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Abstract. A commitment multiplication proof, CMP for short, allows a
player who is committed to secrets s, s′ and s′′ = s ·s′, to prove, without
revealing s, s′ or s′′, that indeed s′′ = ss′. CMP is an important building
block for secure general multi-party computation as well as threshold
cryptography.
In the standard cryptographic model, a CMP is typically done interac-
tively using zero-knowledge protocols. In the random oracle model it can
be done non-interactively by removing interaction using the Fiat-Shamir
heuristic. An alternative non-interactive solution in the distributed set-
ting, where at most a certain fraction of the verifiers are malicious, was
presented in [1] for Pedersen’s discrete log based commitment scheme.
This CMP essentially consists of a few invocations of Pedersen’s verifiable
secret sharing scheme (VSS) and is secure in the standard model.
In the first part of this paper, we improve that CMP by arguing that
a building block used in its construction in fact already constitutes a
CMP. This not only leads to a simplified exposition, but also saves on
the required number of invocations of Pedersen’s VSS. Next we show
how to construct non-interactive proofs of partial knowledge [8] in this
distributed setting. This allows for instance to prove non-interactively
the knowledge of ` out of m given secrets, without revealing which ones.
We also show how to construct efficient non-interactive zero-knowledge
proofs for circuit satisfiability in the distributed setting.
In the second part, we investigate generalizations to other homomorphic
commitment schemes, and show that on the negative side, Pedersen’s
VSS cannot be generalized to arbitrary (black-box) homomorphic com-
mitment schemes, while on the positive side, commitment schemes based
on q-one-way-group-homomorphism [7], which cover wide range of cur-
rently used schemes, suffice.

1 Introduction

Commitment schemes play an important role as a primitive in cryptographic pro-
tocols. Applications are found for instance in the construction of zero-knowledge
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proofs and arguments, secure multi-party computation and threshold crypto-
graphy. Using a commitment scheme, a player can commit to a secret value s
by publishing a commitment C, in such a way that the commitment C reveals
nothing about the secret s, i.e., the scheme is hiding. The player can later open
C to reveal s in a way verifiable by everyone else, i.e., it is binding in the sense
that the player can’t open C to any other value than s.

Many protocols using commitments require a player at some point to prove
certain relations among a set of committed values, without revealing these com-
mitted values in the process. Assuming that addition or multiplication of secret
values is well-defined, a player committed to s, s′ and s′′ will typically be required
to prove that s′′ = s + s′ or that s′′ = ss′. If the commitment scheme is ho-
momorphic, as is the case with many known commitment schemes, the additive
relation is trivial to handle, even non-interactively. A commitment multiplica-
tion proof (CMP), i.e., a secure protocol to handle the multiplicative relation, is
generally less trivial to design.

In the two-player setting, there exist efficient interactive zero-knowledge pro-
tocols for all known homomorphic schemes [7]. These protocols can be adapted
in a natural way to a distributed setting with n players and where up to t of
them are malicious, for instance by simply letting each of the players be engaged
in a separate run of the two-player protocol with the prover.

In [1] it is shown how this approach can be substantially improved by tak-
ing advantage of the fact that sufficiently many players are guaranteed to be
honest. Namely, it is shown how to handle CMP in this distributed setting
non-interactively in the case of Pedersen’s discrete logarithm based commit-
ment scheme. This CMP essentially consists of a few Pedersen VSS’s and is
non-interactive (from the prover’s point of view) in case everyone plays hon-
estly, while the prover might have to answer accusations otherwise. We call this
non-interactive with accusing. Moreover, it is totally non-interactive if t < n/3.

In the first part of this paper, we improve that CMP by arguing that a
building block used in its construction in fact already constitutes a CMP. This
not only leads to a simplified exposition, but also saves on the required number
of invocations of Pedersen’s VSS. Next we show a new technique to construct
non-interactive proofs of partial knowledge in this distributed setting, thereby
extending the results of [8] for the interactive two-player case. This allows for
instance to prove non-interactively the knowledge of ` out of m given secrets,
without revealing which ones. As an application, it allows to make the proof of
correctness of a ballot in the [10] voting scheme non-interactive without resorting
to random oracles. We also show how to construct efficient non-interactive zero-
knowledge proofs for circuit satisfiability in the distributed setting.

In the second part, we investigate generalizations to other homomorphic
commitment schemes, and show that on the negative side, Pedersen’s VSS can-
not be generalized to arbitrary (black-box) homomorphic commitment schemes,
while on the positive side, commitment schemes based on q-one-way-group-
homomorphism [7], which cover wide range of currently used schemes, suffice.
Finally, we show how this positive result leads to error-free non-interactive zero-
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knowledge proofs of membership for non-trivial languages in this distributed
setting.

We proceed by repeating the concepts of commitment schemes and (verifi-
able) secret sharing and by recalling the concrete schemes of Pedersen in the
following Section 2. In Section 3 we define (zero-knowledge) distributed-verifier
proofs and we show that Pedersen’s VSS can be seen as such a proof, and in
Section 4 we present the CMP protocol and the proof protocols for partial knowl-
edge and for general circuit satisfiability. Finally, in Section 5, we investigate to
what extent the above protocols can be generalized to other homomorphic com-
mitment schemes.

2 Preliminaries

2.1 Pedersen’s Commitment Scheme

A commitment scheme of the kind we consider over a finite domain S is given
by a function family

compk : S ×Rpk → Cpk

indexed by a public key pk, where Rpk and Cpk are finite sets. In a set-up phase, a
concrete public key pk and thus function compk is fixed in a prescribed manner.
By publishing a commitment C = compk(s, r) for a random r ∈ Rpk, such a
scheme allows a party, Alice, to commit herself to a secret s ∈ S, such that the
commitment C reveals nothing about the secret s (hiding property) while on the
other hand Alice can open C to s by publishing (s, r) but only to s (binding
property).

