The AGM- $X_{0}(N)$ Heegner point lifting algorithm and elliptic curve point counting

David R. Kohel
School of Mathematics and Statistics
University of Sydney, NSW 2006, Australia
kohel@maths.usyd.edu.au

Abstract

We describe an algorithm, AGM- $X_{0}(N)$, for point counting on elliptic curves of small characteristic p using p-adic lifts of their invariants associated to modular curves $X_{0}(N)$. The algorithm generalizes the contruction of Satoh [10], SST [11], and Mestre [9]. We describe this method and give details of its implementation for characteristics $2,3,5$, 7 , and 13 .

Key words: Elliptic curve cryptography, modular curves, point counting

1 Introduction

Elliptic curve cryptosystems can be designed using the reduction of precomputed CM curves or using randomly selected curves over a finite field. In the former case, the curve can be assumed to be drawn from a prespecified list of curves having many endomorphisms, on which an adversary can perform precomputations or exploit the existence of endomorphisms of small degree. On the general randomly selected curve, the only endomorphisms of small degree are scalar multiplication by a small integer. Such curves are believed to have higher security, but to implement an elliptic curve cryptosystem using randomly generated curves, it is imperative to have an efficient algorithm to determine the number of points on arbitrary elliptic curves.

The first theoretically polynomial time algorithm for point counting was due to Schoof [13]. Atkin and Elkies (see [3]) introduced the use of modular parametrizations of the torsion subgroups of elliptic curves to turn Schoof's algorithm into a practical one. Couveignes introduced an extension of this algorithm to curves over finite fields of small characteristic, and independently Lercier designed an efficient algorithm specific to characteristic 2.

In 1999, Satoh [10] introduced a novel idea of p-adically lifting the j-invariants of the cycle of curves which are related by the Frobenius isogeny $(x, y) \mapsto$ $\left(x^{p}, y^{p}\right)$ over a finite field $\mathbb{F}_{q}=\mathbb{F}_{p^{m}}$ of small characteristic p. The j-invariants $j_{0}, j_{1}, \ldots, j_{m}=j_{0}$ can be lifted efficiently to a degree m extension of the p-adic field \mathbb{Q}_{p} even though to lift the j-invariants to an extension of \mathbb{Q} would in general require an extension of degree $O(\sqrt{q})$. The classical modular polynomial $\Phi_{p}(X, Y)$ provides the algebraic lifting condition. The unique p-adic lifts $\tilde{\jmath}_{i}$ are
those for which the equations $\Phi_{p}\left(\tilde{\jmath}_{i}, \tilde{\jmath}_{i+1}\right)=0$ continue to hold. This was followed by the exposition of extensions to characteristic 2 in [4] and [11]. Subsequently, in 2001, Mestre [9] introduced the use of the arithmetic-geometric mean, or AGM, to obtain elementary convergent recursion relations for the invariants of the p-adic lift of an elliptic curve.

In this work, we introduce a family of algorithms AGM- $X_{0}(N)$ given by convergent p-adic recursions for determining the p-adic lifts of Heegner points on modular curves $X_{0}(N)$. Heegner points are special points on modular curves which correspond to exceptional elliptic curves with CM, and are invariants from which we can "read off" the data for the trace of Frobenius, determining its number of points over \mathbb{F}_{q}. Specifically, we describe how the univariate version of Mestre's method as described in Gaudry [5] and Satoh [12] relates to the AGM- $X_{0}(8)$, and present essentially new generalizations AGM- $X_{0}(2)$, AGM$X_{0}(4)$, and AGM- $X_{0}(16)$ which apply to point counting on elliptic curves in characteristic 2 . In general this method is applicable to point counting on elliptic curves of any small characteristic p, with complete details described here for characteristics $2,3,5,7$, and 13 .

The present work creates a general framework for point counting on elliptic curves over fields of small characteristic. While the AGM point counting method for even characteristic fields had outpaced comparable algorithms for curves over fields of other small characteristics, as well as the SEA for prime fields, the present AGM- $X_{0}(N)$ variants of the algorithm place all small characteristic base fields on an equal footing. Exploitation of the AGM for cryptographic constructions or any potential cryptanalytic attacks should therefore extend naturally to any small characteristic base field. The main elliptic curve standards admit only extensions of the binary field or large prime fields, but the omission of odd characteristic extension fields is not based on security considerations. Cryptographic standards for odd characteristic extension fields have been proposed [6], in part to permit efficient software implementations of curves over medium-sized characteristic [1]. A generic framework for odd characteristic extension fields also applies to fields of small characteristic, and makes it imperative to advance the theory of applicable algorithms and cryptographic characteristics of elliptic curves over arbitrary finite fields.

2 Modular curves and parametrizations

A modular curve $X_{0}(N)$ parametrizes elliptic curves together with some cyclic N-torsion subgroup. The simplest case is the modular curve $X_{0}(1)$ which classifies elliptic curves up to isomorphism via their j-invariants. Associated to any j other than 0 or 12^{3}, we can write down a curve

$$
E: y^{2}+x y=x^{3}-\frac{36}{j-12^{3}} x-\frac{1}{j-12^{3}}
$$

with associated invariant j. The curve $X_{0}(1)$ is identified with the line of j values, each point corresponding to the class of curves with invariant j. The
next simplest case is the curve $X_{0}(2)$, which is described by a function s_{1}, and which classifies an elliptic curve together with a 2 -torsion subgroup.

$$
E_{1}: y^{2}+x y=x^{3}-128 s_{1} x^{2}-\frac{36 s_{1}}{64 s_{1}+1} x+\frac{512 s_{1}^{2}-s_{1}}{64 s_{1}+1}
$$

