
Index Calculus Attack for Hyperelliptic Curves
of Small Genus

Nicolas Thériault

University of Toronto

Abstract. We present a variation of the index calculus attack by Gaudry
which can be used to solve the discrete logarithm problem in the Jacobian
of hyperelliptic curves. The new algorithm has a running time which is
better than the original index calculus attack and the Rho method (and
other square-root algorithms) for curves of genus ≥ 3. We also describe
another improvement for curves of genus ≥ 4 (slightly slower, but less
dependent on memory space) initially mentioned by Harley and used in
a number of papers, but never analyzed in details.

1 Introduction

Koblitz [10] first introduced the use of hyperelliptic curves for discrete log
based public-key cryptography in 1989. For the first ten years, the best known
generic attacks against these cryptosystems were the “square-root” algorithms
(Shank’s Baby Step-Giant Step, Pollard’s ρ method, Pollard’s λ method). Pier-
rick Gaudry’s index calculus attack for hyperelliptic curves [8] was the first exam-
ple of a generic attack that could solve the discrete log problem on the Jacobian
of an hyperelliptic curve of small genus over a finite field in a time smaller than
the square-root of the group order (assuming the genus of the curve is greater
than 4) (an attack for curves of high genus was introduced the year before in [1]
by Adleman, DeMarrais and Huang).

In this paper, we analyse in detail a variation of the original index calcu-
lus attack which was first introduced by Robert Harley and implemented for a
number of papers, but never analyzed in detail. This algorithm works in time
O

(
g5q2− 2

g+1+ε
)

and gives an improvement on previous attacks for curves of
genus greater than 3. We also describe how the algorithm can be improved fur-
ther by using the large prime method of the number field sieve. For this variation,
we get a running time of O

(
g5q2− 4

2g+1+ε
)

and an improvement for all curves of
genus greater than 2. Comparing the running times for curves of genus 3, 4 and
5, we get

g 3 4 5
square-root algorithms q3/2 q2 q5/2

original index calculus q2 q2 q2

reduced factor base q3/2 q8/5 q5/3

with large primes q10/7 q14/9 q18/11

This paper is divided as follows: The main ideas and concepts used in the
index calculus attack are described in Sect. 2. We then present the two algorithms
in Sects. 3 and 4. The running times of both algorithms are analyzed together
in Sect. 5 and the memory space required to run the algorithms is discussed in
Sect. 6.

2 The Index Calculus Attack

2.1 The Discrete Log Problem

Let C be an imaginary quadratic curve over Fq, i.e. a smooth hyperelliptic curve
of genus g over Fq with a single point at infinity and whose finite part can be
written in the form y2 + h(x)y = f(x) with deg(f) = 2g + 1 and deg(h) ≤ g.

Note 1. Throughout this paper, we will use Jq for Jac(C)(Fq).

Definition 1. Given D1, D2, two elements of Jq such that D2 ∈ 〈D1〉, the hy-
perelliptic discrete log problem for the pair (D1, D2) on Jq consists in computing
the smallest integer λ ∈ N such that D2 = λD1.

In practice, we can assume that D1 has large prime order in Jq (if not, we
can bring the problem down to subgroups of 〈D1〉 of prime order, solving the
corresponding discrete log problem on each subgroup independently).

2.2 Jacobian Arithmetic

Note 2. Throughout the paper, we will assume only basic arithmetic for multi-
plication. In practice, faster algorithms (Karatsuba, FFT) should be used, but
they will reduce the overall running time by a factor of less than g log(q).

Points of Jac(C) can be represented uniquely by reduced divisors, i.e. divisors
of the form

k∑

i=1

Pi − k∞

where the Pi’s are points in C(Fq) with Pi 6= −Pj for i 6= j and with k ≤ g and
∞ is the unique point at infinity of C. ¿From now onward, we identify Jac(C)
with the collection of reduced divisors.

We use the following result of Cantor [2]:

Proposition 1. For every reduced divisor D =
∑k

i=1 Pi − k∞ (with Pi =
(xi, yi)), there is a unique representation by a pair of polynomials [a(x), b(x)],
a(x), b(x) ∈ Fq[x], with

a(x) =
k∏

i=1

(x− xi)

and b(xi) = yi satisfying deg(b) < deg(a) ≤ g and b(x)2 + h(x)b(x) − f(x)
divisible by a(x). The sum (as a reduced divisor) of two reduced divisors in Jq

can be computed in O(g2(log(q))2) bit operations.

The reduced divisor D = [a(x), b(x)] is associated to a point in Jq if and only
if both a(x) and b(x) are in Fq[x].

2.3 Smooth Divisors

Let P be the collection of Fq-rational points of C, i.e. P = C(Fq). For every
P ∈ C(Fq), we let D(P) = P −∞.

