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Abstract. We introduce a short signature scheme based on the Compu-
tational Diffie-Hellman assumption on certain elliptic and hyper-elliptic
curves. The signature length is half the size of a DSA signature for a
similar level of security. Our short signature scheme is designed for sys-
tems where signatures are typed in by a human or signatures are sent
over a low-bandwidth channel.

1 Introduction

Short digital signatures are needed in environments where a human is asked to
manually key in the signature. For example, product registration systems often
ask users to key in a signature provided on a CD label. More generally, short sig-
natures are needed in low-bandwidth communication environments. For example,
short signatures are needed when printing a signature on a postage stamp [21,
19]. Currently, the two most frequently used signatures schemes, RSA and DSA,
provide relatively long signatures compared to the security they provide. For
example, when one uses a 1024-bit modulus, RSA signatures are 1024 bits long.
Similarly, when one uses a 1024-bit modulus, standard DSA signatures are 320
bits long. Elliptic curve variants of DSA, such as ECDSA, are also 320 bits
long [1]. A 320-bit signature is too long to be keyed in by a human.

We propose a signature scheme whose length is approximately 160 bits and
provides a level of security similar to 320-bit DSA signatures. Our signature
scheme is secure against existential forgery under a chosen message attack (in
the random oracle model) assuming the Computational Diffie-Hellman problem
(CDH) is hard on certain elliptic curves over a finite field of characteristic three.
Generating a signature is a simple multiplication on the curve. Verifying the
signature is done using a bilinear pairing on the curve. Our signature scheme
inherently uses properties of elliptic curves. Consequently, there is no equivalent
of our scheme in F∗

p.

Due to the properties of the curves we use, currently we can only provide
signatures of the lengths given below. The best known algorithm for solving
the CDH problem in these groups requires a discrete-log on a finite field of
characteristic three. The size of this field is given (in bits) in the rightmost
column of the table below.
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Signature size EC group size Discrete-log Security
(bits) (bits) (bits)
126 126 752
154 151 923
237 220 1417
259 256 1551
265 262 1589

The second row shows that we can get a signature of length 154 bits with security
comparable to 320-bit DSA or 320-bit ECDSA. The best known algorithm to
forge a 154-bit signature requires one to solve a CDH problem in a finite field
of size 923 bits or on an elliptic curve group of size 151 bits. In Section 3.5 we
outline an approach for generalizing our technique and building signatures of
any length.
Constructing short signatures is an old problem. Several proposals show how

to shorten the DSA signature scheme while preserving the same level of security.
Naccache and Stern [19] propose a variant of DSA where the signature length
is approximately 240 bits. Mironov [18] suggests a DSA variant with a similar
length and gives a concrete security analysis of the construction (in the ran-
dom oracle model). Another technique proposed for reducing the DSA signature
length is signatures with message recovery [21]. In such systems one encodes a
part of the message into the signature thus shortening the total length of the
message-signature pair. For long messages, one can then achieve a DSA signature
overhead of length 160 bits. However, for very short messages (e.g., 64 bits) the
total length is still 320 bits. Using our signature scheme, the signature length is
always on the order of 160 bits, no matter how short the message is. Note that
when the only transmitted data is the signature (the message is not transmitted)
DSA signatures with message recovery are not any shorter than standard DSA
signatures.
Our signature scheme uses groups where the CDH problem is hard, but the

Decision Diffie-Hellman problem (DDH) is easy. The first example of such groups
was given in [12] and was previously used in [11, 4]. We call such groups Gap
Diffie-Hellman groups, or GDH groups for short. Okamoto and Pointcheval [20]
commented that a Gap Diffie-Hellman group gives rise to a signature scheme.
However, most Gap Diffie-Hellman groups are relatively long and do not lead to
short signatures. We prove the security of signatures schemes derived from GDH
groups and show how they lead to very short signatures. We experiment with
our proposed signature scheme and give running times in Section 5.

2 Signature schemes based on Gap-Diffie-Hellman

We present a signature scheme that works in any Gap Diffie-Hellman group. As
mentioned above, this scheme is described implicitly by Okamoto and Point-
cheval [20]. The scheme resembles the undeniable signature scheme proposed by
Chaum and Pederson [5]. In the next section we show how this signature scheme
gives rise to very short signatures.
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2.1 Gap Diffie-Hellman Groups (GDH groups)

Consider a (multiplicative) cyclic group G = 〈g〉, with p = |G| a prime. We are
interested in three problems on G.