The j-invariant of this curve is $j=\left(256 s_{1}+1\right)^{3} / s_{1}$ and the 2 -torsion subgroup is specified by $P=(-1 / 4,1 / 8)$. The quotient of the curve E_{1} by this group gives a new curve

$$
\begin{aligned}
F_{1}: y^{2}+x y=x^{3}-128 s_{1} x^{2} & -\frac{327680 s_{1}^{2}+3136 s_{1}+5}{16\left(64 s_{1}+1\right)} x \\
& +\frac{\left(512 s_{1}+1\right)\left(262144 s_{1}^{2}+1984 s_{1}+3\right)}{64\left(64 s_{1}+1\right)}
\end{aligned}
$$

with j-invariant $\left(16 s_{1}+1\right)^{3} / s_{1}^{2}$. If we try to put the curve F_{1} into the form

$$
E_{2}: y^{2}+x y=x^{3}-128 s_{2} x^{2}-\frac{36 s_{2}}{64 s_{2}+1} x+\frac{512 s_{2}^{2}-s_{2}}{64 s_{2}+1} .
$$

for some s_{2}, then we necessarily have an equality of their j-invariants

$$
j\left(F_{1}\right)=\left(16 s_{1}+1\right)^{3} / s_{1}^{2}=\left(256 s_{2}+1\right)^{3} / s_{2}=j\left(E_{2}\right)
$$

which gives rise to an relation $s_{1}^{2}-4096 s_{1} s_{2}^{2}-48 s_{1} s_{2}-s_{2}=0$ between the s-invariants on E_{1} and E_{2}, where we discard the trivial factor $4096 s_{1} s_{2}-1$, determining the parametrized dual isogeny

For the former equation, the resulting composition $\phi_{1}: E_{1} \rightarrow F_{1} \cong E_{2}$, which may only exist over a quadratic extension of the field generated by s_{1} and s_{2}, can be shown to induce the pullback $\phi_{1}^{*} \omega_{2}=\pi\left(s_{1}, s_{2}\right) \omega_{1}$ where

$$
\pi\left(s_{1}, s_{2}\right)=2\left(\frac{\left(256 s_{1}+1\right)\left(512 s_{2}\left(64 s_{2}+1\right)-8 s_{1}+1\right)}{\left(256 s_{2}+1\right)\left(-256 s_{2}\left(256 s_{2}+1\right)+16 s_{1}+1\right)}\right)^{1 / 2}
$$

and where ω_{1} and ω_{2} are the invariant differentials $d x / 2 y$ on the respective curves E_{1} and E_{2}. Since the reduction of the relation between the s-invariants of the curves E_{1} and E_{2} gives $s_{2} \equiv s_{1}^{2} \bmod 2$, and the kernel is defined by to be those points (x, y) for which $4 x-1 \equiv 0$, we conclude that ϕ_{1} defines a parametrized lift of the Frobenius isogeny.

The isogeny ϕ_{1} can be extended similarly by an isogeny ϕ_{2},

$$
E_{1} \longrightarrow F_{1} \cong E_{2} \longrightarrow F_{2} \cong E_{3} \longrightarrow \cdots
$$

and the corresponding cycle of invariants $s_{1}, s_{2}, \ldots, s_{m}$, linked by a chain of isogeny relations, the product of the $\pi_{i}=\pi\left(s_{i}, s_{i+1}\right)$ determines the action of Frobenius on the space of differentials of E_{1} and we can read off its trace, which determines the number of points on the curve. This is the basis of the algorithm of Satoh [10] using the j-invariant and the algorithm of Mestre [9] using modular parametrizations of elliptic curves by the curve $X_{0}(8)$. The above example provides the equations necessary to use the curve $X_{0}(2)$ in an analogous manner.

2.1 Modular correspondences

The equation $\Phi\left(s_{1}, s_{2}\right)=s_{1}^{2}-4096 s_{1} s_{2}^{2}-48 s_{1} s_{2}-s_{2}=0$, derived in the previous section, is an example of a modular correspondence. The function s on $X_{0}(2)$ generates the function field, and the relation between s_{1} and s_{2} determines the image of the modular curve $X_{0}(4)$ in the product $X_{0}(2) \times X_{0}(2)$.

At a high level we extend this construction as follows. A point on a modular curve $X_{0}(N)$ corresponds to the isomorphism class of a point (E, G), where E is an elliptic curve and G is a subgroup isomorphic to $\mathbb{Z} / N \mathbb{Z}$. For any such pair (E, G) we may associate the quotient curve $F=E / G$ together with the quotient isogeny $\phi: E \rightarrow F$. Conversely, to any isogeny $\phi: E \rightarrow F$ with cyclic kernel of order N, we can associate the pair $(E, \operatorname{ker}(\phi))$. We say that a map of curves $X_{0}(p N) \rightarrow X_{0}(N) \times X_{0}(N)$ is an oriented modular correspondence if the image of each point representing a pair (E, G) maps to $\left(\left(E_{1}, G_{1}\right),\left(E_{2}, G_{2}\right)\right)$ where $E_{1}=E$ and G_{1} is the unique subgroup of index p in G, and where $E_{2}=E / H$ and $G_{2}=G / H$, where H is the unique subgroup of order p. Since the composition

$$
\phi: E=E_{1} \rightarrow E_{2} \rightarrow E_{2} / G_{2}=E / G
$$

recovers the pair (E, G), one considers the point $\left(E_{2}, G_{2}\right)$ as an extension of the degree N isogeny $\phi_{1}: E_{1} \rightarrow E_{1} / G_{1}$ determined by $\left(E_{1}, G_{1}\right)$ to the isogeny of degree $p N$ determined by (E, G). When the curve $X_{0}(N)$ has genus zero, there exists a single function x which generates its function field, and the correspondence can be expressed as a binary equation $\Phi(x, y)=0$ in $X_{0}(N) \times X_{0}(N)$ cutting out $X_{0}(p N)$ inside of the product.

At a more basic level, the construction is determined as follows. Let $x=x(q)$ be a suitable modular function generating the function field of a genus zero curve $X_{0}(N)$, represented as a power series. Then $y=x\left(q^{p}\right)$ is a modular function on $X_{0}(p N)$, and an algebraic relation $\Phi(x, y)=0$ determines an oriented modular correspondence as above. The application of modular correspondences to the lifting problem for elliptic curves is based on the following theorem.

Theorem 1. Let p be a prime dividing N and let $\Phi(x, y)=0$ be the equation defining an oriented modular correspondence $X_{0}(p N) \rightarrow X_{0}(N) \times X_{0}(N)$ on a modular curve $X_{0}(N)$ of genus zero such that $\Phi(x, y) \equiv y^{p}-x \bmod p$. Let $x_{1}, x_{2}, \ldots, x_{m}, x_{m+1}=x_{1}$ be a sequence of $m>2$ distinct algebraic integers in some unramified extension of \mathbb{Q}_{p} such that $\Phi\left(x_{i}, x_{i+1}\right)=0$. Then the x_{i} form a Galois conjugacy class of invariants of $C M$ curves.

