, and a set R of revoked users (with |R| ≤ z) and
returns the enabling block T .
- Dec, the decryption algorithm, is a deterministic algorithm that takes as input
the secret key SKi of user i and the enabling block T and returns the session
key s that was encapsulated within T if i was a legitimate user when T was
constructed, or the special symbol “⊥”.

3.2 Security against adaptive chosen ciphertext attack

An adversary A in an adaptive chosen ciphertext attack (CCA2) is a proba-
bilistic, poly-time oracle query machine. The attack game is defined in terms



of an interactive computation between the adversary and its environment. We
describe the attack game used to define the security against CCA2; that is, we
define the environment in which A runs. We assume that the input to A is 1λ

for some λ.

Stage 1: The adversary queries a key generation oracle. The key generation
oracle computes (PK, SKBE)← BE.KeyGen(1λ, z) and responds with PK.

Stage 2: The adversary enters the user corruption stage, where she is given ora-
cle access to the User Corruption Oracle CorSKBE

(·). This oracle receives as in-
put the index i of the user to be corrupted, computes SKi ← BE.Reg(SKBE , i)
and returns the user’s secret key SKi. This oracle can be called adaptively for
at most z times. Let us say that at the end of this stage the set R of at most z
users is corrupted.

Stage 3: The adversary submits two session keys s0, s1 to an encryption or-
acle. On input s0, s1, the encryption oracle computes: σ

R← {0, 1}; T ∗ ←
BE.Enc(PK, sσ, R) and responds with the “target” enabling block T ∗.

Stage 4: The adversary continues to make calls to the decryption oracle, subject
only to the restriction that a submitted enabling block T is not identical to T ∗.

Stage 5: The adversary outputs σ∗ ∈ {0, 1}.

We define the advantage of A as AdvCCA2
BE,A (λ)= |Pr(σ∗ = σ)− 1

2 |

We consider a variant of the CCA2, generalized chosen ciphertext attack
(gCCA2) [1, 9]. The attack game of gCCA2 is the same as that of CCA2 ex-
cept Stage 4. In the attack game of gCCA2, the adversary cannot ask about
enabling blocks closely related to the “target” enabling block. That is, in Stage
4, the decryption oracle first checks whether equivalence relation Ri(T, T ∗) holds.
If so, it outputs “⊥”.

Definition 1 (z-resilience of a public key broadcast encryption scheme)
We say that a public key broadcast encryption scheme BE is z-resilient against
CCA2 attack if for all probabilistic, poly-time oracle query machines A, the func-
tion AdvCCA2

BE,A (λ) grows negligibly in λ .

4 The DF schemes

Y. Dodis and N. Fazio proposed three broadcast encryption schemes (we call
them DF-CPA, DF-gCCA, DF-CCA2 ) that achieve z-resilience in an adap-
tive setting for the case of CPA (chosen plaintext attack), gCCA2, and CCA2,
respectively. Subsequent schemes build on the previous one in an incremental
manner. Therefore, the DF-CPA scheme is more efficient than the DF-gCCA2



scheme and DF-gCCA2 scheme is more efficient than the DF-CCA2 scheme in
the length of the enabling block and the computational overhead. In the next
section, we define DF-gCCA2 and DF-CCA2. For a more detailed description,
see [9].

4.1 DF-gCCA2

Key generation algorithm: KeyGen selects two random generators g1, g2 ∈
G, where G is a group of order q, in which q is a large prime such that 2q =
p − 1, and p is a large prime. KeyGen selects six z-degree polynomials X1(ξ),
X2(ξ), Y1(ξ), Y2(ξ), Z1(ξ), Z2(ξ) over Zq, and computes ct = g

X1(t)
1 · gX2(t)

2 ,
dt = g

Y1(t)
1 · gY2(t)

2 , ht = g
Z1(t)
1 · gZ2(t)

2 , for 0 ≤ t ≤ z. Finally, KeyGen chooses a
hash function H from a family of F of collision resistant hash functions, and out-
puts (PK, SKBE), where PK = (p, q, g1, g2, c0, · · · , cz, d0, · · · , dz, h0, · · · , hz,H)
and SKBE = (X1, X2, Y1, Y2, Z1, Z2).