If S is a field K (or, more generally, a ring), then such a commitment scheme
is called homomorphic, if the following holds: For any commitments C and C ′

and any number λ ∈ K, one can compute commitments S and P such that being
able to open C and C ′ to values s and s′, respectively, allows to open S to the
sum s+ s′ and P to the product λs.

A well known homomorphic commitment scheme is the Pedersen commitment
scheme [5, 2, 16], given by

comg,h : Fq × Fq → G
(s, r) 7→ gshr

where q is a prime, G is a (multiplicative) group of order |G| = q in which com-
puting discrete logarithms is (assumed to be) hard, e.g. a subgroup of F∗

p, and g
and h are randomly chosen generators of G. This scheme is unconditionally hid-
ing and computationally binding, and it is homomorphic: If C = comg,h(s, r) and
C ′ = comg,h(s

′, r′) then C ·C ′ = comg,h(s+ s′, r+ r′) and Cλ = comg,h(λs, λr).

2.2 Pedersen’s Verifiable Secret Sharing Scheme

In a secret sharing scheme a dealer distributes a secret s to n players P1, . . . , Pn
(for simplicity we set Pi = i) by privately sending to each player Pi a share si
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in such a way that, for a fixed threshold t, up to t players have no information
about the secret s (privacy) while t+1 players (or more) are able to reconstruct
it (correctness). While secret sharing only guarantees security against curious
players that try to gather information they are not supposed to obtain but
otherwise behave honestly, its stronger version verifiable secret sharing [11], VSS
for short, is secure in the following sense against up to t dishonest players and a
possibly dishonest dealer that behave in an arbitrary manner.

Privacy: In case of an honest dealer, the information the dishonest players gain
during the distribution of the secret s gives no information about s.

Correctness: As soon as the distribution is completed, there exists a fixed value
s′ such that every honest player will output s′ as a result of the reconstruc-
tion, and if the dealer is honest, then s′ = s.

The Pedersen VSS scheme [16] is based on Shamir’s secret sharing scheme
[17] and Pedersen’s commitment scheme.

Protocol Shareg,h

1. To share a secret s ∈ Fq, the dealer chooses a random polynomial fs(X) =
a0 + a1X + . . .+ atX

t ∈ Fq[X] of degree at most t with constant coefficient
a0 = s, and he commits himself to this sharing polynomial fs(X) by broad-
casting commitments A0, . . . , At of a0, . . . , at, respectively. For every player
Pi, the dealer computes the share

si = fs(i) = s+ a1i+ . . . ati
t ∈ Fq

and he opens the corresponding commitment

Ci = A0 ·A
i
1 · . . . ·A

it

t

privately to Pi, using the homomorphic property of the commitment scheme.

2. If Pi does not accept the opening, then Pi broadcasts an accusation against
the dealer.

3. To any accusation of a player Pi, the dealer responds by opening Ci publicly.

4. If he fails to do this correctly then the sharing is rejected, otherwise it is
accepted.

After the execution of this protocol, assumed that it has been accepted, every
player Pi is committed to his share si by the commitment Ci, and he holds
the corresponding information to open it. Hence, the reconstruction works as
follows.

Protocol Reconstructg,h

Every player Pi publicly opens Ci to si. The shares si that have been cor-
rectly opened are then taken to reconstruct the secret by interpolation.
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The pair (Share,Reconstruct) is a VSS if (and only if) t < n/2. Privacy holds
unconditionally while correctness holds under the assumption that computing
discrete logarithms is hard.
The scheme can be made completely non-interactive from the dealer’s point of
view in case t < n/3 by replacing the steps 3. and 4. by

3.’ If the number of accusations is larger than t, then the sharing is rejected,
otherwise it is accepted.

Namely, in this case, if the sharing is accepted then there are at least t+1 honest
players that have not accused the dealer in step 2. and hence have a consistent
sharing that allows to reconstruct the secret (see also the proof of Proposition 1).

Remark. Consider an accepted execution of the sharing protocol. By correctness,
a secret value s′ is fixed that can later be reconstructed. Since the information
used by the players in the reconstruction originated with the dealer, we can
conclude that the dealer knows this secret. In fact, it is straight forward to
show, as we do later on, that the dealer not only knows s′ but he also knows
how to open the commitment A0 used in the sharing protocol (to s′).

3 Distributed Verifier Proofs

3.1 Model and Definition

We consider a prover P who wants to prove to a set of n verifiers V = {V1, . . . , Vn},
that he knows some witness w without revealing it. We assume an adversary that
can actively corrupt up to t of the n verifiers as well as the prover P , where we
consider both cases t < n/2 and t < n/3. Some of the protocols require the
adversary to be computationally bounded, and we assume him to be static,
meaning that he has to corrupt the parties before the protocol execution. We
assume that secure pairwise channels as well as broadcast channels are either
provided by cryptographic means (in case of a bounded adversary) or given as
primitives, though, for simplicity, also in the former case we will treat them as
being perfectly secure.

Consider now two sets W and I and an efficiently verifiable relation R ⊆
W × I. Given some public information I ∈ I, the prover wants to convince the
verifiers that he knows a witness w ∈ W with (w, I) ∈ R.

Definition 1. A distributed verifier proof (of knowledge) for relation R is a
protocol among a prover P and n verifiers V1, . . . , Vn (all polynomially bounded),
with a common input I, a private input w by P and a public output accept or
reject, such that the following security properties hold, even if up to t of the n
verifiers as well as the prover might be corrupted by the adversary.