The above theorem describes the relation between cycles of points on modular curves and CM curves. A sequence of points satisfying the conditions of the theorem are examples of Heegner points on $X_{0}(N)$. After an initial precomputation to determine the equations as presented in this article, it is sufficient to dispense with the elliptic curves and compute only with their modular invariants. The defining functions and relations for the family determine the particular algorithm AGM- $X_{0}(N)$ to be used for p-adic lifting. Each is denoted according to the modular curve $X_{0}(N)$ on which we lift points. In each instance we have an initial condition of the form $x_{1} \equiv 1 / j \bmod p$ and a recursion for computing the function x_{i+1} in terms of x_{i}, which arises from the correspondence $X_{0}(2 N) \rightarrow X_{0}(N) \times X_{0}(N)$ given by the equations $\Phi\left(x_{i}, x_{i+1}\right)=0$ as below.

$$
\begin{aligned}
& X_{0}(2): s_{1}^{2}-16\left(256 s_{2}+3\right) s_{1} s_{2}-s_{2}=0, \quad X_{0}(8): u_{1}^{2}\left(4 u_{2}+1\right)^{2}-u_{2}=0, \\
& \overline{X_{0}(4)}: t_{1}^{2}-16\left(16 t_{1} t_{2}+t_{1}+t_{2}\right) t_{2}-t_{2}=0, \quad \overline{X_{0}(16)}: v_{1}^{2}\left(4 v_{2}^{2}+1\right)-v_{2}=0 .
\end{aligned}
$$

The relations between the above functions are given by the identities

$$
\begin{array}{ll}
j_{1}=\left(256 s_{1}+1\right)^{3} / s_{1}, & t_{1}=u_{1} /\left(-4 u_{1}^{2}+1\right) \\
s_{1}=t_{1}\left(16 t_{1}+1\right), & u_{1}=v_{1} /\left(1+4 v_{1}^{2}\right)
\end{array}
$$

Each function can be expressed in terms of the classical modular functions from which their relations were derived.

Families of p-adic liftings exist for odd characteristic, and in particular, when the genus of $X_{0}(N)$ is zero ${ }^{1}$ we obtain a simple relation for the correspondence $X_{0}(p N) \rightarrow X_{0}(N) \times X_{0}(N)$. For instance, if $p=3$ and N is 3 or 9 we give the correspondences defining algorithms AGM- $X_{0}(3)$ and AGM- $X_{0}(9)$ below.

$$
\begin{aligned}
& \frac{X_{0}(3)}{\frac{X_{0}(9)}{}}: s_{1}^{3}-9\left(59049 s_{1}^{3} s_{2}^{2}+29\left(\left(27 t_{1}^{2}+9 t_{1}+1\right)\left(3 t_{2}+1\right) t_{2}+\left(3 s_{1}+1\right) t_{1}\right) t_{2}-t_{2}=0\right.
\end{aligned}
$$

The relations between these functions and the j-invariant is given by the equations:

$$
\begin{aligned}
& j_{1}=\left(27 s_{1}+1\right)\left(243 s_{1}+1\right)^{3} / s_{1} \\
& s_{1}=\left(27 t_{1}^{2}+9 t_{1}+1\right) t_{1}
\end{aligned}
$$

2.2 Power series developments

Each of the selected functions are p-adically convergent away from the supersingular point $j_{1}=0 \bmod p$ when $p=2$ or 3 . The equations of the form $\Phi\left(x_{i}, x_{i+1}\right)=0$ allow us to find a general solution for x_{i+1} as a power series

[^0]in x_{i}. We note that for all functions given above, j_{1}^{-1} is an initial approximation to the p-adic value of x_{1}.
\[

$$
\begin{aligned}
& X_{0}(2): \\
& \overline{s_{i+1}}=s_{i}^{2}-48 s_{i}^{3}+2304 s_{i}^{4}-114688 s_{i}^{5}+5898240 s_{i}^{6}+\cdots \\
& =s_{i}^{2}\left(1-48 s_{i}\right)\left(1+2304 s_{i}^{2}\right)\left(1-4096 s_{i}^{3}\right)\left(1+5701632 s_{i}^{4}\right) \cdots \\
& X_{0}(4): \\
& \overline{t_{i+1}}=t_{i}^{2}-16 t_{i}^{3}+240 t_{i}^{4}-3584 t_{i}^{5}+53760 t_{i}^{6}-811008 t_{i}^{7}+\cdots \\
& =t_{i}^{2}\left(1-16\left(t_{i}-15 t_{i}^{2}\right)\right)\left(1-3584\left(t_{i}^{3}+t_{i}^{4}\right)\right)\left(1+13029376 s_{i}^{6}\right)\left(1-8192 s_{i}^{5}\right) \cdots \\
& \underline{X_{0}(8)} \text { : } \\
& \overline{u_{i+1}}=u_{i}^{2}+8 u_{i}^{4}+80 u_{i}^{6}+896 u_{i}^{8}+10752 u_{i}^{10}+135168 u_{i}^{12}+\cdots \\
& =u_{i}^{2}\left(1+8 u_{i}^{2}\right)\left(1+80 u_{i}^{4}\right)\left(1+256 u_{i}^{6}\right)\left(1+8704 u_{i}^{8}\right) \cdots \\
& X_{0}(16) \text { : } \\
& \overline{v_{i+1}=} v_{i}^{2}+4 v_{i}^{6}+32 v_{i}^{10}+320 v_{i}^{14}+3584 v_{i}^{18}+43008 t_{i}^{22}+\cdots \\
& =v_{i}^{2}\left(1+4 v_{i}^{4}\right)\left(1+32 v_{i}^{8}\right)\left(1+192 v_{i}^{12}\right)\left(1+2816 v_{i}^{16}\right)\left(1+25600 v_{i}^{20}\right) \cdots
\end{aligned}
$$
\]

Similarly the first few classes of algorithms on $X_{0}\left(3^{n}\right)$ give rise to the following p-adic analytic recursions.