Registration algorithm: Each time a new user i > z decides to subscribe
to the system, the center provides him with a decoder box containing the secret
key SKi = (i,X1(i), X2(i), Y1(i), Y2(i), Z1(i), Z2(i)).

Encryption algorithm: Using the ides of the CS scheme [7, 8], in order to
obtain a non-malleable ciphertext, they “tag” each encrypted message so that it
can be verified before proceeding with the actual decryption. In the broadcast
encryption scenario, where each user has a different decryption key, the tag can-
not be a single point - they need to distribute an entire EXP -polynomial V (x).
This is accomplished by appending z+1 tags, v0, . . . , vz, to the ciphertext.

The encryption algorithm receives as input the public key PK, the session
key s, and a set R = {j1, . . . , jz} of revoked users. It proceeds as described in
Fig. 1, and finally it outputs T .

Encryption algorithm Enc(PK, s, R) Decryption algorithm Dec(i, T )

E1. r1 ←r Zq D1. α ← H(S, u1, u2, (j1, Hj1),.., (jz, Hjz ))

E2. u1 ← gr1
1 D2. v̄i ← u

X1(i)+Y1(i)α
1 · uX2(i)+Y2(i)α

2

E3. u2 ← gr1
2 D3. vi ← EXP-LI (0,.., z; v0,.., vz)(i)

E4. Ht ← hr1
t , (t = 0,.., z) D4. if vi = v̄i

E5. Hjt ← EXP-LI (0,.., z; H0,.., Hz)(jt) D5. then Ht ← u
Z1(i)
1 · uZ2(i)

2

(t = 1,.., z) D6. s ← S
EXP−LI(j1,..,jz,i;Hj1 ,..,Hjz ,Hi)(0)

E6. S ← s ·H0 D7. return s
E7. α ← H(S, u1, u2, (j1, Hj1),.., (jz, Hjz )) D8. else return ⊥
E8. vt ← cr1

t dr1α
t , (t = 0,.., z)

E9. T ←< S, u1, u2, (j1, Hj1),.., (jz, Hjz ),
v0,.., vz >

Figure 1. DF-gCCA2



Decryption algorithm: To recover the session key, a legitimate user i can
proceed as in Fig. 1. He computes the tag v̄i using his private key and then
verifies the validity of the ciphertext by checking the interpolation of the z+1
values in point i against its v̄i (Step D2, D3, and D4). If i is a revoked user,
the algorithm fails in Step D6, since the interpolation points j1, · · · , jz, i are not
pairwise distinct.

Security: The adversary can make the ciphertext malleable because of the use
of an EXP -polynomial V (x). Since each user i can verify the value of V (x)
in only one point, the adversary can modify v0, · · · , vz and construct a differ-
ent EXP -polynomial V ′(x) such that V ′(x = xi)=V (xi), thus fooling user i
to accept as valid a corrupted ciphertext. To prevent this, a family of equiva-
lence relations{Ri} is introduced. Two ciphertext T and T ′ are equivalent for
user i if they have the same “data” components, and the tag “relevant to user
i” is correctly verified, i.e. vi = v′i (even though other ”irrelevant” tags could
be different)[9]. By using this equivalent relation, DF-gCCA2 is secure against
gCCA2. In Stage 4 of the attack game, the adversary cannot ask T which is
equivalently related to the “target” T ∗.

4.2 DF-CCA2

In Section 4.1, we saw that the DF-gCCA2 scheme does not provide a complete
solution to the CCA2 problem, but only suffices for gCCA2 security. Indeed,
given a challenge T ∗ with tag sequence v0, · · · , vz, it is trivial to make a different
sequence v′0, · · · , v′z such that vi = v′i, resulting in a “different” enabling block
T 6= T ∗: however, Dec(i, T ∗)=Dec(i, T ), allowing the adversary to “break”
CCA2 security.