Correctness: If P is honest and (w, I) ∈ R, then the output will be accept.
Soundness: There exists a knowledge extractor that can efficiently compute from
the joint view of the honest players a witness w′ satisfying (w′, I) ∈ R,
assumed that the output of the protocol is accept.
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This soundness condition can come in three flavors: perfect, unconditional, or
computational. Meaning that the condition holds with probability 1, with over-
whelming probability, or under some computational assumption, respectively.
A distributed verifier proof is called non-interactive, if the structure of the

protocol is as follows. The prover sends to every verifier one message, a personal
partial proof, and then every verifier votes to either accept or reject the proof,
depending on whether he accepts or rejects his partial proof, and the outcome of
the protocol is accept if and only if not more than t verifiers vote for rejection.
It is called non-interactive with accusing, if it is non-interactive except that
in case there are some rejections, the prover must broadcast the corresponding
partial proofs, and the outcome of the protocol is accept if and only if none of
these published proofs is rejected.
Finally, it is called zero-knowledge, if the adversary can simulate his view of

the protocol.

The above soundness condition highlights the power of the distributed verifier
setting in two ways: 1) The prover is not given to the knowledge extractor as
a rewindable black-box. Thus, no rewinding argument is needed to prove the
soundness of a protocol. 2) In case of perfect soundness it asserts that there is no
knowledge error. Hence, acceptance of the proof always implies the knowledge
of a witness w′. Of course, one can relax the definition by allowing to rewind
the prover so that it becomes seamless with the standard definition of proof of
knowledge [4] with a single verifier.

Such a distributed verifier proof can also be seen as a proof of membership
where the prover proves the existence of a witness w with (w, I) ∈ R and there-
fore that I belongs to the language LR = {I | ∃w : (w, I) ∈ R}. A proof
of membership for language L in this model can be defined similarly, with the
corresponding correctness and soundness conditions as follows.

Correctness: If P is honest and x ∈ L, then the output will be accept.
Soundness: If the output of the protocol is accept, then x ∈ L.

Again, soundness can come in different flavours. It is, however, important to
note that in a usual single verifier proof perfect soundness can be achieved only
for trivial languages while this is not true for distributed verifier proofs. This
will be addressed further in Section 5.3.
Proofs of membership in a distributed setting have also been introduced in [3]
under the name of network zero-knowledge proofs.

3.2 Pedersen’s VSS as a Distributed Verifier Proof

Let comg,h : Fq × Fq → G, (s, r) 7→ gshr be the Pedersen commitment scheme.
For a commitment C = comg,h(s, r) let Proofg,h(C) denote an execution of
Shareg,h with secret s, except that in step 1. of the protocol, A0 = C is taken
as commitment of a0 = s. Then, Proofg,h(C) is a zero-knowledge proof that the
dealer can open the commitment C. More formally, for relation

Rg,h = {((s, r), C) | s, r ∈ Fq, C = comg,h(s, r)} ⊆ (Fq)
2 ×G
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we have

Proposition 1. Protocol Proofg,h is a perfectly sound zero-knowledge distributed-
verifier proof for relation Rg,h, non-interactive in case t < n/3 and non-interactive
with accusing in case t < n/2.

We stress that we have soundness and zero-knowledge independent of the
quality of the commitment scheme comg,h. In fact, this holds even in case the
discrete logarithm logg h is known and hence the binding property does not hold
at all.

Proof of Proposition 1: Since, to any possible accusation, the honest prover only
broadcasts correct information, the proof will be accepted. It remains to show
soundness and zero-knowledge.
Soundness: Assume that the proof has been accepted, and let A be the set of
honest players, respectively, in case of t < n/3, the set of honest players who
have not accused the dealer. In any case, |A| ≥ t + 1 (and we assume without
loss of generality that A = {1, . . . , t+ 1}) and every player Pi ∈ A can open his
commitment Ci to, say, s

′
i. Let λ1, . . . , λt+1 be the reconstruction coefficients for

the players in A. That is,
∑t+1

i=1 λisi = s for correctly computed shares si of s,

which means that
∑t+1

i=1 λi
∑t

k=0 aki
k = s = a0 and hence

∑t+1
i=1(λii

k) = δk0
(where δij = 1 if i = j and 0 otherwise). Because of the homomorphic property
of the commitment scheme, the players of A can open the commitment C ′ =
∏t+1
i=1 C

λi

i to s′ =
∑t+1

i=1 λis
′
i. However, as

C ′ =

t+1
∏

i=1

Cλi

i =

t+1
∏

i=1

(

t
∏

k=0

Ai
k

k

)λi

=

t
∏

k=0

A
∑

i(λii
k)

k = A0 = C (1)

it follows that they can open C (to s′).
Zero-knowledge: Let A be the set of corrupted players. We assume without
loss of generality that A = {1, . . . , t}. We make use of the well known fact that
from the secret s and the shares s1, . . . , st of the players in A, all the random
sharing coefficients a1, . . . , at can be computed in a linear way. Hence, writing
s0 = s = a0, for every k ∈ {0, . . . , t} there exist coefficients µk0, . . . , µkt such
that ak =

∑t
j=0 µkjsj , which means that si =

∑t
k=0 aii

k =
∑t

k=0

∑t
j=0 µkjsji

k

and hence
∑t

k=0 µkji
k = δij .

Given the commitment C for s, the players in A can simulate their view of
the protocol as follows. For every Pi ∈ A they choose si ∈ Fq at random and
compute a (random) commitment Ci for si, and for k = 0, . . . , t they compute
Ak =

∏t
j=0 C

µkj

j , where C0 = C, such that A0 = C and for every i ∈ A

t
∏

k=0

Ai
k

k =

t
∏

k=0





t
∏

j=0

C
µkj

j





ik

=

t
∏

j=0

C
∑

k(µkji
k)

j = Ci (2)

Finally, it is not hard to see that A1, . . . , At are independently random commit-
ments of independently random values. ut



214 M. Abe, R. Cramer, and S. Fehr

4 Our Technical Contributions

4.1 An Improved Commitment Multiplication Proof

Consider again Pedersen’s commitment scheme comg,h(s, r) = gshr, and let
C ′ ∈ G be an arbitrary commitment. Then the commitment scheme

comC′,h(s
∗, r∗) = (C ′)s

∗

hr
∗

= C ′s
∗

· comg,h(0, r
∗)

with basis C ′, h inherits the following properties.