$$
\begin{aligned}
& X_{0}(3): \\
& \overline{s_{i+1}}=s_{i}^{3}-36 s_{i}^{4}+1026 s_{i}^{5}-27216 s_{i}^{6}+702027 s_{i}^{7}-17898408 s_{i}^{8}+\cdots \\
& =s_{i}^{3}\left(1-36 s_{i}\right)\left(1+1026 s_{i}^{2}\right)\left(1+9720 s_{i}^{3}\right) \text {. } \\
& =s_{i}^{3}\left(1-36 s_{i}\right)\left(1+1026 s_{i}^{2}\right)\left(1+9720 s_{i}^{3}\right) \text {. } \\
& \left(1+1051947 s_{i}^{4}\right)\left(1+9998964 s_{i}^{5}+93927276 s_{i}^{6}\right) \cdots \\
& \underline{X_{0}(9)}: \\
& \overline{t_{i+1}}=t_{i}^{3}-9 t_{i}^{4}+54 t_{i}^{5}-252 t_{i}^{6}+891 t_{i}^{7}-1701 t_{i}^{8}-6426 t_{i}^{9}+\cdots \\
& =t_{i}^{3}\left(1-9 t_{i}-252 t_{i}^{3}\right)\left(1+54 t_{i}^{2}+649674 t_{i}^{6}\right)\left(1+5265 t_{i}^{4}\right) \text {. } \\
& \left(1+486 t_{i}^{3}+33048 t_{i}^{5}+2925234 t_{i}^{7}+98492517 t_{i}^{9}\right) \cdots
\end{aligned}
$$

The above power series give explicit convergent series for the action of the Frobenius automorphism on ordinary CM points on the modular curves $X_{0}\left(p^{n}\right)$ for those particular values of p and n. The power product representations have the property that all but finitely many terms equal one to any fixed precision p^{i}. Note that the iteration $x_{i} \mapsto x_{i+1}$ is of the form $x_{i+1}=x_{i}^{p} f\left(x_{i}\right)$ for some power series $f\left(x_{i}\right)$ in x_{i}, and that the p-th powering gains relative precision. Thus in the initial phase we iterate the initial terms of the power product representation $\bmod p^{i}$ to lift an approximation to the CM point as described in Table 1.

2.3 Action of Verschiebung

In order to apply the Heegner point constructions to the determination of the trace of Frobenius, we need to pullback of Frobenius between the differentials of parametrized curves specified by a modular correspondence. In Table 2 below we give the value of this scalar action of Verschiebung, the dual to Frobenius, in the left hand column. Using the identity $\mathrm{N}\left(x_{1}\right)=\mathrm{N}\left(x_{2}\right)$ for any Galois conjugates

Table 1. HeegnerPointAnalyticLift
Input: The modular polynomial $\Phi(x, y)$; the precomputed product decomposition for the analytic power series

$$
y(x)=x^{p} f_{1}(x) f_{2}(x) \cdots \text { such that } \Phi(x, y(x))=0
$$

and $f_{i}(x) \equiv 1 \bmod p^{i}$; a finite field element x_{0} such that $\Phi\left(x_{0}, x_{0}^{p}\right)=0$; and a target precision w.
Output: An unramified p-adic lift x_{1} of a Galois conjugate of x_{0} such that $\left(x_{1}, x_{1}^{\sigma}\right)$ is a zero of Φ to precision p^{w}.

Set x_{1} to be any p-adic lift of x_{0}.
for $(1 \leq k \leq w-1)\{$
$x_{1}=x_{1}^{p} \prod_{i=1}^{k} f_{i}\left(x_{1}\right) \bmod p^{k+1}$
\}
return x_{1}
x_{1} and x_{2}, we are able to simplify the expressions by eliminating terms whose norm reduces to 1 . In the final column we indicate with a 1 or 2 whether the expression is for the Verschiebung itself, or its square. In the latter case, we must extract a square root in the course of computing the norm.

Table 2. Modular Action of Verschiebung

$$
m \text {-th power of Verschiebung } \quad \text { Norm-equivalent expression } \quad m
$$ $\underline{X_{0}(2)}:$

$$
\frac{\left(256 s_{2}+1\right)\left(-256 s_{2}\left(256 s_{2}+1\right)+16 s_{1}+1\right)}{\left(256 s_{1}+1\right)\left(512 s_{2}\left(64 s_{2}+1\right)-8 s_{1}+1\right)} \frac{\left(-256 s_{2}\left(256 s_{2}+1\right)+16 s_{1}+1\right)}{\left(512 s_{2}\left(64 s_{2}+1\right)-8 s_{1}+1\right)} 2
$$

$X_{0}(4):$

$$
\begin{equation*}
\frac{32 t_{2}+1}{8 t_{1}+1} \quad \frac{32 t_{1}+1}{8 t_{1}+1} \tag{2}
\end{equation*}
$$

$\underline{X_{0}(8)}:$

$$
\begin{equation*}
\frac{\left(-4 u_{1}+1\right)\left(4 u_{2}+1\right)}{4 u_{2}-1} \tag{1}
\end{equation*}
$$

$$
1+4 u_{1}
$$

$\underline{X_{0}(16)}:$

$$
\begin{equation*}
\frac{\left(-4 v_{1}^{2}+1\right)\left(4 v_{2}^{2}+1\right)}{4 v_{2}^{2}-1} \tag{1}
\end{equation*}
$$

$$
1+4 v_{1}^{2}
$$

$\underline{X_{0}(3)}:$

$$
\begin{equation*}
\frac{\left(3 s_{1}+1\right)\left(-19683 s_{1}^{2}-486 s_{1}+1\right)}{\left(243 s_{1}+1\right)\left(-27 s_{1}^{2}+18 s_{1}+1\right)} \tag{2}
\end{equation*}
$$

$\underline{X_{0}(9)}:$

$$
\frac{\left(3 t_{1}+1\right)\left(27 t_{1}^{2}+1\right)\left(-243\left(81\left(27 t_{1}^{2}+9 t_{1}+1\right)^{2} t_{1}^{2}+2\left(27 t_{1}^{2}+9 t_{1}+1\right) t_{1}+1\right)\right.}{\left(-27 t_{1}^{2}+1\right)\left(243\left(27 t_{1}^{2}+9 t_{1}+1\right) t_{1}+1\right)\left(729 t_{1}^{4}+486 t_{1}^{3}+162 t_{1}^{2}+18 t_{1}+1\right)} \quad 2
$$

3 Algorithm and performance

In order to construct the initial lifting of a finite field element to a p-adic element with precision w, we make use of the power series for x_{i+1} in terms of x_{i} as
described in Table 1. Since the power series is approximated mod p by the congruence $x_{i+1} \equiv x_{i}^{p} \bmod p$, each application of this p-adic analytic function gains one coefficient of precision.