Definition 2. Let B be a subset of P. A divisor D is said to be smooth relative
to B if it is reduced and D =

∑k
i=1 D(Pi) with all the Pi’s in B.

Definition 3. A subset B of P used to define smoothness is called a factor base.

Definition 4. A divisor will be said to be potentially smooth if it is smooth
relative to P.

Definition 5. A point P in P will be called a large prime relative to a factor
base B if P /∈ B.

Definition 6. A reduced divisor D =
∑k

i=1 D(Pi) will be said to be almost-
smooth if all but one of the Pi’s are in B and the remaining Pi is a large prime.

2.4 Random Walk

The index calculus algorithm relies in a large part on using a pseudo-random walk
to search for smooth divisors. We set up a pseudo-random walk by specifying
a hash hunction H and a state function R. A hash function H is a function
H : Jq → {1, 2, . . . , n}. A state function is a map R : Jq × {1, 2, . . . , n} → Jq.
Given an initial point T0 ∈ Jq, our interest is in computing the sequence (the
“random walk”) (Ti) with Ti+1 = R(Ti,H(Ti)).

To have an effective index calculus attack for the discrete log problem for a
given pair (D1, D2) ∈ Jq×Jq, the pair (R,H) should be chosen to satisfy certain
statistical and computational constraints. The function R should be chosen so
that given Ti = αiD1 + βiD2, it is easy to compute Ti+1 as well as αi+1 and
βi+1 such that Ti+1 = αi+1D1 + βi+1D2. A simple method is to set

R(T, j) = T + T (j)

where T (j) = α(j)D1 + β(j)D2 for some randomly chosen α(j) and β(j).
At each step of the random walk, we compute Ti+1 as well as αi+1 and βi+1

modulo the order of Jq. The values of Ti, αi and βi need to be recorded only if
Ti is a smooth divisor (or an almost-smooth divisor in the second algorithm).

2.5 Index Calculus

¿From the sequence (Ti) of divisors obtained in the random walk, we extract
a subsequence of smooth divisors (Ri). Then each Ri can be written both as
Ri = αiD1 + βiD2 and Ri =

∑ki

j=1 D(Pj) with the Pj ’s in the factor base and
ki ≤ g. The goal of the index caculus attack is to use the Ri’s to obtain an
equation of the form αD1 + βD2 = 0.

To do this, we order the elements of B as P1, P2, . . . P|B|. To each smooth
divisor

Ti =
ki∑

j=1

D(Pi,j) =
|B|∑

l=1

ai,lD(Pl)

we can associate a vector

vi = (ai,1 , ai,2 , . . . , ai,|B|)

We then use the vectors vi to build the matrix M = (ai,j)i,j where each row,
corresponding to a smooth divisor, has weight at most g. When the size of M
is large enough (i.e. when M is overdetermined), we use linear algebra to find
a nonzero vector in the kernel of M . Note that all operations are done modulo
|Jq|. Once a nonzero solution of the system is found, we can write

m∑

i=0

γivi = 0

and (in terms of divisors)
m∑

i=0

γiRi = 0.

Substituting Ri = αiD1 + βiD2, we get
(

m∑

i=0

γiαi

)
D1 +

(
m∑

i=0

γiβi

)
D2 = αD1 + βD2 = 0,

from which we obtain the solution D2 = λD1 (λ = −α/β). The algorithm fails
only if β = 0, in which case we must go through the algorithm again starting
from the initialization of the random walk. This is very unlikely however (the
algorithm fails with probability |〈D1〉|−1 if D1 has prime order), hence we expect
to have to go through the algorithm only once.

In practice, once a point Pi 6= −Pi is included in the factor base, we take −Pi

as being in the factor base but replace D(−Pi) by −D(Pi) in the construction of
the linear algebra system (since the divisor D(Pi) + D(−Pi) reduces to 0). This
makes it possible to reduce the number of smooth divisors we must find in the
random walk by a factor of close to 2.

3 First Algorithm

3.1 Factor Base

In the original version of the index calculus attack for hyperelliptic curve, the
factor base is P = C(Fq). This gives a running time of

O
(
g2g!q(log(q))2

)
+ O

(
g3q2(log(q))2

)

where the first part is due to the search for smooth divisors, while the second
part is the cost of solving the linear algebra system.

If q is large enough relative to g, i.e. if q > (g − 1)!, then most of the cost of
the index calculus attack comes from the linear algebra. The first approach to
reduce the overall running time consists in reducing the size of the factor base,
which reduces the time required to solve the linear algebra system on the one
hand, but increases the search time on the other hand (since reducing the size
of the factor base also reduces the number of smooth divisors). We do this until
both parts of the running time are equal, i.e. up to the point where any further
reduction of the factor base would make the search too costly.