Lemma 1.

1. Being able to open (wrt. comg,h) C
′ and C ′′ to values s′ and s′′, respectively,

allows to open C ′′ wrt. comC′,h to a value s satisfying ss
′ = s′′, and being

able to open C ′′ to 0 wrt. comg,h allows to open C
′′ to 0 wrt. comC′,h.

2. The scheme comC′,h is as hiding and binding as comg,h, assumed that C ′

cannot be opened to 0 wrt. comg,h.

Proof. 1. Let s, s′, s′′, r′, r′′ satisfy C ′ = comg,h(s
′, r′), C ′′ = comg,h(s

′′, r′′) and

ss′ = s′′. Then, for r∗ = r′′ − sr′ we have comg,h(s
′′ − ss′, r∗) = C ′′ · C ′−s

and hence comC′,h(s, r
∗) = C ′s · comg,h(0, r

∗) = C ′′. This also holds if s = 0
and thus s′′ = 0, in which case r∗ = r′′.

2. First, for r∗ ∈ Fq chosen at random, comC′,h(s
∗, r∗) is clearly a random

element of G, independent of s∗. Furthermore, knowing s∗ 6= s̃∗ and r∗

and r̃∗ such that comC′,h(s
∗, r∗) = comC′,h(s̃

∗, r̃∗), i.e. C ′s
∗

· comg,h(0, r
∗) =

C ′s̃
∗

· comg,h(0, r̃
∗), allows to open the commitment C ′ to zero, namely C ′ =

comg,h(0, (r
∗ − r̃∗)/(s̃∗ − s∗)). ut

This gives rise to the following CMP, which allows the prover to prove that he
can open commitments C, C ′ and C ′′ to values s, s′ and s′′ = ss′, respectively.
Note that the 4 steps can be executed in parallel.

Protocol Mult Proofg,h(C,C
′;C ′′)

1. The prover executes Proofg,h(C).
2. The prover executes ProofC′,h(C

′′) using the same sharing polynomial fs(X)
as in the above step (but new independent commitments wrt. comC′,h).

3. Every player verifies whether his shares from step 1. and 2. coincide and
accuses the dealer if it does not hold. In case t < n/2 (but not t < n/3) the
dealer responds by opening the two corresponding commitments in public.

4. The prover executes Proofg,h(C
′′).

This protocol also appeared in [1]. However, the security proof given there did
not cover the case where the prover can open C ′ to s′ = 0, and therefore the
protocol was extended to “also deal with the case s′ = 0” by essentially adding
another Pedersen VSS sharing. Our analysis shows that this is superfluous, and
that the protocol as it stands is secure also in case s′ = 0. Furthermore, we show
that the case s = 0 is somewhat special. Namely, we show that if the prover can
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open the commitment C to s = 0, then he can execute the protocol even without
being able to open C ′, as long as he can open C ′′ to s′′ = 0. This of course also
guarantees that s′′ = ss′ (no matter what s′ is), but, as we will see in the next
section, it also opens the door for new constructions in this setting like proofs
of partial knowledge.

Theorem 1. The above protocol Mult Proofg,h(C,C
′;C ′′) is a perfectly sound

zero-knowledge distributed verifier proof, non-interactive in case t < n/3 and
non-interactive with accusing in case t < n/2, that the prover can open C, C ′

and C ′′ as values s, s′ and s′′ = ss′, or that he can open both C and C ′′ as 0.

Proof. Correctness: Follows from point 1. of Lemma 1 and the correctness of the
protocol Proofg,h.
Soundness: According to Proposition 1, from the information received during
Step 1., the honest players can compute s and r with C = comg,h(s, r). Also,
from the information received during Step 2., the honest players can compute
the same s and some r∗ with C ′′ = comC′,h(s, r

∗) = C ′s · comg,h(0, r
∗). Finally,

from the information received during Step 3., the honest players can compute
s′′ and r′′ with C ′′ = comg,h(s

′′, r′′). It now follows that either s = 0 and hence
C ′′ = comg,h(0, r

∗), which means that the honest players can open C ′′ to zero,

or that C ′ = C ′′1/s · comg,h(0, r
∗)−1/s = comg,h(s

′′, r′′)1/s · comg,h(0, r
∗)−1/s =

comg,h(s
′′/s, (r′′ − r∗)/s), which means that the honest players can open C ′ to

s′ = s′′/s.
Zero-Knowledge: The adversary can simulate his view of the protocol by simulat-
ing independently the protocols Proofg,h(C), ProofC′,h(C

′′) and Proofg,h(C
′′),

as described in the proof of Proposition 1, except that he chooses the same shares
for the simulation of Proofg,h(C) and of ProofC′,h(C

′′). ut

4.2 Proofs or Partial Knowledge

In [8], an efficient solution was presented to construct proofs of partial knowl-
edge in the two-players setting. Such a proof of partial knowledge allows for
instance to prove the knowledge of (at least) ` out of m given secrets without
revealing which ` secrets. We will now present corresponding non-interactive
protocols in the distributed-verifier setting. While the proof protocols of [8] rely
on concepts like the dual access structure and the simulation of protocols, our
distributed verifier proof protocols are based on the fact that the CMP proto-
col Mult Proofg,h(C,C

′;C ′′) can be executed by the prover even if he does not
know s′ (as long as s = s′′ = 0).