The analytic method, using a precomputed power product representation of the Hensel lifting of the power series appears to be more efficient than a naive linear Hensel lifting to compute the canonical lift to a precision of one 32-bit computer word. This is in part explained by the observation that a significant number of steps of the $f_{i}(x)$'s are in fact equal to 1 , and so can be omitted from the product. Finally, we note that this product expression structures the Hensel lifting to use only multiplications.

The second phase of the lifting mirrors Algorithm 1 of SST [11], expressed here in terms of the Frobenius automorphism σ rather than its inverse. The algorithm of SST refers to the classical modular polynomial $\Phi_{p}\left(j_{1}, j_{2}\right)$ relating the j-invariants of two p-isogenous curves, but in fact applies in great generality ${ }^{2}$ to find p-adic solutions to a bivariate polynomial $\Phi(x, y)$ for which $\left(x^{p}-y\right) \mid \Phi(x, y) \bmod p$.

Here we apply it to our modular correspondences $\Phi(x, y)$ on the curves $X_{0}(N)$. We define $\Phi_{X}(x, y)$ and $\Phi_{Y}(x, y)$ be the derivatives with respect to the first and second variable, respectively, of the modular correspondence. The algorithm is given in Table 3.

Table 3. HeegnerPointBlockLift

```
Input: The modular polynomial \(\Phi\), integers \(m\) and \(w\), and a \(p\)-adic element \(x\)
such that \(\left(x, x^{\sigma}\right)\) is a zero of \(\Phi\) to precision \(p^{w}\).
Output: A lift of \(x\) such that \(\left(x, x^{\sigma}\right)\) is a zero to precision \(p^{m w}\).
\(D_{X}=\Phi_{X}\left(x, x^{\sigma}\right) \bmod p^{w}\)
\(D_{Y}=\Phi_{Y}\left(x, x^{\sigma}\right) \bmod p^{w}\)
for \((1 \leq i \leq m)\) \{
    \(R_{x}=\left(\Phi\left(x, x^{\sigma}\right) \operatorname{div} p^{i w}\right) \bmod p^{w}\)
    for \((1 \leq j \leq w)\) \{
        \(\Delta_{X}=\left(R_{x} \bmod p\right)^{1 / p}\) lifted to precision \(p^{w}\)
        \(R_{x}=\left(R_{x}+D_{X} \Delta_{X}+D_{Y} \Delta_{X}^{\sigma}\right) / p\)
        \(x+=p^{i w+j} \Delta_{X}\)
    \}
\}
return \(x\)
```

The final step is to make use of the precomputed form of the action Frobenius on the differentials for an elliptic curve parametrization by $X_{0}(N)$. This action will be a rational function $\pi_{1}=\pi\left(x_{1}\right)$ in the value x_{1} of the lifted point. The Frobenius endomorphism is the product of the Galois conjugate Frobenius isogenies, so the norm $\mathrm{N}\left(\pi_{1}\right)$ of this value gives the action of the Frobenius endomorphism on the differentials. Since the minimal polynomial $X^{2}-t X+q$ for this element it congruent to $X(X-t)$ modulo q, we see that $\mathrm{N}\left(\pi_{1}\right) \bmod q \equiv 0$

[^1]and $\left(q \operatorname{div} \mathrm{~N}\left(\pi_{1}\right)\right) \equiv t \bmod q$. In a now standard trick, the norm is computed using the identity $\mathrm{N}\left(\pi_{1}\right)=\exp \left(\operatorname{Tr}\left(\log \left(\pi_{1}\right)\right)\right)$, using the efficiency of trace computation [11].

Table 4. Timing Data for AGM- $X_{0}(N)$

$\mathrm{p}=2:$	m	$\log _{2}(q)$	$X_{0}(2)$	$X_{0}(4)$	$X_{0}(8)$	$X_{0}(16)$
163	163.00	0.48 s	0.46 s	0.45 s	0.55 s	
193	193.00	0.61 s	0.59 s	0.60 s	0.72 s	
239	239.00	0.91 s	0.88 s	0.91 s	1.08 s	
$\mathrm{p}=3:$		$X_{0}(3)$	$X_{0}(9)$			
103	163.25	8.95 s	10.8 s			
121	191.78	19.7 s	19.8 s			
127	201.29	21.1 s	21.2 s			
151	239.33	43.5 s	46.6 s			
$\mathrm{p}=5:$		$X_{0}(5)$	$X_{0}(25)$			
71	164.86	8.06 s	8.75 s			
83	192.72	12.6 s	13.5 s			
103	239.16	30.5 s	30.9 s			
$\mathrm{p}=7:$		$X_{0}(7)$				
59	165.63	5.13 s				
69	193.70	10.9 s				
71	199.32	11.3 s				
83	233.01	19.8 s				
85	238.63	21.6 s				
$\mathrm{p}=13:$		$X_{0}(13)$				
43	159.12	4.18 s				
53	196.12	8.66 s				
61	225.73	14.3 s				
65	240.53	19.1 s				

An generic implementation [7] of the method in Magma [8] yields the following timing data of Table 4 on an 1.4 GHz AMD machine. The algorithm makes use of the internal Magma implementation of an efficient Galois action on unramified cyclotomic extensions when $p=2$, and otherwise falls back on Hensel lifting to determine Galois images when the residue characteristic is odd. The timings listed are independent of the one-time setup costs for initializing the p-adic lifing rings. Further specific optimizations for $p=2$ make this case comparatively faster than for odd residue characteristic.