Given that q > (g − 1)!, the factor base can be chosen as a subset B of P
such that the running time becomes

O
(
g5q2− 2

g+1+ε
)

.

For the analysis, we assume that q > (g − 1)! and we set |B| = qr, with
2
3 < r < 1 and compute the value of r which gives the best running time.

3.2 Algorithm

The first algorithm can be summarized as follows:

1. Search for the elements of the factor base
Compute the x and y coordinates of points in C(Fq) until |B| = qr.

2. Initialization of the random walk
Choose the α(j)’s and β(j)’s randomly and compute the T (j)’s. Also choose
α0 and β0 randomly and compute T0 = α0D1 + β0D2.

3. Search for smooth divisors (random walk)
The following steps are repeated until the linear system is large enough:
a) Search for potentially smooth divisors

Compute Ti+1 = [a(x), b(x)] and check if a(x) splits over Fq.
b) Factorization of the potentially smooth divisors

If a(x) splits over Fq, compute the points in C(Fq) corresponding to
Ti+1. Ti+1 is smooth if and only if all the points are in B.

c) Construction of the linear algebra system
Compute αi+1 and βi+1. If Ti+1 is smooth, record αi+1, βi+1 and the
factors of Ti+1.

4. Solution of the linear algebra system
Compute a nonzero vector in the kernel of the matrix obtained at step 3.

5. Final solution
Compute λ (if β = 0, return to step 2).

Note that in step 3, the factorization of a(x) is done in two parts: we first
check if a(x) splits over Fq by breaking down a(x) into squarefree factors and
checking that the factors divide xq−x. If a(x) splits in Fq, we can then completely
factor a(x) using Cantor-Zassenhaus. The second part, which is probabilistic, is
obviously skipped if a(x) does not split over Fq (in that case, the divisor is not
potentially smooth and obviously cannot be smooth).

4 Second Algorithm

The new improvement to the index calculus mimics the use of large primes in
the number field sieve. We again reduce the size of the factor base as much as
possible to reduce the time required to solve the linear algebra system without
making the search for smooth divisors too costly. This time however, we make
use of the points in P which are not part of the factor base.

If q > (g − 1)!/g, we can play the almost-smooth divisors against each other
to cancel the large primes to bring the running time down to

O
(
g5q2− 4

2g+1+ε
)

.

For the analysis, we once again assume that q > (g − 1)!/g and that the
factor base has size |B| = qr with 2

3 < r < 1.

4.1 Large Primes

To make use of the almost-smooth divisors, we consider them in the order in
which they appear during the search.

Definition 7. Let Ti be an almost-smooth divisor with the large prime P . Ti

will be called an intersection if one of the previous Tj (j < i) has large prime
±P .

If two almost-smooth divisors T1, T2 have large prime P , i.e. if they can be
written in the form

T1 = D(P) +
k1−1∑

i=1

D(P1,i) and T2 = D(P) +
k2−1∑

i=1

D(P2,i)

with P1,i, P2,i ∈ B, we consider

T1 − T2 =
k1−1∑

i=1

D(P1,i)−
k2−1∑

i=1

D(P2,i)

and set T ′ = T1−T2 (after doing all the extra cancellations that may be necessary
if P1,i = P2,j for some pair i, j).

If T1, T2 are almost-smooth divisors such that T1 has large prime P and T2

has large prime −P , i.e. if they can be written in the form

T1 = D(P) +
k1−1∑

i=1

D(P1,i) and T2 = D(−P) +
k2−1∑

i=1

D(P2,i)

with P1,i, P2,i ∈ B, we consider

T1 + T2 =
k1−1∑

i=1

D(P1,i) +
k2−1∑

i=1

D(P2,i)

and set T ′ = T1+T2 (after doing all the extra cancellations that may be necessary
if P1,i = −P2,j for some pair i, j).

In both cases, T ′ factors over the factor base even though it may not be
smooth (T ′ need not be reduced). For the linear algebra, the vector associated
with T ′ will work in exactly the same way as if it was the difference of two
smooth divisors with a common Pi ∈ B and will have weight < 2g.

Proposition 2. Each intersection is counted only once no matter how many
times the large prime (or its negative) appeared before.

Proof. Let P be a large prime. Suppose that k > 1 almost-smooth divisors with
large prime P or −P occurred during the random walk, say Tj1 , Tj2 , . . . , Tjk

,
k − 1 of which are intersections. Using the same idea as described in Sect. 2.5,
we associate the Tji

’s to vectors v1,v2, . . . ,vk with an extra coordinate for
D(P). In order to use these to add information to the linear algebra system,
we must cancel out the coordinate associated to D(P). If we use v1 to do the
cancellation in the other vi’s, we obtain k− 1 vectors v′2, . . . ,v

′
k which are then

used to construct M (after removing the coordinate associated to D(P)). Since

span {v1,v2, . . . ,vk} = span {v1,v′2, . . . ,v
′
k} ,

once Tj1 has been used to cancel the large prime in Tji
, using another Tjl

to do
the cancellation again does not produce any supplementary information for the
linaer algebra system. Q.E.D.