Let first C0 and C1 be two public Pedersen commitments and let the prover
be able to open Cw to say sw, where either w = 0 or w = 1.

Protocol OR-Proofg,h(C0, C1)

The prover sets bw = 1 and b1−w = 0 as well as dw = sw and d1−w = 0, and
he commits to b0, b1, d0 and d1 by B0, B1, D0 and D1, respectively. Then,
he opens B = B0 ·B1 as b0 + b1 = 1 and executes Mult Proofg,h(B0, C0;D0)
and Mult Proofg,h(B1, C1;D1).
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According to Theorem 1, the prover can execute Mult Proofg,h(B1−w, C1−w;D1−w)
even without being able to open C1−w as long as he can open B1−w and D1−w

to zero. On the other hand, if he cannot open Bw to zero, which must be
the case for at least one of B0 and B1 as he can open B = B0 · B1 to 1,
Mult Proofg,h(Bw, Cw;Dw) proves that he can open Cw.

This can easily be generalized to `-out-of-m proofs, which, given m commit-
ments C1, . . . , Cm, allows to prove the knowledge of at least ` hidden secrets,
without giving away which ones.

Protocol
(

`
m

)

-Proofg,h(C1, . . . , Cm)

For i = 1, . . . ,m, the prover sets bi = 1 and di = si if he can open Ci
(to si) and bi = di = 0 otherwise, and he commits to bi and di by Bi

and Di, respectively. He proves that indeed bi ∈ {0, 1}, i.e. bi(1 − bi) = 0,
by executing Mult Proofg,h(Bi, E/Bi;O), where E = comg,h(1, 0) = g and
O = comg,h(0, 0) = 1 are default commitments for 1 and zero, respectively, he
opens B1 ·. . .·Bm as ` and executes Mult Proofg,h(Bi, Ci;Di) for i = 1, . . . ,m.

The following is a somewhat more efficient solution where no proof of something
like bi ∈ {0, 1} is needed. Consider Shamir’s `-out-ofm secret sharing scheme. As
we have already used in the proof of Proposition 1, for A ⊆ {1, . . . ,m} with |A| ≥
`, there exist reconstruction coefficients λA,i, i ∈ A, such that

∑

i∈A(λA,ii
k) =

δk0. Based on this fact, we have the following enhanced protocol that allows the
prover to prove that he can open the commitments Ci with i ∈ A for a subset
A ⊆ {1, . . . ,m} of size at least `.

Protocol
(

`
m

)

-Proof ′g,h(C1, . . . , Cm)

The prover chooses reconstruction coefficients λA,i, i ∈ A. For i = 1, . . . ,m,
he puts bi = λA,i and di = bisi if i ∈ A and bi = di = 0 otherwise,
and he generates commitments B1, . . . , Bm and D1, . . . , Dm for b1, . . . , bm
and d1, . . . , dm, respectively. For k = 0, . . . , `, he opens the commitment
∏m
i=1B

ik

i as δk0, and he executes Mult Proofg,h(Bi, Ci;Di) for i = 1, . . . ,m.

Soundness of the above protocol relies on the binding property of the Pedersen
commitment scheme (hence it allows small error probability).

It is not hard to see that this protocol can be generalized to any linear secret
sharing scheme, not necessarily a threshold scheme. Hence, given an arbitrary
linear secret sharing scheme over Fq for m players with an access structure Γ ,
we have the following

Theorem 2. Under the DL-assumption, there exists a computationally sound
zero-knowledge distributed-verifier proof, non-interactive in case t < n/3 and
non-interactive with accusing in case t < n/2, that the prover can open a subset
Ci1 , . . . , Ci` of the commitments C1, . . . , Cm corresponding to a qualified set A =
{i1, . . . , i`} ∈ Γ .
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4.3 General Circuit Evaluation Proofs

Let C be a binary circuit consisting of NAND gates.

Theorem 3. Under the DL-assumption, there exists a computationally sound
zero-knowledge distributed-verifier proof, non-interactive in case t < n/3 and
non-interactive with accusing in case t < n/2, that the prover knows a satisfying
input to the circuit C.

Proof sketch: Let b = (b1, . . . , bm) be a satisfying input for the circuit C. To
prove knowledge of b, the prover generates a commitment Bi for every input bit
bi and proves that bi ∈ {0, 1} by executing Mult Proofg,h(Bi, E/Bi;O). Induc-
tively, for every NAND gate with input bits bl and br to which he has already
computed corresponding commitments Bl and Br, respectively, the prover com-
putes a commitment Bout for the output bit bout = bl NAND br and proves
its correctness by executing Mult Proofg,h(Bl, Br;E/Bout). Finally, he opens the
commitment B of the result bit b = C(b1, . . . , bm) as 1. ut

Another way to achieve this result is by combining the techniques from [6] based
on proofs of partial knowledge with the protocols from the above section.

Clearly, if the circuit C is an arithmetic circuit over the field Fq, then there
exists an even simpler proof protocol.