4 Relations with other algorithms

The chosen model curve for $X_{0}(8)$ is the equation $u_{1}^{2}\left(4 u_{2}+1\right)^{2}=u_{2}$, which has the property that its reduction modulo 2 takes the form $u_{1}^{2}=u_{2}$, so that u_{2} is the Galois image of u_{1}. Over a field of characteristic zero, this equation becomes isomorphic to the equation arising in the "univariate" version of the

AGM recursion $4 x y^{2}=(x+1)^{2}$ via the change of variables ${ }^{3}$

$$
x=\frac{1+4 u_{1}}{1-4 u_{1}} \text { and } y=\frac{1+4 u_{2}}{1-4 u_{2}} .
$$

Thus the use of 2 -adic Heegner point lifts on $X_{0}(8)$ to determine the number of points on an elliptic curve over $\mathbb{F}_{2^{m}}$ could fall under a purported patent application on the AGM point counting method. ${ }^{4}$

In contrast, the modular curves $X_{0}(1), X_{0}(2), X_{0}(4), X_{0}(8)$, or $X_{0}(16)$ are nonisomorphic as moduli spaces, and only the modular correspondence for X_{0} (8) transforms by change of variables into the univariate AGM method. In fact if j is a root of the polynomial $x^{3}+x+1$ in \mathbb{F}_{2}, then the canonical lift of j on $X_{0}(1)$ is a root of the polynomial:

$$
x^{3}+3491750 x^{2}-5151296875 x+12771880859375
$$

The original method of Satoh, extended to characteristic 2 as in [4] or [11] finds some 2-adic approximation to a root of this polynomial. In contrast, in terms of the functions s, t, u, and v, the minimal polynomials over \mathbb{Q} of a canonical lift are respectively:

$$
\begin{gathered}
2^{36} x^{6}+2^{25} 83 x^{5}+14351421440 x^{4}+412493295 x^{3}+3503765 x^{2}+166 x+1, \\
2^{24} x^{6}+2^{17} 59 x^{5}+1561856 x^{4}+143007 x^{3}+6101 x^{2}+118 x+1 \\
2^{6} x^{6}+2^{4} 17 x^{5}+572 x^{4}+203 x^{3}+13 x^{2}+2 x+1 \\
2^{3} x^{6}-4 x^{5}+18 x^{4}+13 x^{3}+9 x^{2}+4 x+1
\end{gathered}
$$

The above polynomials are examples of class invariants obtained by modular correspondences on $X_{0}(1), X_{0}(2), X_{0}(4), X_{0}(8)$, and $X_{0}(16)$, the latter examples naturally generalizing the construction of Couveignes and Henocq [2] for $X_{0}(1)$.

References

1. D. V. Bailey, C. Paar, Efficient arithmetic in finite field extensions with application in elliptic curve cryptography. J. Cryptology, 14 (2001), no. 3, 153-176.
2. J.-M. Couveignes and T. Henocq. Action of modular correspondences around CM points, Algorithmic Number Theory (ANTS V, Sydney), 234-243, Lecture Notes in Computer Science, 2369, Springer, Berlin, 2002.
3. N. Elkies. Elliptic and modular curves over finite fields and related computational issues, Computational perspectives on number theory (Chicago, IL, 1995), 21-76, AMS/IP Stud. Adv. Math., 7, Amer. Math. Soc., Providence, RI, 1998.

[^2]4. M. Fouquet, P. Gaudry, and R. Harley. An extension of Satoh's algorithm and its implementation, J. Ramanujan Math. Soc., 15 (2000), 281-318.
5. P. Gaudry, A comparison and a combination of SST and AGM algorithms for counting points of elliptic curves in characteristic 2, Advances in Cryptology ASIACRYPT 2002, 311-327, Lecture Notes in Computer Science, 2501, Springer, Berlin, 2002.
6. A. Kato, T. Kobayashi, and T. Saito. Use of the Odd Characteristic Extension Field in the Internet X. 509 Public Key Infrastructure, PKIX Working Group, Internet Draft, http://www.ietf.org/internet-drafts/draft-kato--pkix-ecc-oef-00.txt
7. D. Kohel, http://magma.maths.usyd.edu.au/~kohel/magma, 2003.
8. Magma Handbook, J. Cannon and W. Bosma, eds., http://magma.maths.usyd.edu.au/magma/htmlhelp/MAGMA.htm, 2003
9. J.-F. Mestre, Lettre à Gaudry et Harley. http://www.math.jussieu/~mestre, 2001.
10. T. Satoh. The canonical lift of an ordinary elliptic curve over a finite field and its point counting. J. Ramanujan Math. Soc. 15 (2000), no. 4, 247-270.
11. T. Satoh, B. Skjernaa, and Y. Taguchi. Fast computation of canonical lifts of elliptic curves and its application to point counting, Finite Fields Appl. 9 (2003), no. 1, 89-101.
12. T. Satoh. On p-adic point counting algorithms for elliptic curves over finite fields, Algorithmic number theory (ANTS V, Sydney), 43-66, Lecture Notes in Computer Science, 2369, Springer, Berlin, 2002,
13. R. Schoof. Elliptic curves over finite fields and the computation of square roots mod p. Math. Comput. 44 (1985) 483-494.

5 Appendix of equations of higher level

In this appendix we give the equations for the modular correspondences and action of Verschiebung necessary to implement the AGM- $X_{0}(N)$ for $N=5,25$, 7 , and 13. The modular correspondences on $X_{0}(5), X_{0}(25), X_{0}(7)$, and $X_{0}(13)$ with respect to a degree one function on the curve are as follows.

$$
\begin{aligned}
& \frac{X_{0}(5)}{s_{1}^{5}-} \\
& \quad-244140625 s_{1}^{4} s_{2}^{5}-58593750 s_{1}^{4} s_{2}^{4}-4921875 s_{1}^{4} s_{2}^{3}-162500 s_{1}^{4} s_{2}^{2} \\
& \quad-1575 s_{1}^{4} s_{2}-1953125 s_{1}^{3} s_{2}^{4}-468750 s_{1}^{3} s_{2}^{3}-39375 s_{1}^{3} s_{2}^{2}-1300 s_{1}^{3} s_{2} \\
& \quad-15625 s_{1}^{2} s_{2}^{3}-3750 s_{1}^{2} s_{2}^{2}-315 s_{1}^{2} s_{2}-125 s_{1} s_{2}^{2}-30 s_{1} s_{2}-s_{2}=0
\end{aligned}
$$