We therefore look for intersections of almost-smooth divisors and use these
to obtain extra equations in our linear algebra system.

The advantage of this method is that the number of almost-smooth divisors
is greater than the number of smooth divisors by a factor of O(gq1−r) and the
search should produce more intersections of almost-smooth divisors than smooth
divisors.

For the analysis, we will assume that any point Pi in P such that Pi = −Pi

is in the factor base and that a point is in the factor base if and only if its
negative is also in the factor base. This has no efffect on the running time, but
it simplifies the analysis (in particular for Theorem 1).

4.2 Algorithm

The second algorithm can be summarized has follows (all steps, except 3c, work
in the same way as in the first algorithm).

1. Search for the elements of the factor base
2. Initialization of the random walk
3. Search for smooth divisors (random walk)

a) Search for potentially smooth divisors
b) Factorization of the potentially smooth divisors
c) Cancellation of the Large Primes

If the divisor is almost-smooth, check whether or not it is an intersection.
If not, add it to the list of non-intersections. If it is an intersection, cancel
its large prime and use the result as if it were a smooth divisor.

d) Construction of the linear algebra system
4. Solution of the linear algebra system
5. Final solution

5 Running-time analysis

5.1 Factor Base

In order to choose our factor base, we look at the x-coordinates of the points in
C(Fq).

We go through the values of xi ∈ Fq starting from 0 and following a chosen
order on Fq. We first evaluate y2 +h(X)y−f(X) at X = xi (this can be done in
O(g2(log(q))2) bit operations). We then factor the quadratic polynomial in Fq[y]
obtained which takes O((log(q))2) bit operations. If the polynomial has roots
yi,1, yi,2 in Fq (yi if we have a double root), we include (xi, yi1) and (xi, yi2) in
B. We then go on to the next xi ∈ Fq until |B| = qr.

This method will require O(q) tries for the possible x-coordinates, each taking
O(g2(log(q))2) bit operations, for a total of

O(g2q(log(q))2)

bit operations to build the factor base.

5.2 Initialization

To initialize the Random walk, we need to precompute the divisors T (i) used in
the state function R : Jq × {0, 1, . . . , n} → Jq as well as T0.

For each T (i) (and for T0), we choose both α(i) and β(i) randomly in {1, 2, . . . ,
(|Jq| − 1)} and set T (i) = α(i)D1 + β(i)D2. We then need O(g log(q)) Jaco-
bian operations to compute each of the T (i)’s, each Jacobian operation tak-
ing O(g2(log(q))2) bit operations. In practice, we can take n = O(log(|Jq|)) =
O(g log(q)), which gives a total of

O(g4 log(q)4)

bit operations to initialize the random walk.

5.3 Smooth Divisors

Proposition 3. For 2
3 < r < 1, there are qrg

g! + O
(

g2qr(g−1)

g!

)
smooth divisors

in Jq.

Proof. All smooth divisors relative to B can be written in the form
∑k

i=1 D(Pi)
with the Pi’s in B and k ≤ g. To count to number of smooth divisors, we need
to consider the number of distinct Pi’s in the representation of the divisors. The
number of smooth divisors with g distinct Pi’s is:

1
g!

g−1∏

i=0

(qr − i) =
qrg

g!
− qr(g−1)

2(g − 2)!
+ O

(
qr(g−2)

)
.

The number of smooth divisors with g−1 distinct Pi’s, one of which is repeated
is:

g − 1
(g − 1)!

g−2∏

i=0

(qr − i) =
qr(g−1)

(g − 2)!
+ O

(
qr(g−2)

)
.

The number of smooth divisors with g−1 distinct Pi’s, none of which are repeated
is:

1
(g − 1)!

g−2∏

i=0

(qr − i) =
qr(g−1)

(g − 1)!
+ O

(
qr(g−2)

)

Finally, the number of smooth divisors with less than g − 1 distinct Pi’s is
O

(
qr(g−2)

)
. This gives a total of

qrg

g!
+ O

(
g2qr(g−1)

g!

)

smooth divisors relative to B. Q.E.D.

The proportion of smooth divisors in Jq is then

qrg

g! + O
(

g2qr(g−1)

g!

)

qg + O
(
gqg− 1

2

) =
q−(1−r)g

g!
+ O

(
g2q−(1−r)g−r

g!

)
+ O

(
gq−(1−r)g− 1

2

g!

)
,

so we expect to have to look at

O
(
g!q(1−r)g

)

divsiors for each smooth divisor found in the search.