5 Arbitrary Homomorphic Commitments

In this section, we investigate to what extent the Pedersen’s VSS scheme and
the above results can be generalized with regard to other homomorphic com-
mitment schemes. Clearly, by the description in Section 2.2, the Pedersen’s VSS
scheme, consisting of the protocols Share and Reconstruct, can be executed with
an arbitrary homomorphic commitment scheme replacing the Pedersen scheme.
However, it is not so clear whether this results in a secure VSS scheme. And
indeed, we will show that the security cannot be proven for an arbitrary (black-
box) homomorphic commitment scheme. This does not necessarily imply that
there exists a secure commitment scheme under which the Pedersen-like VSS
is insecure; however, it means that in order to result in a secure Pedersen-like
VSS, a homomorphic commitment scheme must inherit some additional proper-
ties. On the other hand, to relax the impact of this negative result, we present
sufficient conditions for a homomorphic commitment scheme that guarantee the
security of the corresponding Pedersen-like VSS and the resulting distributed-
verifier proofs. We then show that these conditions are satisfied by so called
q-one-way-group-homomorphism based schemes [7], which cover all currently
known homomorphic commitment schemes with finite domain. Finally, we show
how this positive result leads to error-free non-interactive zero-knowedge proofs
of membership.
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5.1 The Impossibility Result

Recall that a commitment scheme over a field K is called homomorphic if, given
two commitments C and C ′ and a field element λ ∈ K, one can compute com-
mitments S and P such that being able to open C and C ′ to values s and s′,
respectively, allows to open S to s+ s′ and P to λs. We will denote these map-
pings (C,C ′) 7→ S and (λ,C) 7→ P by “?” and “◦”, respectively, i.e. we write
S = C ?C ′ and P = λ ◦C. The following theorem states that the Pedersen VSS
scheme described in Section 2.2 cannot be generalised to a homomorphic com-
mitment scheme com, that is given as a black-box and where only the security
requirements and the homomorphic property are guaranteed. The idea is that
with respect to some unconditionally-hiding homomorphic commitment scheme,
the dealer might be able to come up with commitments A0 =C,A1, . . . , At for
the secret and the sharing coefficients, computed in some way such that he is
not able to open (all of) them, but nevertheless he can open the correspond-
ing commitments C1, . . . , Cn to a set s1, . . . , sn of inconsistent shares. This is
for instance the case if the dealer can compute a commitment A1 such that
he can open 2 ◦ A1, . . . , (n − 1) ◦ A1 to 2, . . . , n − 1, respectively, such that it
looks as if A1 “contains” 1, and n ◦ A1 to, let’s say, n + 1. Indeed, by choos-
ing A1 this way and A0 =C and A2, . . . , At as required by the Share protocol,
the dealer could open the corresponding commitments C2, . . . , Cn, computed as
Ci = C ? (i◦A1) ? . . . ? (it◦At), to a set of inconsistent shares (though he cannot
open C1). Since we do not require the dealer to be able to open A1, and the
homomorphic property does not require anything like λ−1 ◦ (λ ◦C) = C (as can
be observed for existing schemes, see Section 5.2), the existence of such a com-
mitment A1 does not a priori contradict the security of the commitment scheme,
if it is unconditionally hiding and hence a statement like “A1 contains 1” does
not make sense. We will now show that also a posteriori, this does not contra-
dict the security (or the homomorphic property) of the commitment scheme by
presenting an oracle with respect to which there exists a secure homomorphic
commitment scheme, however the corresponding Pedersen-like VSS is insecure.

Theorem 4. Let K be a field of size 2k, where k is a security parameter. There
exists an oracle O relative to which there exists a secure homomorphic commit-
ment scheme comO : K × K → K such that the resulting Pedersen-like VSS,
consisting of ShareO and ReconstructO, is insecure.

The oracle O in mind has history tapes H, M and A, which are all empty
at the beginning, and one can make commit-, multiply-, add- and cheat-queries,
to which O answers as follows:

commit-query: input s, r ∈ K, output C = comO(s, r) ∈ K
If there exists C ∈ K such that (s, r;C) ∈ H, then O returns C. Else,
O chooses a random C ∈ K, writes (s, r;C) to the history tape H and
returns C.

multiply-query: input λ,C ∈ K, output C ′ = multiplyO(λ,C) ∈ K
If there exists C ′ ∈ K such that (λ,C;C ′) ∈ M, then O returns C ′. Else,
if there exists s, r ∈ K such that (s, r;C) ∈ H, then O computes C ′ =
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comO(λs, λr), while otherwise it chooses C ′ ∈ K at random, and it writes
(λ,C;C ′) to the history tape M and returns C ′.

add-query: input C,C ′ ∈ K, output C ′′ = addO(C,C
′) ∈ K

If there exists C ′′ ∈ K such that (C,C ′;C ′′) ∈ A, then O returns C ′′. Else, if
there exist s, r, s′, r′ ∈ K such that (s, r;C), (s′, r′;C) ∈ H, then O computes
C ′′ = comO(s+s′, r+r′), while otherwise it chooses C ′ ∈ K at random, and
it writes (C,C ′;C ′′) to the history tape A and returns C ′′.

cheat-query: input n∈N, output (r(2), . . . , r(n);C,C(2), . . . , C(n)) ∈ Kn−1×Kn

O chooses random r(2), . . . , r(n) ∈ K and C,C(2), . . . , C(n) ∈ K. For i = 2 to
n, he writes (i, C;C(i)) to the history tape M. For i = 2 to n− 1, he writes
(i, r(i);C(i)) to the history tape H, and he writes (n + 1, r(n);C(n)) to the
history tape H. Finally, he returns r(2), . . . , r(n) and C,C(2), . . . , C(n).

This oracle gives indeed rise to a homomorphic commitment scheme comO :
K×K → K. Namely, as indicated by the notation, for s, r ∈ K, the commitment
comO(s, r) is the answer of the oracle O to a commit-query with input s and
r, and the multiply- and add-queries provide the homomorphic property. E.g.
being able to open C to s, i.e. knowing r such that (s, r;C) ∈ H, allows to
open λ ◦ C = multiplyO(λ,C), the answer C ′ to a multiply-query with input
λ and C, to the value λs, since after the query (λs, λr;C ′) ∈ H and hence
comO(λs, λr) = C ′. Furthermore, the cheat-query allows the dealer (together
with a corrupted first player P1) to misbehave as described in the beginning of
this section to distribute an inconsistent sharing among the remaining players
P2, . . . , Pn. It remains to show the security of comO. The commitment C of a
secret s, generated with whatever query, is a random number in K, independent
of anything else, and hence the scheme is hiding. Because of the same reason,
C 6= C ′ for every pair (s, r, C), (s′, r′, C ′) of entries of H, except with small
probability, and hence the scheme is binding.