Group Action Given u, v ∈ G, find uv.
Decision Diffie-Hellman For a, b, c ∈ Z∗

p, given (g, g
a, gb, gc) decide whether

c = ab.
Computational Diffie-Hellman For a, b ∈ Z∗

p, given (g, g
a, gb), compute gab.

We define a Gap Diffie-Hellman group, in stages.

Definition 1. G is a τ -decision group for Diffie-Hellman if the group action
can be computed in one time unit, and Decision Diffie-Hellman can be computed
on G in time at most τ .

Definition 2. The advantage of an algorithm A in solving the Computational
Diffie-Hellman problem in a group G is

Adv CDHA
def
= Pr

[

A(g, ga, gb) = gab : a, b
R← Z∗

p

]

Where the probability is over the choice of a and b, and the coin tosses of A.
We say that an algorithm A (t, ε)-breaks Computational Diffie-Hellman in G if
A runs in time at most t, and Adv CDHA ≥ ε.

Definition 3. A prime order group G is a (τ, t, ε)-GDH group if it is a τ -
decision group for Diffie-Hellman and no algorithm (t, ε)-breaks Computational
Diffie-Hellman on it.

2.2 The GDH Signature Scheme

The GDH Signature Scheme allows the creation of signatures on arbitrary mes-
sages m ∈ {0, 1}∗. A signature σ is an element of G. The base group G and the
generator g are system parameters. We denote by G∗ the set G∗ = G\{1} where
1 is the identity of G.
The signature scheme comprises three algorithms, KeyGen, Sign, and Verify.

It makes use of a full-domain hash function h : {0, 1}∗ → G∗. The security
analysis views h as a random oracle [3]. In Section 3.3 we weaken the requirement
on the full-domain hash.

Key Generation Pick random x
R← Z∗

p, and compute v ← gx. The public key
is v. The secret key is x.

Signing Given a secret key x, and a messageM ∈ {0, 1}∗, Compute h← h(M),
and σ ← hx. The signature is σ ∈ G∗.

Verification Given a public key v, a message M , and a signature σ, compute
h← h(M) and verify that (g, v, h, σ) is a valid Diffie-Hellman tuple.

Note that a GDH signature is a single element of G∗. Hence, to construct
short signatures we need a GDH group where elements have a short representa-
tion. We construct such groups in Section 3.
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2.3 Security

We show the security of the GDH signature scheme against existential forgery,
under chosen-message attacks.

Definition 4. The advantage in existentially forging a signature of a forger
algorithm F , given access to a signing oracle S, is

Adv SigF
def
= Pr

[

Verify(PK,M, σ) = valid :
(PK,SK)

R← KeyGen,
(M,σ)

R← FS(PK)

]

The probability is taken over the coin tosses of the key-generation algorithm, and
of the forger.

Here the adversary F is allowed to query the signing oracle adaptively: any
of its queries may depend on previous answers, but it may not emit a signature
for a message on which it had previously queried the oracle. The adversary also
has access to the full-domain hash function, which is treated as a random oracle.

Definition 5. A forger F (t, qH , qS , ε)-breaks a signature scheme if F runs in
time at most t, makes at most qH queries to the hash function and at most qS
queries to the signing oracle S, and Adv SigF ≥ ε.

Definition 6. A signature scheme is (t, qH , qS , ε)-secure against existential for-
gery on adaptive chosen-message attacks if no forger (t, qH , qS , ε)-breaks it.

The following theorem shows that the GDH signature scheme is secure. The
proof of the theorem is given in Section 4.

Theorem. Let G be a (τ, t′, ε′)-gap group for Diffie-Hellman of order p. Then
the Gap Signature Scheme on G is (t, qH , qS , ε)-secure against existential forgery
on adaptive chosen-message attacks, where

t ≤ t′ − 2cA(lg p)(qH + qS) and ε ≥ 2e · qSε′,

and cA is a small constant. Here e is the base of the natural logarithm.