5.4 Potentially Smooth Divisors

Proposition 4. For 2
3 < r < 1, there are qg

g! + O
(

g
g!q

g− 1
2

)
potentially smooth

divisors in Jq.

Proof. All smooth divisors relative to P can be written in the form
∑k

i=1 D(Pi)
with the Pi’s in P and k ≤ g. To count to number of smooth divisors, we need
to consider the number of distinct Pi’s in the representation of the divisors.
Since |P| = q +O

(√
q
)

(from Hasse’s bound), the number of potentially smooth
divisors with g distinct Pi’s is:

1
g!

g−1∏

i=0

(|P| − i) =
qg

g!
+ O

(
g

g!
qg− 1

2

)
.

The number of potentially smooth divisors with less than g distinct Pi’s is
O

(
qg−1

)
, which gives a total of

qg

g!
+ O

(
g

g!
qg− 1

2

)

potentially smooth divisors. Q.E.D.

The proportion of potentially smooth divisors in Jq is then

qg

g! + O

(
gqg− 1

2

g!

)

qg + O
(
gqg− 1

2

) =
1
g!

+ O

(
g

g!
√

q

)

and we expect to have a potentially smooth divisor for every O(g!) divisors
computed in the search.

5.5 Almost-Smooth Divisors

Proposition 5. For 2
3 < r < 1, there are qrg+1−r

(g−1)! + O
(

qrg

(g−1)!

)
almost-smooth

divisors in Jq.

Proof. Each almost-smooth divisor can be written in the form D(P)+
∑k−1

i=1 D(Pi)
with P ∈ P \ B, the Pi’s in B and k ≤ g, so each almost-smooth divisor can
be associated to a large prime and at most g − 1 Pi’s in B. Using an argument
similar to the one in the proof of Proposition 3, we get

qr(g−1)

(g − 1)!
+ O

(
(g − 1)2qr(g−2)

(g − 1)!

)

possible distinct choices for the Pi’s in B. There are |P| − |B| = q− qr + O(
√

q)
choices for the large prime, so we have

qrg+1−r

(g − 1)!
− qrg

(g − 1)!
+ O

(
(g − 1)qrg+1−2r

(g − 2)!

)
+ O

(
qrg+ 1

2−r

(g − 1)!

)

almost-smooth divisors relative to B. Since 2
3 < r < 1 and q > g!, we get

qrg+1−r

(g − 1)!
+ O

(
qrg

(g − 1)!

)
.

Q.E.D.

The proportion of almost-smooth divisors in Jq is

qrg+1−r

(g−1)! + O
(

qrg

(g−1)!

)

qg + O
(
gqg− 1

2

) =
q−(1−r)(g−1)

(g − 1)!
+O

(
q−(1−r)g

(g − 1)!

)
+O

(
g
q−(1−r)(g−1)− 1

2

(g − 1)!

)
.

During the search, we can expect to look at

O
(
(g − 1)!q(1−r)(g−1)

)

divisors for each almost-smooth divisor found.

5.6 Intersections

We now consider the effect on the search of using almost-smooth divisors to get
the equations required for the linear algebra more quickly.

In order to know how many equations can be obtained from the almost-
smooth divisors, we need an estimate of the expected number of intersections
out of a set of s almost-smooth divisors. For this, we consider only the large
prime of each almost-smooth divisor.

Let Q(n, s, i) be the probability of having i intersections out of a sample
of size s drawn with replacement from a set of n elements and let En,s be the
expected number of intersections, i.e.

En,s =
s−1∑

i=0

iQ(n, s, i).

Theorem 1. If 3 ≤ s < n/2, then En,s is between 2s2

3n and s2

n .

Proof. If we consider the probability of having i intersections after s + 1 draws,
we have

Q(n, s + 1, i) =
n− 2(s− i)

n
Q(n, s, i) +

2(s− i + 1)
n

Q(n, s, i− 1)

since if Ts+1 contains the large prime Ps+1, then Ts+1 is an intersection if and
only if ±Ps+1 appears in one of the s − i or s − i + 1 non-intersections in the
first i almost-smooth divisors. Then

En,s+1 =
s∑

i=0

iQ(n, s + 1, i)

=
s∑

i=0

i

(
n− 2(s− i)

n
Q(n, s, i) +

2(s− i + 1)
n

Q(n, s, i− 1)
)

=
s−1∑

i=0

i
n− 2(s− i)

n
Q(n, s, i) +

s∑

i=1

i
2(s− i + 1)

n
Q(n, s, i− 1)

=
n− 2s

n

s−1∑

i=0

iQ(n, s, i) +
2
n

s−1∑

i=0

i2Q(n, s, i) +
2s

n

s∑

i=1

Q(n, s, i− 1)

+
2s− 2

n

s∑

i=1

(i− 1)Q(n, s, i− 1)− 2
n

s∑

i=1

(i− 1)2Q(n, s, i− 1)

=
n− 2

n

s−1∑

i=0

iQ(n, s, i) +
2s

n

s−1∑

i=0

Q(n, s, i)

=
n− 2

n
En,s +

2s

n
.