It is not hard to see from the above construction that with respect to this
homomorphic commitment scheme comO, Proposition 1 and similarly Theorem 1
to 3 do not hold.

5.2 Generalization to q-OWGH-based Commitments

Inspecting for instance the proof of Proposition 1, which is essentially identical
to a security proof of Pedersen’s VSS scheme, one immediately sees that we made
extensive use of the fact that for Pedersen’s commitment scheme the operation
“?” is a group operation “·”, and that “◦”, given by exponentiation, fulfils

(C · C ′)λ = Cλ · C ′λ , Cλ+λ′ = Cλ · Cλ′ and Cλλ′ =
(

Cλ
)λ′

which may not hold for other homomorphic schemes. In fact, with respect to the
schemes listed in the appendix, this holds only for Pedersen’s. For instance, if C
is a commitment with respect to the QR-based commitment scheme comt(s, r) =
tsr2 over F2 = {0̄, 1̄} (x̄ denotes the residue class of x modulo q hereafter), then
in general C 1̄ · C 1̄ = C · C = C2 6= 1 = C 0̄ = C 1̄+1̄. On the other hand,
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it is not hard to see that these were the sole conditions needed (besides the
homomorphic property), not only for the proof of Proposition 1, but also for
all results from the Sections 4. Hence, the above properties give a sufficient
condition for a homomorphic commitment scheme in order to generalize the
security of Pedersen’s VSS scheme as well as our results to this commitment
scheme. And, as a matter of fact, even some weaker condition suffices (which,
by the way, are fulfilled by the above QR-based scheme, as will be shown):

It should be feasible to open the commitments

(C · C ′)λ / (Cλ ·C ′λ) , Cλ+λ′ / (Cλ ·Cλ′) and Cλλ′ /
(

Cλ
)λ′

(3)

to zero for any commitments C,C ′ and numbers λ, λ′, knowing only C, C ′,
λ and λ′.

Indeed, consider for instance (1) in the proof of Proposition 1. Even though it
might be that C ′ 6= C, it is guaranteed by these properties that the commitment
C/C ′ can be opened to zero knowing only C and C ′, and hence being able to
open C ′ (to s′) also allows to open C = (C/C ′)·C ′ (to s′). This kind of reasoning
allows to generalize all the previous proofs, and hence we have

Proposition 2. The security of Pedersen’s VSS scheme as well as Proposition 1
and Theorem 1 to 3 hold for every homomorphic commitment scheme satisfying
the above condition (3).

We will now show that all q-one-way-group-homomorphism based commit-
ment schemes, which contain all so far known homomorphic schemes with finite
domain, fulfil this condition (3). We start by recalling the concept of q-one-way-
group-homomorphism. Let q be a prime number. Loosely speaking, a q-one-
way-group-homomorphism, q-OWGH for short, is a homomorphism f : H → G
among two finite Abelian groups H and G, such that f is one-way, but, for a
randomly chosen y ∈ G, it is feasible to compute v ∈ H with f(v) = yq. For
formal definitions we refer to [7], where this concept was introduced.

Such a q-OWGH induces in a generic way a computationally binding com-
mitment scheme over the field Fq. Namely the scheme

comg,f : Fq ×H → G, (s, r) 7→ gsf(r)

where g is randomly chosen from im(f) ⊆ G and gs is defined as gς with ς ∈
{0, . . . , q − 1} such that ς = s. Note, it is not required that G has order q.

If a q-OWGH f : H → G is unconditionally binding [7], meaning that there
exists t ∈ G such that t has order q modulo im(f) and tif(r) and tjf(s) are
computationally indistinguishable for all i and j and for randomly (and indepen-
dently) chosen r and s, then f also induces a computationally hiding commitment
scheme over Fq. Namely,

comt,f : Fq ×H → G, (s, r) 7→ tsf(r)

for such a particular t ∈ G.
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For the security proof of these commitments, we refer to [7].
An important property of these commitment schemes is that they are ho-

momorphic. Indeed, if C = com(s, r) = gsf(r) and C ′ = com(s′, r) = gs
′

f(r′)
and λ ∈ Fq, we have, writing s = ς, s′ = ς ′, λs + s′ = ς ′′ and λ = ` with
ς, ς ′, ς ′′, ` ∈ {0, . . . , q − 1} as well as `ς + ς ′ = kq + ς ′′ ∈ Z,

CλC ′ = (gςf(r))`gς
′

f(r′) = g`ς+ς
′

f(`r+r′) = gkq+ς
′′

f(`r+r′) = gλs+s
′

f(kv+`r+r′)

where v ∈ H is computed such that f(v) = gq.

Lemma 2. For any q-OWGH based commitment scheme, any commitments C
and C ′ and numbers λ, λ′ ∈ Fq, the commitments

(C · C ′)λ / (Cλ ·C ′λ) , Cλ+λ′ / (Cλ ·Cλ′) and Cλλ′ /
(

Cλ
)λ′

can be opened to zero knowing only C, C ′, λ and λ′.

Proof. Clearly, (C · C ′)λ = (Cλ · C ′λ) and thus (C · C ′)λ/(Cλ · C ′λ) = 1 =
comg,f (0, 0). Furthermore, if λ = `, λ′ = `′ and λλ′ = `′′ with `, `′, `′′ ∈
{0, . . . , q − 1} and ``′ = kq + `′′, we get

Cλλ′/(Cλ)λ
′

= C`′−``′ = C−kq = f(−kv) = comg,f (0,−kv)

where v ∈ H is computed such that f(v) = Cq. And of course, the same argument
can be applied to Cλ+λ′/CλCλ′ . ut

It now follows from Proposition 2

Theorem 5. The security of Pedersen’s VSS scheme as well as Proposition 1
and Theorems 1 to 3 hold for every q-OWGH based commitment scheme.