To achieve CCA2 security Dodis and Fazio used a trick to make the tag
sequence v0, · · · , vz non-malleable. To this end, they used a message authentica-
tion code (MAC). The key generation algorithm and the registration algorithm
are the same as those of DF-gCCA2. The encryption and decryption algorithm
are shown in Fig. 2. The encryption algorithm operates similarly to the gCCA2
encryption algorithm, but the main difference is that now a MAC key k is used
to MAC the tag sequence v0, · · · , vz, and is encapsulated within T along with
the session key s.

If the DDH problem is hard in G, H is chosen from a collision-resistant hash
function family F , and MAC is a one-time message authentication code, then
the DF-CCA2 scheme is z-resilient against CCA2[9].

5 Proposed scheme

In this section, we propose a new public key trace and revoke scheme secure
against CCA2. Our scheme does not use the additional one-time MAC, so its se-
curity does not depend on the one-time MAC. The length of the enabling block of



Encryption algorithm Enc(PK, s, R) Decryption algorithm Dec(i, T )

E1.r1 ←r Zq D1. α ← H(S, u1, u2, (j1, Hj1),.., (jz, Hjz ))

E2.u1 ← gr1
1 D2. v̄i ← u

X1(i)+Y1(i)α
1 · uX2(i)+Y2(i)α

2

E3.u2 ← gr1
2 D3. vi ← EXP-LI (0,.., z; v0,.., vz)(i)

E4.Ht ← hr1
t , (t = 0,.., z) D4. if vi = v̄i

E5.Hjt ← EXP-LI (0,.., z; H0,.., Hz)(jt) D5. then Ht ← u
Z1(i)
1 · uZ2(i)

2

(t = 1,.., z) D6. s||k ← S
EXP−LI(j1,..,jz,i;Hj1 ,..,Hjz ,Hi)(0)

E6.k ←r K D7. extract s and k from (s||k)
E7.S ← (s||k) ·H0 D8. if τ 6= MACk(v0,..vz)
E8.α ← H(S, u1, u2, (j1, Hj1),.., (jz, Hjz )) D9. then return ⊥
E9.vt ← cr1

t dr1α
t , (t = 0,.., z) D10. else return s

E10.τ ← MACk(v0,..vz) D11.else return ⊥
E11.T ←< S, u1, u2, (j1, Hj1),.., (jz, Hjz ),

v0,.., vz, τ >

Figure 2. DF-CCA2

our scheme is about half that of the DF-CCA2 (DF-gCCA2) scheme. Addition-
ally, the computational overhead of the user is lower than that of the DF-CCA2
(DF-gCCA2) scheme. Instead, the computational overhead of the server is in-
creased, but the total computational overhead of the user and the server is the
same as that of the DF-CCA2 (DF-gCCA2) scheme. We only consider the com-
putation of exponentiation computed by the server and user. Our scheme is more
efficient precisely because it does not require the computational overhead for the
MAC but the DF-CCA2 scheme does. Our scheme is more practical, since the
computing power of the user is weaker than the server in many applications.

Main Idea: In the DF-CCA2 scheme, given the enabling block T ←< S, u1, u2,
(j1,Hj1), · · ·, (jz,Hjz

), v0, . . ., vz, τ) >, to check the validity of T user i con-
structs V (x) using v0, . . . , vz and checks whether V (x = i) = vi. He also checks
the validity of v0, · · · , vz by use of the MAC value τ . Our idea starts from the
problem of the DF-gCCA2 scheme. In the DF-gCCA2 scheme, the decryption or-
acle cannot distinguish V ′(x) such that V ′(i) = V (i), but v′0, · · · , v′z 6= v0, · · · , vz.
The DF-CCA2 scheme solves this problem by the use of the MAC.

We make the enabling block T ←< S, u1, u2, c
rdrα, v1, . . . , vz >. Given T ,

user i computes V (x) using v1, · · · , vz and his secret share vi. Then he checks
the validity of T using crdrα and V (x = 0). The adversary cannot compute
V (x = 0), since he knows only z shares of the degree-z polynomial V (x). There-
fore, the adversary cannot cheat the decryption oracle.