Solving for En,s (using En,1 = 0), we get

En,s =
n

2

(
1− 2

n

)s

+ s− n

2
=

n

2

s∑

i=2

(
s

i

)(−2
n

)i

Since 2(s−i)
in < 1, the terms in the sum are strictly decreasing in absolute values,

hence

En,s <
s(s− 1)

n
<

s2

n

and

En,s >
s(s− 1)

n
− 2s(s− 1)(s− 2)

3n2
>

s2

n
− 2s3

3n2
=

s2

n

(
1− 2

3
s

n

)
>

2
3

s2

n
.

Q.E.D.

5.7 Search (First Algorithm)

In order to insure the existence of a nonzero vector in the kernel of the linear
algebra system in step 4, we need to find O(|B|) = O(qr) smooth divisors. Since
we expect to look at O

(
g!qg(1−r)

)
divisors for each smooth divisor found, the

search will take an expected

O
(
g!qg(1−r)+r

)

random walk steps.
At each step of the random walk, we first have to compute Ti which requires

O(g2(log(q))2) bit operations for the arithmetic in Jq. ¿From the representation
of Ti as [a(x), b(x)], we can test whether or not Ti is potentially smooth by check-
ing if a(x) factors into linear factors over Fq, which can be done in O(g2 log(q)2)
bit operations. We must also compute αi and βi modulo |Jq|, which requires
O(g2(log(q))2) bit operations. Since this must be done for all O

(
g!qg(1−r)+r

)
divisors generated, this gives

O
(
g2g!qg(1−r)+r log(q)2

)

bit operations.
We now consider the cost of completely factoring the potentially smooth

divisors. Since there are O(g!) divisors for each potentially smooth divisor, we
expect to find O

(
qg(1−r)+r

)
potentially smooth divisors during the search. Since

computing the points of P in the representation of a divisor [a(x), b(x)] requires
to completely factor a(x) over Fq (to get the x-coordinates and multiplicities) and
then evaluating b(x) at the roots of a(x) (to obtain the y-coordinates), which
takes O(g2 log(q)2) bit operations (since a(x) has degree O(g)), determining
which potentially smooth divisors are really smooth and representing them in
terms of the factor base takes

O
(
g2qg(1−r)+r log(q)2

)

bit operations.
The search is then expected to take

O
(
g2g!qg(1−r)+r log(q)2

)

bit operations for the first algorithm.
Note that it may be possible to reduce the number of divisors to consider for

factorization by giving conditions on the coefficients of a(x) for the divisor to
be considered for smoothness. For exemple, if q is prime and the x-coordinates
of the points in the factor base are between 0 and cqr, then if the divisor is
smooth, a(x) must be of the form xk − ak−1x

k−1 + . . . with 0 < ak−1 < kcqr.
Even though this reduces the cost of testing for potentially smooth divisors and
complete factorization, the arithmetic in Jq is unaffected, and so the effect on
the running time will be at most a constant factor. This method will not work
for the second algorithm since there are no restrictions on the x-coordinate of
the large prime.

5.8 Search (Second Algorithm)

If we let n be the number of large primes (i.e. n = q− qr + O(
√

q)) and ask that
En,s = O(qr) (i.e. so that we expect the search to yield enough intersections to
build the linear algebra system), then we need

s = O
(
q

r+1
2

)
.

It will then take

O
(
s(g − 1)!q(g−1)(1−r)

)
= O

(
(g − 1)!q(g−1)(1−r)+ r+1

2

)

steps of random walk to build the linear algebra system.
Note that we expect the search to also produce

O
(
(g − 1)!qg−rg+r−1+ r+1

2

)

O (g!qg−rg)
= O

(
1
g
qr− 1−r

2

)

smooth divisors, which are obviously used to get the linear algebra system but
are not enough to have an important effect on the running time.

As in the first algorithm, computing Ti = [a(x), b(x)], αi and βi and testing
whether or not Ti is potentially smooth takes O(g2 log(q)2), for a total of

O
(
gg!q(g−1)(1−r)+ r+1

2 (log(q))2
)

bit operations over the whole search.
Since one in every O(g!) divisors is potentially smooth, we expect to find

O
(
q(g−1)(1−r)+ r+1

2 /g
)

potentially smooth divisors during the search. For each
potentially smooth divisor, we compute the points in P in its representation
(which takes O(g2 log(q)2) bit operations) and check if it is smooth or almost-
smooth. If the divisor is smooth, it is used to produce the linear algebra system;
if it is almost-smooth we look at the previous almost smooth divisors to see if it
is an intersection, which takes O(1+r

2 log(q)) bit operations (there are O(q
1+r
2)

non-intersections and only the large prime is considered doing this search). If we
have an intersection, we cancel the large prime and use the resulting divisor to
increase the size of the linear system, otherwise we add the divisor to the list of
non-intersections. This process is expected to take

O
(
gq(g−1)(1−r)+ r+1

2 (log(q))2
)

bit operations for all the potentially smooth divisors encountered during the
search.