X | (25): |
| :--- |
| $t_{1}^{5}-625 t_{1}^{4} t_{2}^{5}-625 t_{1}^{4} t_{2}^{4}-375 t_{1}^{4} t_{2}^{3}-125 t_{1}^{4} t_{2}^{2}-25 t_{1}^{4} t_{2}-625 t_{1}^{3} t_{2}^{5}-625 t_{1}^{3} t_{2}^{4}$ |
| $\quad-375 t_{1}^{3} t_{2}^{3}-125 t_{1}^{3} t_{2}^{2}-25 t_{1}^{3} t_{2}-375 t_{1}^{2} t_{2}^{2}-375 t_{1}^{2} t_{2}^{4}-225 t_{1}^{2} t_{2}^{3}-75 t_{1}^{2} t_{2}^{2}$ |
| $\quad-15 t_{1}^{2} t_{2}-125 t_{1} t_{2}^{5}-125 t_{1} t_{2}^{4}-75 t_{1} t_{2}^{3}-25 t_{1} t_{2}^{2}-5 t_{1} t_{2}-25 t_{2}^{5}-25 t_{2}^{4}$ |
| $\quad-15 t_{2}^{3}-5 t_{2}^{2}-t_{2}=0$ |

The functions s on $X_{0}(5)$ and t on $X_{0}(25)$ are linked by the relation

$$
s=25 t^{5}+25 t^{4}+15 t^{3}+5 t^{2}+t
$$

```
\(X_{0}(7):\)
    \(s_{1}^{7}-13841287201 s_{1}^{6} s_{2}^{7}-7909306972 s_{1}^{6} s_{2}^{6}-1856265922 s_{1}^{6} s_{2}^{5}-224003696 s_{1}^{6} s_{2}^{4}\)
    \(-14201915 s_{1}^{6} s_{2}^{3}-422576 s_{1}^{6} s_{2}^{2}-4018 s_{1}^{6} s_{2}-282475249 s_{1}^{5} s_{2}^{6}-161414428 s_{1}^{5} s_{2}^{5}\)
    \(-37882978 s_{1}^{5} s_{2}^{4}-4571504 s_{1}^{5} s_{2}^{3}-289835 s_{1}^{5} s_{2}^{2}-8624 s_{1}^{5} s_{2}-5764801 s_{1}^{4} s_{2}^{5}\)
    \(-3294172 s_{1}^{4} s_{2}^{4}-773122 s_{1}^{4} s_{2}^{3}-93296 s_{1}^{4} s_{2}^{2}-5915 s_{1}^{4} s_{2}-117649 s_{1}^{3} s_{2}^{4}\)
    \(-67228 s_{1}^{3} s_{2}^{3}-15778 s_{1}^{3} s_{2}^{2}-1904 s_{1}^{3} s_{2}-2401 s_{1}^{2} s_{2}^{3}-1372 s_{1}^{2} s_{2}^{2}-322 s_{1}^{2} s_{2}\)
    \(-49 s_{1} s_{2}^{2}-28 s_{1} s_{2}-s_{2}=0\)
```

$\underline{X_{0}(13):}$
$s_{1}^{13}-23298085122481 s_{1}^{12} s_{2}^{13}-46596170244962 s_{1}^{12} s_{2}^{12}-44804009850925 s_{1}^{12} s_{2}^{11}$
$-27020264402404 s_{1}^{12} s_{2}^{10}-11283187332872 s_{1}^{12} s_{2}^{9}-3409754413780 s_{1}^{12} s_{2}^{8}$
$-758378576462 s_{1}^{12} s_{2}^{7}-123855918940 s_{1}^{12} s_{2}^{6}-14548002326 s_{1}^{12} s_{2}^{5}$
$-1174999540 s_{1}^{12} s_{2}^{4}-59916584 s_{1}^{12} s_{2}^{3}-1623076 s_{1}^{12} s_{2}^{2}-15145 s_{1}^{12} s_{2}$
$-1792160394037 s_{1}^{11} s_{2}^{12}-3584320788074 s_{1}^{11} s_{2}^{11}-3446462296225 s_{1}^{11} s_{2}^{10}$
$-2078481877108 s_{1}^{11} s_{2}^{9}-867937487144 s_{1}^{11} s_{2}^{8}-262288801060 s_{1}^{11} s_{2}^{7}$
$-58336813574 s_{1}^{11} s_{2}^{6}-9527378380 s_{1}^{11} s_{2}^{5}-1119077102 s_{1}^{11} s_{2}^{4}$
$-90384580 s_{1}^{11} s_{2}^{3}-4608968 s_{1}^{11} s_{2}^{2}-124852 s_{1}^{11} s_{2}-137858491849 s_{1}^{10} s_{2}^{11}$
$-275716983698 s_{1}^{10} s_{2}^{10}-265112484325 s_{1}^{10} s_{2}^{9}-159883221316 s_{1}^{10} s_{2}^{8}$
$-66764422088 s_{1}^{10} s_{2}^{7}-20176061620 s_{1}^{10} s_{2}^{6}-4487447198 s_{1}^{10} s_{2}^{5}$
$-732875260 s_{1}^{10} s_{2}^{4}-86082854 s_{1}^{10} s_{2}^{3}-6952660 s_{1}^{10} s_{2}^{2}-354536 s_{1}^{10} s_{2}$
$-10604499373 s_{1}^{9} s_{2}^{10}-21208998746 s_{1}^{9} s_{2}^{9}-20393268025 s_{1}^{9} s_{2}^{8}$
$-12298709332 s_{1}^{9} s_{2}^{7}-5135724776 s_{1}^{9} s_{2}^{6}-1552004740 s_{1}^{9} s_{2}^{5}$
$-345188246 s_{1}^{9} s_{2}^{4}-56375020 s_{1}^{9} s_{2}^{3}-6621758 s_{1}^{9} s_{2}^{2}-534820 s_{1}^{9} s_{2}$
$-815730721 s_{1}^{8} s_{2}^{9}-1631461442 s_{1}^{8} s_{2}^{8}-1568712925 s_{1}^{8} s_{2}^{7}-946054564 s_{1}^{8} s_{2}^{6}$
$-395055752 s_{1}^{8} s_{2}^{5}-119384980 s_{1}^{8} s_{2}^{4}-26552942 s_{1}^{8} s_{2}^{3}-4336540 s_{1}^{8} s_{2}^{2}$
$-509366 s_{1}^{8} s_{2}-62748517 s_{1}^{7} s_{2}^{8}-125497034 s_{1}^{7} s_{2}^{7}-120670225 s_{1}^{7} s_{2}^{6}$
$-72773428 s_{1}^{7} s_{2}^{5}-30388904 s_{1}^{7} s_{2}^{4}-9183460 s_{1}^{7} s_{2}^{3}-2042534 s_{1}^{7} s_{2}^{2}$
$-333580 s_{1}^{7} s_{2}-4826809 s_{1}^{6} s_{2}^{7}-9653618 s_{1}^{6} s_{2}^{6}-9282325 s_{1}^{6} s_{2}^{5}-5597956 s_{1}^{6} s_{2}^{4}$
$-2337608 s_{1}^{6} s_{2}^{3}-706420 s_{1}^{6} s_{2}^{2}-157118 s_{1}^{6} s_{2}-371293 s_{1}^{5} s_{2}^{6}-742586 s_{1}^{5} s_{2}^{5}$
$-714025 s_{1}^{5} s_{2}^{4}-430612 s_{1}^{5} s_{2}^{3}-179816 s_{1}^{5} s_{2}^{2}-54340 s_{1}^{5} s_{2}-28561 s_{1}^{4} s_{2}^{5}$
$-57122 s_{1}^{4} s_{2}^{4}-54925 s_{1}^{4} s_{2}^{3}-33124 s_{1}^{4} s_{2}^{2}-13832 s_{1}^{4} s_{2}-2197 s_{1}^{3} s_{2}^{4}$
$-4394 s_{1}^{3} s_{2}^{3}-4225 s_{1}^{3} s_{2}^{2}-2548 s_{1}^{3} s_{2}-169 s_{1}^{2} s_{2}^{3}-338 s_{1}^{2} s_{2}^{2}$
$-325 s_{1}^{2} s_{2}-13 s_{1} s_{2}^{2}-26 s_{1} s_{2}-s_{2}=0$