Key generation algorithm: KeyGen selects two random generators g1, g2 ∈
G, where G is a group of order q in which, q is a large prime such that 2q = p−1,
and p is a large prime. It selects x1, x2, y1, y2 ∈ Zq and z-degree polynomials
X1(ξ), X2(ξ), Y1(ξ), Y2(ξ) over Zq such that X1(0) = x1, X2(0) = x2, Y1(0) = y1,



Y2(0) = y2. It also selects z-degree polynomials Z1(ξ), Z2(ξ) over ξ and computes
c = gx1

1 gx2
2 , d = gy1

1 gy2
2 . Then, it computes ht = g

Z1(t)
1 g

Z2(t)
2 , 0 ≤ t ≤ z and

x1,t = g
X1(t)
1 , x2,t = g

X2(t)
2 , y1,t = g

Y1(t)
1 , y2,t = g

Y2(t)
2 , 0 ≤ t ≤ z .

Finally, KeyGen chooses a hash function H from a family F of collision
resistant hash functions, and outputs (PK, SKBE), where PK = (p, q, g1, g2,
c, d, x1,0, . . ., x1,z, x2,0, . . ., x2,z, y1,0,. . ., y1,z, y2,0,. . ., y2,z, h0, · · ·, hz,H) and
SKBE = (X1, X2, Y1, Y2, Z1, Z2).

Registration algorithm: Each time a new user i > z decides to subscribe to
the system, the center provides him with a decoder box containing the secret
key SKi = (i,X1(i), X2(i), Y1(i), Y2(i), Z1(i), Z2(i)).

Encryption algorithm: Our scheme is based on the idea of M-CS [5]. The
encryption algorithm receives as input the public key PK, the session key s,
and a set R = {j1, · · · , jz} of revoked users. It proceeds as described in Fig.
3, and finally it outputs T . Enc computes and distributes Fjt

, 1 ≤ t ≤ z. We
can think that Fjt

= g
Q(jt)
1 where Q(ξ) is z-degree polynomial in Zq. Therefore,

the adversary who only knows z shares of Fjt
cannot cheat the decryption oracle.

Encryption algorithm Enc(PK, s, R) Decryption algorithm Dec(i, T )

E1. r1 ←r Zq D1. α ← H(S, u1, u2)

E2. u1 ← gr1
1 D2. Ci ← u

X1(i)+Y1(i)α
1 · uX2(i)+Y2(i)α

2

E3. u2 ← gr1
2 D3. Hi ← u

Z1(i)
1 · uZ2(i)

2

E4. Ht ← hr1
t , (t = 0,.., z) D4. Fi ← Hi

C
Ci

E5. Hjt ← EXP-LI (0,.., z; H0,.., Hz)(jt) D5. s ← S
EXP−LI(j1,..,jz,i;Fj1 ,..,Fjz ,Fi)(0)

(t = 1,.., z)
E6. S ← s ·H0

E7. α ← H(S, u1, u2)
E8. Ct ← (x1,tx2,t)

r1(y1,ty2,t)
r1α

(t = 0,.., z)
E9. Cjt ← EXP-LI (0,.., z; C0,.., Cz)(jt),

(t = 1,.., z)
E10.C ← cr1dr1α

E11.Fjt = Hjt
C

Cjt
, (t = 1,.., z)

E12.T ←< S, u1, u2, c
r1dr1α,

(j1, Fj1),.., (jz, Fjz ) >

Figure 3. Our Proposed scheme



Decryption algorithm: To recover the session key, a legitimate user i can
proceed as in Fig. 3. A legitimate user can compute s in Step D5, but the revoked
user fails, since the interpolation of j1, · · · , jz, i are not pairwise distinct.