The search is then expected to take

O
(
gg!q(g−1)(1−r)+ r+1

2 (log(q))2
)

bit operations for the second algorithm.

5.9 Linear Algebra

As said before, we continue with the search until we have an overdetermined
system. This gives us a matrix M of size O(qr) × O(qr), hence there exists a
nonzero vector in the kernel of M . Since each row has weight O(g) (≤ g for
the first algorithm and < 2g for the second), the system is sparse with weight
O(gqr).

Since M is sparse, we can use the algorithms by Lanczos [11] and Wiedemann
[13]. We can then find a vector in the kernel of this matrix in O(gq2r) operations
modulo |Jq|. Since |Jq| = qg + O(gqg−1/2), finding a solution will take

O
(
g3q2r(log(q))2

)

bit operations.

5.10 Final Solution

From the vector in the kernel of M , we have
∑

i

γivi = 0.

We obtain the final solution by computing

α =
∑

i

γiαi and β =
∑

i

γiβi

modulo |Jq|, where αi, βi come from the representation as Ti = αiD1 + βiD2 of
the ith divisor used to build the linear algebra system. If β 6= 0, the final solution
of the discrete log problem for the pair (D1, D2) is

λ ≡ −α

β
mod |Jq|.

Computing α and β requires O(qr) operations modulo |Jq|, each of these
operations taking O(g2(log(q))2) bit operations. This gives a total of

O(g2qr(log(q))2)

bit operations for the final step.

5.11 Optimization (First Algorithm)

Theorem 2. The factor base can be chosen such that the running time of the
first algorithm becomes

O
(
g5q2− 2

g+1+ε
)

.

Proof. From the previous sections, the steps of the first algorithm have the
following running times:

1. O
(
g2q(log(q))2

)
2. O

(
g4(log(q))4

)
3. O

(
g2g!qg−(g−1)r(log(q))2

)
4. O

(
g3q2r(log(q))2

)
5. O

(
g2qr(log(q))2

)

Since the running times for parts 1, 2 and 5 are all much smaller than those for
parts 3 and 4 when 2

3 < r < 1, the overall running time is:

O
(
g2g!qg−(g−1)r(log(q))2

)
+ O

(
g3q2r(log(q))2

)
.

In order to minimize this, we choose r such that both parts have the same
asymptotic form, i.e. such that

(g − 1)!qg−(g−1)r = q2r.

Solving for r, we get

r =
g + logq((g − 1)!)

g + 1
,

and since r is indeed between 2
3 and 1 for genus ≥ 3, this gives a running time

of
O

(
g3((g − 1)!)

2
g+1 q

2g
g+1 (log(q))2

)
.

Finally, since (g/4)g+1 < (g − 1)! < gg+1 for g ≥ 3, this is

O
(
g5q2− 2

g+1+ε
)

.

Q.E.D.

5.12 Optimization (Second Algorithm)

Theorem 3. The factor base can be chosen such that the running time of the
second algorithm becomes

O
(
g5q2− 4

2g+1+ε
)

.

Proof. For the second algorithm, the steps have running times:

1. O
(
g2q(log(q))2

)
2. O

(
g4(log(q))4

)

3. O
(
gg!q(g−1)(1−r)+ r+1

2 (log(q))2
)

4. O
(
g3q2r(log(q))2

)
5. O

(
g2qr(log(q))2

)

Once again, steps 3 and 4 are more costly than the others, so the overall running
time is:

O
(
gg!q(g−1)(1−r)+ r+1

2 (log(q))2
)

+ O
(
g3q2r(log(q))2

)
.

Forcing both parts to have the same asymptotic form requires

(g − 1)!q(g−1)(1−r)+ r+1
2 = gq2r,

which gives

r =
g − 1

2 + logq((g − 1)!/g)
g + 1

2

,

and since r is indeed between 2
3 and 1 for genus ≥ 3, this gives a running time

of
O

(
g3((g − 1)!/g)

4
2g+1 q

4g−2
2g+1 (log(q))2

)
.

Finally, since (g/4)g+ 1
2 < (g − 1)!/g < gg+ 1

2 for g ≥ 3, we get

O
(
g5q2− 4

2g+1+ε
)

.

Q.E.D.