We note that a canonical lift only exists for the invariants of ordinary curves. The supersingular points, in contrast, fail to converge, and are in fact poles of each the chosen functions for the lifting process. In characteristics 2 and 3 the j-invariant 0 is supersingular, which explains why we take as starting point of our canonical lifting algorithm $1 / j \equiv s_{1} \equiv t_{1} \cdots \bmod p$. For p equal to 5 the j-invariant of a supersingular curve is also 0 , and the starting point of lifting is therefore also $1 / j \equiv s_{1} \equiv t_{1} \bmod 5$. However for 7 and 13 the starting points of the lifing algorithms are $1 /(j+1) \equiv s_{1} \bmod 7$ and $1 /(j-5) \equiv s_{1} \bmod 13$, corresponding to the supersingular j-invariants 6 and 5 , respectively.

To complete the specification of the algorithms for $X_{0}(5), X_{0}(7)$, and $X_{0}(13)$, it remains to give the action of Verschiebung on the differentials of a generic curve
as in Table 2. In terms of a special value s_{1} which is the canonical lift of the invariants of an ordinary elliptic curve, we find the following form for square of the action of pullback by the Verschiebung on two parametrized curves.
$\underline{X_{0}(5)}:-\frac{G_{5}\left(s_{1}, 1\right) H_{5}\left(5^{3} s_{1}, 1\right)}{G_{5}\left(5^{2} s_{1}, 1\right) H_{5}\left(1, s_{1}\right)}$, where $\left\{\begin{array}{l}G_{5}(X, Y)=5 X^{2}+10 X Y+Y^{2}, \\ H_{5}(X, Y)=-X^{2}-4 X Y+Y^{2} .\end{array}\right.$
$\underline{X_{0}(7)}: \quad-\frac{F_{7}\left(s_{1}, 1\right)\left(-7^{7} s_{1}^{4}+G_{7}\left(7^{2} s_{1}, 1\right)+1\right)}{F_{7}\left(7^{2} s_{1}, 1\right)\left(-7 s_{1}^{4}+7 G_{7}\left(1, s_{1}\right)+1\right)}$, where

$$
\begin{aligned}
& F_{7}(X, Y)=X^{2}+5 X Y+Y^{2} \\
& G_{7}(X, Y)=\left(2 X^{2}+9 X Y+10 Y^{2}\right) X Y .
\end{aligned}
$$

$\underline{X_{0}(13)}:-\frac{G_{13}\left(1, s_{1}\right) H_{13}\left(13 s_{1}, 1\right)}{G_{13}\left(13 s_{1}, 1\right) H_{13}\left(1, s_{1}\right)}$, where
$G_{13}(X, Y)=X^{4}+7 X^{3} Y+20 X^{2} Y^{2}+19 X Y^{3}+Y^{4}$,
$H_{13}(X, Y)=X^{6}+10 X^{5} Y+46 X^{4} Y^{2}+108 X^{3} Y^{3}+122 X^{2} Y^{4}+38 X Y^{5}-Y^{6}$.
The action of Frobenius with respect to t_{1} on $X_{0}(25)$ is determined by means of the expression for the function $s_{1}=25 t_{1}^{5}+25 t_{1}^{4}+15 t_{1}^{3}+5 t_{1}^{2}+t_{1}$ on $X_{0}(5)$ in terms of the function t_{1} on $X_{0}(25)$.

[^0]: ${ }^{1}$ The genus of $X_{0}(N)$ is zero if and only if N is one of the values $1,2,3,4,5,6$, $7,8,9,10,12,13,16,18$, or 25 . In this case, there exists a single function which parametrizes $X_{0}(N)$. In the general case we would need multiple functions and the polynomial relations they satisfy. Here we will only be interested in the subset of these N which are powers of the characteristic p.

[^1]: ${ }^{2}$ This observation was already used by Gaudry [5] in extending this algorithm to a modified AGM modular equation.

[^2]: ${ }^{3}$ Gaudry [5] makes a similar change of variables $x=1 /(1+8 u)$ and $y=1 /(1+8 v)$, from which he obtains the relation $(u+2 v+8 u v)^{2}+(4 u+1) v$, having the similar property of giving rise to an equation $u^{2}=v$ between Galois conjugates modulo 2 .
 ${ }^{4}$ Note however that the U.S. patent application concerns the "non-converging AGM iteration" (refer to http://argote.ch), as in Mestre's original binary AGM recursion [9], as distinct from Satoh's prior algorithm, the subsequent published univariate AGM recursions, and the variants described herein.