We here verify that the output of the decryption algorithm is identical to the
session key s if the user i is a legitimate user. We can rewrite Fi computed from
Step D4 as follows (let g2 = gw

1 ):

Fi = Hi · ( C
Ci

)
= (uZ1(i)

1 u
Z2(i)
2 )(cr1dr1α)(u−X1(i)−Y1(i)α

1 · u−X2(i)−Y2(i)α
2 )

= g
r1Z1(i)+wr1Z2(i)−r1X1(i)−r1Y1(i)α−wr1X2(i)−wr1Y2(i)α
1 cr1dr1α

= g
r1Z1(i)+wr1Z2(i)−r1X1(i)−r1Y1(i)α−wr1X2(i)−wr1Y2(i)α+(r1x1+wr1x2+r1y1α+wr1y2α)
1

= g
Q(i)
1

Consequently, Fi=g
Q(i)
1 where Q(ξ) is z-degree polynomial in Zq. If we com-

pute F0 using the Lagrange interpolation in the exponent as in Step D5, we can
obtain the following value:

F0 =EXP − LI(j1, · · · , jz, i;Fj1 , . . . , Fjz , Fi)(0)
=g

(r1z1+wr1z2)−r1x1−r1y1α−wr1x2−wr1y2α+(r1x1+wr1x2+r1y1α+wr1y2α)
1

=H0
cr1dr1α

C
=H0

Therefore, S
F0

= (s·H0)
H0

= s.

Security:

Theorem 1 If the DDH problem is hard in G and H is chosen from a collision-
resistant hash function family F , then our scheme is z-resilient against the adap-
tive chosen ciphertext attack.

Proof. Our overall strategy for the proof follows the structural approach in [8].
We shall define a sequence G0,G1, . . . ,Gl of modified attack games. Each of
the games G0,G1, . . . ,Gl operates on the same underlying probability space.
In particular, the public key cryptosystem, the coin tosses Coins of A, and the
hidden bit σ take on identical values across all games, while some of the rules
that define how the environment responds to oracle queries may differ from game
to game. For any 1 ≤ i ≤ l, we let Ti be the event that σ = σ∗ in the game
Gi. Our strategy is to show that for 1 ≤ i ≤ l, the quantity |Pr[Ti−1]− Pr[Ti]|
is negligible. In addition, it will be evident from the definition of game Gl that
Pr[Tl] = 1

2 , which will imply that |Pr[T0]− 1
2 | is negligible.

Before continuing, we state the following simple but useful lemma in [8].

Lemma 1 Let U1, U2, and F be the events defined on some probability space.
Suppose that the event U1 ∧ ¬F occurs if and only if U2 ∧ ¬F occurs. Then
|Pr[U1]− Pr[U2]| ≤ Pr[F ].



Game G0: Let G0 be the original attack game, let σ∗ ∈ {0, 1} denote the output
of A, and let T0 be the event that σ = σ∗ in G0, so that AdvCCA2

Ourscheme,A(λ) =
|Pr[T0]− 1

2 |.

Game G1: G1 is identical to G0, except that in G1, steps E4 and E8 are
replaced with the following:

E′
4. Ht ← u

Z1(t)
1 · uZ2(t)

2 , t = 0, . . . , z

E′
8. Ct ← u

X1(t)+Y1(t)α
1 · uX2(t)+Y2(t)α

2 , t = 0, . . . , z

The change we have made is purely conceptual, it is just to make explicit
any functional dependency of the above quantities on u1 and u2. Cleary, it holds
that Pr[T0] = Pr[T1].

Game G2: We again modify the encryption oracle, replacing steps E1 and E3

by

E′
1. r1 ←r Zq, r2 ←r Zq\{r1}

E′
3. u2 ← gr2

2

Notice that while in G1 the values u1 and u2 are obtained using the same
value r1, in G2 they are independent subject to r1 6= r2. Therefore, any dif-
ference in behavior between G1 and G2 immediately yields a PPT algorithm
A1 that is able to distinguish DH tuples from totally random tuples with a non
negligible advantage. That is, |Pr[T2]− Pr[T1]| ≤ ε1 for some negligible ε1.