6 Memory Space

For both algorithms, storing the linear algebra system requires O (gqr log(q))
bits (O(qr) equations and for each equation, the factored divisor, αi and βi each
take O(g log(q)) bits). For the second algorithm, we must also store all the non-
intersections almost-smooth divisors, which requires O

(
gq

1+r
2 log(q)

)
bits (we

expect to need O(q
1+r
2) almost-smooth divisors, each taking O(g log(q)) bits to

store the factorization, αi and βi), which will take more space than the linear
algebra system.

Substituting r with the values found in the proofs of Theorems 2 and 3, we
get O

(
g2q

g
g+1+ε

)
bits for the first algorithm and O

(
g2q

2g
2g+1+ε

)
bits for the

second algorithm.

7 Conclusion

We have described two algorithms for the hyperelliptic curves discrete log prob-
lem which improve on previously published attacks. If we compare the running
time of these two algorithms with those of the original index calculus and the
various “square-root” algorithms (Baby Step-Giant Step, Pollard ρ, etc.), for
small genus, we have:

g 3 4 5 6 7 8 9
square-root algorithms q3/2 q2 q5/2 q3 q7/2 q4 q9/2

original index calculus q2 q2 q2 q2 q2 q2 q2

reduced factor base q3/2 q8/5 q5/3 q12/7 q7/4 q16/9 q9/5

with large primes q10/7 q14/9 q18/11 q22/13 q26/15 q30/17 q34/19

Since the running times using large primes are slightly lower than previously
published attacks, the large primes algorithm should be taken into account when
designing any cryptosystem based on hyperelliptic curves of genus greater than
2. In particular, for curves of genus 3, the field of definition requires approxi-
matively 5% more bits of memory space for the curves to give the same level of
security as they did when the best known attacks were the square root algorithms
(obviously, the cost of the group operation will also increase in consequence). The
5% increase is due to the ratio log(q′)/ log(q) ≈ 21/20 required for the index cal-
culus attack for a genus 3 curve defined over Fq′ to require the same expected
running time as Pollard’s ρ algorithm for a genus 3 curve defined over the field
Fq.

Note that for genus 2 curves, Gaudry showed that the linear algebra system
can be solved in linear time (see [7]). The best possible running time for the
index calculus (using all the points over Fq as the factor base) is then O(q),
which is the same as Pollard’s ρ method and the other square roots algorithms.

References

1. L. M. Adleman, J. DeMarrais, M.-D. Huang, A subexponential algorithm for dis-
crete logarithms over hyperelliptic curves of large genus over GF(q), Theoret. Com-
put. Sci., 226, no. 1-2, pp. 7-18, 1999.

2. D. G. Cantor, Computing in the Jacobian of an hyperelliptic curve, Math. Comp.,
48(177), pp. 95-101, 1987.

3. A. Enge, Computing discrete logarithms in high-genus hyperelliptic jacobians in
provably subexponential time, Math. Comp., 71, no. 238, pp. 729-742, 2002.

4. A. Enge, P. Gaudry, A general framework for subexponential discrete logarithm
algorithms, Acta Arith., 102, no. 1, pp. 83-103, 2002.

5. A. Enge, A. Stein, Smooth ideals in hyperelliptic function fields, Math. Comp., 71,
no. 239, pp. 1219-1230, 2002.

6. T. Garefalakis, D. Panario, The index calculus method using non-smooth polyno-
mials, Math. Comp., 70, no 235, pp. 1253-1264, 2001.

7. P. Gaudry, Algorithmique des courbes hyperelliptiques et applications à la cryptolo-
gie, Thèse de doctorat de l’École polytechnique, 2000

8. P. Gaudry, An algorithm for solving the discrete log problem on hyperelliptic
curves, Advances in cryptology - EUROCRYPT 2000, Springer-Verlag, LNCS 1807,
pp. 19-34, 2000.

9. M. Girault, R. Cohen, M. Campana, A generalized birthday attack, Advances in
Cryptology - EUROCRYPT ’88, Springer-Verlag, LNCS 330, pp. 129-156, 1988.

10. N. Koblitz, Hyperelliptic cryptosystems, J. of Cryptology, 1, pp. 139-150, 1989.
11. B. A. LaMacchia, A. M. Odlyzko, Solving large sparse linear systems over finite

fields, Advances in Cryptology - CRYPTO ’90, Springer-Verlag, LNCS 537, pp.
109-133, 1990.

12. V. Müller, A. Stein, C. Thiel, Computing discrete logarithms in real quadratic
congruence function fields of large genus, Math. Comp., 68, no. 226, pp. 807-822,
1999.

13. D. H. Wiedemann, Solving sparse linear equations over finite fields, IEEE Trans.
Inform. Theory, IT-32, no. 1, pp.54-62, 1986.