Note that Shamir’s secret sharing scheme does not work over Fq if q ≤ n.
Hence, in this case, Pedersen’s VSS and the resulting proof protocols have to be
based on a different linear secret sharing scheme. However, it is straight forward
to verify that replacing Shamir’s secret sharing scheme in Pedersen’s VSS and
the resulting proof protocols by an arbitrary linear secret sharing scheme [14]
does not affect any of the results. This also allows to generalize the results to
arbitrary (not necessarily threshold) adversary structures [13].

5.3 On Proofs of Membership

In this last section, we show that in the distributed-verifier setting there exist
error-free non-interactive zero-knowledge proofs of membership for non-trivial
languages, which is well known not to exist in the usual single-verifier setting.

Recall the protocol Proof from Section 3.2, but now based on an arbitrary
q-OWGH based commitment scheme com : Fq ×H → G. It allows the dealer to
prove that he can open a given commitment C to some value. Assume now that
he wants to prove that he can open C to a concrete given value s, e.g. s = 0.
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This can be done simply by executing the protocol Proof as given, except that
the dealer uses the default sharing polynomial fs(X) = s (instead of a random
one), such that every share coincides with s (and if this is not the case for some
player then he accuses the dealer). We denote this modified protocol by Proof ′.
It can be shown similarly to the proof of Proposition 1 that this indeed proves
that the dealer can open C to s, or, in terms of proofs of membership, that C is
a commitment of s:

Proposition 3. Protocol Proof ′ is a perfectly sound zero-knowledge distributed-
verifier proof that C is in {com(s, r) | r ∈ H} ⊆ G, non-interactive in case
t < n/3 and non-interactive with accusing in case t < n/2.

Using unconditionally binding commitment schemes like the QR- or the DCR-
based ones described in the appendix, this results in error-free non-interactive
proofs for non-trivial subgroup membership problems: The former allows to prove
that a given number is a quadratic residue modulo an RSA modulus n, and the
latter that a given number is an n-th power modulo n2, simply by proving that
the number is a commitment of s = 0.

In fact, one can construct proves for arbitrary subgroup membership prob-
lems (even if they do not result from homomorphic commitments), i.e., proves
that allow to prove that a group element C ∈ G belongs to a subgroup G′ ⊂ G,
as long as for every C ∈ G′ there exists a corresponding witness w in a group
H such that the mapping ϕ : H → G′, w 7→ C is a group homomorphism.
Namely, by executing Proof using com = ϕ : H×∅ → G′ as “commitment”: The
dealer chooses random witnesses a1, . . . , at ∈ H, publishes the corresponding
subgroup elements Ak = ϕ(ak) ∈ G′, k = 1, . . . , t, and sends the witness for

Ci = C ·Ai1 · . . . ·A
it

t ∈ G
′ privately to player Pi, i = 1, . . . , n. For instance, this

way one can prove that a triple (u, v, w) ∈ G3 is a Diffie-Hellman triple with
respect to g, i.e. that (u,w) ∈ {(ga, va) |a ∈ Fq} ⊂ G×G. Note, in this example,
ϕ : Fq → G2, a 7→ (ga, va).
If the order of the group H is not known, then Shamir’s secret sharing scheme
can be replaced by a black box secret sharing scheme [9].
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A Examples of q-OWGH Based Commitments

Based on the DL-problem:

Let p be prime and G = 〈h〉 a subgroup of Z∗
p with prime order q. Then the

exponentiation function f : Zq−1 → G, x 7→ hx is (a candidate for) a q-OWGH.
Indeed, given y ∈ G, v = 0 fulfils f(v) = 1 = yq.
The resulting commitment scheme is the Pedersen commitment scheme we were
considering in the first part.
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Based on the RSA-problem:

The RSA function f : Z∗
n → Z∗

n, x 7→ xq for a prime exponent q is (a candidate
for) a q-OWGH. Given y ∈ Z∗

n, v = y fulfils f(v) = yq.
The resulting commitment scheme is comg,f (s, r) = gsrq.

Based on factoring and on the QR-problem:

Squaring modulo an RSA modulus n, f : Z∗
n → Z∗

n, x 7→ x2 is (a candidate for)
an unconditionally binding 2-OWGH. Given y ∈ Z∗

n, v = y fulfils f(v) = y2 and
any quadratic non-residue t ∈ Z∗

n with Jacoby symbol +1 fulfils the requirements
for the unconditionally binding property, assumed that the QR-problem is hard.
The resulting computationally binding commitment scheme is comg,f (s, r) =
gsr2 for a random quadratic residue g and the resulting computationally hiding
scheme is comt,f (s, r) = tsr2 for a quadratic non-residue t with Jacoby symbol
+1, both occurring in [2].

Based on computing n-th roots mod n2 and on the DCR assumption:

The function f : Z∗
n2 → Z∗

n2 , x 7→ xn for an RSA modulus n is (a candidate for)
an unconditionally binding n-OWGH. Given y ∈ Z∗

n2 , v = y fulfils f(v) = yn

and e.g. t = n+ 1 ∈ Z∗
n2 fulfils the requirements for the unconditionally binding

property, based on the decisional composite residuosity (DCR) assumption [15].
The resulting computationally binding commitment scheme is comg,f (s, r) =
gsrn for a random n-th power g and the resulting computationally hiding scheme
is comt,f (s, r) = tsrn for e.g. t = n+ 1 ∈ Z∗

n2 , i.e. the Paillier encryption function
[15].
Note that even though n is not a prime, it can be treated in this context as one,
as it is (assumed to be) hard to find non-trivial divisors.