Game G3: In this game, we modify the decryption oracle in G2 to obtain G3

as follows:

D1. α ← H(S, u1, u2)
D′

2. Ci ← u
X1(i)+Y1(i)α+(X2(i)+Y2(i)α)w
1

D2−1. if (u2 = uw
1 )

D′
3. then Hi ← u

Z1(i)+Z2(i)w
1

D′
4. Fi ← Hi

C
Ci

D′
5. s ← S

EXP−LI(j1,...,jz,i,Fj1 ,...,Fjz ,Fi)(0)

D′
6. else return ⊥

At this point, let R3 be the event that the adversary A submits some de-
cryption queries that are rejected in Step D2−1 in G3, but passed in G2. Note
that if a query passes in D2−1 in G3, it would have also passed in G2. It is clear
that G2 and G3 proceed identically until the event R3 occurs. In particular, the
event T2 ∧ ¬R3 and T3 ∧ ¬R3 are identical. Therefore, by Lemma 1, we have

|Pr[T3]− Pr[T2]| ≤ Pr[R3]



and so it suffices to bound Pr[R3]. To do this we consider two more games,
G4 and G5

Game G4: This game is identical to G3, except for a change in Step E6 as
follows:

E′
6.e ←r Zq, S ← ge

1

It is clear by construction that Pr[T4] = 1
2 , since in G4, the variable σ is

never used at all, and so the adversary’s output is independent of σ.
Let R4 be the event that some decryption queries that would have passed in

G2, fail to pass in Step D2−1 in G4. Then we have the following facts.

Lemma 2 Pr[T4] = Pr[T3] and Pr[R4] = Pr[R3].

The proof of Lemma 2 is shown in the Appendix

Game G5: This game is identical to G4, except for the following modification.
In the decryption algorithm, we add the following special rejection rule, to pre-
vent A from submitting an illegal enabling block to the decryption oracle once
she has received her challenge T ∗.

Special rejection rule: After the adversary A receives the challenge T ∗ =
(S∗, u∗1, u

∗
2, (c

rdrα)∗, (j∗1 , F ∗j1), . . . , (j
∗
z , F ∗jz

)), the decryption oracle rejects any query
< i, T >, with T = (S, u1, u2, (crdrα), (j1, Fj1), . . . , (jz, Fjz )), such that (S∗, u∗1, u

∗
2)

6= (S, u1, u2), but α = α∗, and it does so before executing the test in Step D2−1.

To analyze this game, we define two events. Let C5 be the event that the
adversary A submits a decryption query that is rejected using the above special
rejection rule, and R5 the event that the adversary A submits some decryption
query that would have passed in G2, but fails to pass in Step D2−1 in G5. Now it
is clear that G4 and G5 proceed identically until event C5 occurs. In particular,
the event R4∧¬C5 and R5∧¬C5 are identical. Therefore, by Lemma 1, we have

|Pr[R5]− Pr[R4]| ≤ Pr[C5]

Now, if event C5 occurs with non-negligible probability, we can construct
a PPT algorithm A2 that breaks the collision resistance assumption with non-
negligible probability. So, |Pr[C5]| ≤ ε2 for some negligible ε2.

Finally, we show that event R5 occurs with negligible probability.

Lemma 3 Pr[R5] ≤ QA(λ)
q .

Where, QA(λ) is an upper bound on the number of decryption queries made
by the adversary A. The proof of Lemma 3 is shown in the Appendix.

Finally, combining the intermediate results, we conclude that the adversary
A’s advantage is negligible:



AdvCCA2
Ourscheme,A(λ) ≤ ε1 + ε2 + QA(λ)

q

2
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Appendix

To prove Lemma 2 and Lemma 3, the following lemma is useful. The proof of
Lemma 4 is shown in [8]. Our proofs follow the structural approach in [8, 10].
Therefore, they are similar to that of [10] except for some variables and notations.

Lemma 4 Let k, n be integers with 1 ≤ k ≤ n, and let K be a finite field.
Consider a probability space with random variables α ∈ Kn×1, β=(β1, . . . , βk)T

∈ Kk×1, γ ∈ Kk×1, and M ∈ Kk×n, such that α is uniformly distributed over
Kn×1, β=Mα+γ, and for 1 ≤ i ≤ k, the i th rows of M and γ are determined
by β1, . . . , βi−1.

Then conditioning on any fixed values of β1, . . . , βk−1 such that the resulting
matrix M has rank k, the value of βk is uniformly distributed over K in the
resulting conditional probability space.

In what follows, we define:

Coins: the coin tosses of A;
Xt = X1(t) + wX2(t), Yt = Y1(t) + wY2(t), Zt = Z1(t) + wZ2(t), t = 0, . . . , z;
w = logg1g2

Proof of Lemma 2

Lemma 2. Pr[T4] = Pr[T3] and Pr[R4] = Pr[R3].

Proof. Consider the quantity X := (Coins, H, w, X1(0), . . ., X1(z), X2(0), . . .,
X2(z), Y1(0), . . ., Y1(z), Y2(0), . . ., Y2(z), Z1, . . ., Zz, σ, r∗1 , r∗2) and the quantity
Z0. Note that X and Z0 take on the same values in G3 and G4. Consider also
the quantity e∗=logg1S

∗. This quantity takes on different values in G3 and G4.
For clarity, let us denote these values as [e∗]3 and [e∗]4, respectively.

It is clear by inspection that the events R3 and T3 are determined as func-
tions of X, Z0, and [e∗]3. Also, the events R4 and T4 are determined as functions
of X, Z0 and [e∗]4. Therefore to prove Lemma 2, it suffices to show that the dis-
tributions of (X, Z0, [e∗]3) and (X, Z0, [e∗]4) are identical. Observe that by the
construction, conditioning on any fixed values of X and Z0, the distribution of
[e∗]4 is uniform over Zq. Therefore, it will suffice to show that conditioning on
any fixed values of X and Z0, the distribution of [e∗]3 is uniform over Zq .

We have the following equation:



(
Z0

[e∗]3

)
=

(
1 w
r∗1 wr∗2

)

︸ ︷︷ ︸
M

·
(

Z1(0)
Z2(0)

)
+

(
0

logg1sσ

)

where det(M)=w(r∗2 − r∗1) 6= 0 since r∗2 6= r∗1 .
Conditioning only on a fixed value of X, the matrix M is fixed, but the val-

ues Z1(0) and Z2(0) are still uniformly and independently distributed over Zq.
If we further condition on a fixed value of Z0, the value of sσ is fixed; hence, by
Lemma 4, the distribution of [e∗]3 is uniform over Zq. 2

Proof of Lemma 3

Lemma 3. Pr[R5] ≤ QA(λ)
q .

Proof. For 1 ≤ j ≤ QA(λ), we define the following events;

- R
(j)
5 : the event that the jth ciphertext < i, T >, submitted to the decryp-

tion oracle in G5, fails to pass D2−1, but would have passed in G2,

- B
(j)
5 : the event that the jth ciphertext < i, T >, submitted to the decryp-

tion oracle before A received her challenge,

- B̂
(j)
5 : the event that the jth ciphertext < i, T >, submitted to the decryption

oracle after A received her challenge.

If we show that Pr[R(j)
5 |B(j)

5 ] ≤ 1
q and Pr[R(j)

5 |B̂(j)
5 ] ≤ 1

q , then Lemma 3 is
proved. 2

Lemma 5 For all 1 ≤ j ≤ QA(λ), we have Pr[R(j)
5 |B(j)

5 ] ≤ 1
q .

Lemma 6 For all 1 ≤ j ≤ QA(λ), we have Pr[R(j)
5 |B̂(j)

5 ] ≤ 1
q .

Proof of the Lemma 5. Fix 1 ≤ j ≤ QA(λ) and consider the quantities:

X := (Coins, H, w, Z0, . . . , Zz), X ′ := (X0, . . . , Xz, Y0, . . . , Yz)

These two quantities completely determine the behavior of the adversary up
to the moment that A performs the encryption query, and in particular, they
completely determine the event B

(j)
5 . Let us call X and X ′ relevant if the event

B
(j)
5 occurs. Hence to prove Lemma 5, it suffice to prove that the probability of

event R
(j)
5 , conditioned on any relevant values of X and X ′, is less than 1

q .
The test D2−1 fails if and only if u2 6= uw

1 . Thus if the test in D2−1 fails but
would have passed in G2, it must be the case that u2 6= uw

1 and cr1dr1α=EXP-
LI (j1, . . . , jz, i: Cj1 , . . . , Cjz

, Ci)(0). Taking the logs (base g1), the condition



u2 6= uw
1 is equivalent to r2 6= r1. If we let β=logg1c

r1dr1α and β̂=logg1EXP-
LI (j1, . . . , jz, i: Cj1 , . . . , Cjz

, Ci)(0), then β̂=r1X1(0)+wr2X2(0)+αr1Y1(0)+αw

r2Y2(0). Notice that β̂ can be expressed in terms of (X1(0), X2(0), . . ., X1(z), X2(z),
Y1(0), Y2(0), . . ., Y1(z), Y2(z))T . Therefore, we can make the following equation
(for details, see [10]):




X0

...
Xz

Y0

...
Yz

β̂




=




1 w · · · 0 0 0 0 · · · 0 0
...

. . .
...

0 0 · · · 1 w 0 0 · · · 0 0
0 0 · · · 0 0 1 w · · · 0 0
...

. . .
...

0 0 · · · 0 0 0 0 · · · 1 w
σ0 σ1 · · · σ2z σ2z+1 σ2z+2 σ2z+3 · · · σ4z+2 σ4z+3




︸ ︷︷ ︸
M

·




X1(0)
X2(0)

...
X1(z)
X2(z)
Y1(0)
Y2(0)

...
Y1(z)
Y2(z)




Let us first fix X, which fixes the first 2z+2 rows of the matrix M , but the
values (X1(0), X2(0), . . ., Y1(z), Y2(z)) are still uniformly distributed over Zq.
Next fix X ′ such that X and X ′ are relevant and r1 6= r2. Then the last row
of the matrix M is fixed. From this, it follows by Lemma 4 that β̂ is uniformly
distributed over Zq, but β is fixed, we have Pr[β = β̂] = 1

q . 2

Proof of the Lemma 6. Fix 1 ≤ j ≤ QA(λ) and consider the quantities:

X := (Coins, H, w, Z0, . . . , Zz, r
∗
1 , r∗2 , e∗), X ′ := (X0, . . . , Xz, Y0, . . . , Yz, β

∗).

where β∗ =logg1(c
r1dr1α)∗ and i > z. The values of X and X ′ completely

determine the adversary’s entire behavior in Game G5, in particular, they com-
pletely determine the event B̂

(j)
5 . Let us call X and X ′ relevant if the event B̂

(j)
5

occurs. It will suffice to prove that conditioned on any fixed, relevant values of
X and X ′, the probability that R

(j)
5 occurs is bounded by 1

q . As in the proof of
Lemma 5, we have the following equation (for the detail, see [10]):




X0

...
Xz

Y0

...
Yz

β∗

β̂




=




1 w · · · 0 0 0 0 · · · 0 0
...

. . .
...

0 0 · · · 1 w 0 0 · · · 0 0
0 0 · · · 0 0 1 w · · · 0 0
...

. . .
...

0 0 · · · 0 0 0 0 · · · 1 w
σ∗0 σ∗1 · · · σ∗2z σ∗2z+1 σ∗2z+2 σ∗2z+3 · · · σ∗4z+2 σ∗4z+3

σ0 σ1 · · · σ2z σ2z+1 σ2z+2 σ2z+3 · · · σ4z+2 σ4z+3




︸ ︷︷ ︸
M

·




X1(0)
X2(0)

...
X1(z)
X2(z)
Y1(0)
Y2(0)

...
Y1(z)
Y2(z)






Again conditioning on a fixed value of X and X ′, we have that β̂ is uniformly
distributed over Zq, but β∗ is fixed. Therefore, we have Pr[β∗ = β̂]=1

q 2