3 Building Gap-Diffie-Hellman groups with small

representations

Using the Weil pairing, certain elliptic curves may be used as GDH groups. We
recall some necessary facts about elliptic curves (see, e.g., [14, 22]), and then
show how to use certain curves for GDH signatures. In particular, we describe
the curves y2 = x3 + 2x± 1 over F3` .
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3.1 Elliptic Curves and the Weil Pairing

An elliptic curve can serve as the basis for a GDH signature scheme if we can
use it to construct some group G with large prime order on which Computa-
tional Diffie-Hellman is difficult, but Decision Diffie-Hellman is easy. First, we
characterize a necessary condition for CDH intractability on a subgroup of E.

Definition 7. Let p be a prime, l a positive exponent, and E an elliptic curve
over Fpl with m points. Let P in E be a point of prime order q where q

2 - m. We
say that the subgroup 〈P 〉 has a security multiplier α, for some integer α > 0, if
the order of pl in F∗

q is α. In other words:

q | plα − 1 and q - plk − 1 for all k = 1, 2, . . . , α− 1

It is well known (as shown below) that for CDH to be hard in the subgroup
〈P 〉 we must have that the security multiplier, α, for this subgroup is not too
small. On the other hand, to get an efficient Decision Diffie-Hellman algorithm
in 〈P 〉 we need that α is not too large. Therefore, the problem in constructing
short signatures is to find curves for which α is sufficiently large for security,
but sufficiently small for efficiency. Using current security parameters, α = 6 is
sufficient for obtaining short signatures. It is an open problem to build elliptic
curves with slightly higher α, say α = 10 (see Section 3.5).

Discrete-log on elliptic curves: Let 〈P 〉 be a subgroup of E/Fpl of order q
with security multiplier α. We briefly discuss two standard ways for computing
discrete-log in 〈P 〉.

1. MOV: Use an efficiently computable homomorphism, as in the Menezes-
Okamoto-Vanstone reduction [15], to map the discrete log problem in 〈P 〉
to a discrete log problem in some extension of Fpl , say Fpli . We require that
the image of 〈P 〉 under this homomorphism is a subgroup of F∗

pli
of order

q. Thus we have q|(pil − 1), which by the definition of α implies that i ≥ α.
Hence, the MOV method can, at best, reduce the discrete log problem in
〈P 〉 to a discrete log problem in a subgroup of F∗

plα
. Therefore, to ensure

that discrete log is hard in 〈P 〉 we want curves with large α.
2. Generic: Generic discrete log algorithms such as the Baby-Step-Giant-Step

and Pollard’s Rho method [16] have a running time proportional to
√
q.

Therefore, we must ensure that q is sufficiently large.

Decision Diffie-Hellman on elliptic curves: Let P ∈ E/Fpl be a point of
prime order q. Suppose the subgroup 〈P 〉 has security multiplier α. We assume
q - pl−1. A result of Balasubramanian and Koblitz [2] shows that E/Fplα contains
a point Q that is linearly independent of P . Such a point Q ∈ E/Fplα can be
efficiently found. Note that linear independence of P and Q can be verified via
the Weil pairing described below.
With two linearly independent points P ∈ E/Fpl and Q ∈ E/Fplα , each of

order q, we can use the Weil pairing to answer certain questions that will allow
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us to construct a DDH oracle [12]. Let E[q] denote the subgroup of E/Fplα

generated by P and Q. The Weil pairing is a map e : E[q] × E[q] → F∗
plα
with

the following properties:

1. Identity: for all R ∈ E[q], e(R,R) = 1.
2. Bilinear: for all R1, R2 ∈ E[q] and a, b ∈ Z we have that e(aR1, bR2) =

e(R1, R2)
ab.

3. Non-degenerate: if for R ∈ E[q] we have e(R,R′) = 1 for all R′ ∈ E[q], then
R = O.

4. Computable: for all R1, R2 ∈ E[q], the pairing e(R1, R2) can be computed
efficiently [17].

Note that e(R1, R2) = 1 if and only if R1 and R2 are linearly dependent.
For the linearly independent points P and Q, both of order q, the Weil pairing

allows us to determine whether the tuple (P, aP,Q, bQ) is such that a = b mod q;
indeed,

a = b mod q ⇐⇒ e(P, bQ) = e(aP,Q).

Suppose we also have a computable isomorphism φ from 〈P 〉 to 〈Q〉. Necessarily,
φ is such that, for all a, φ(aP ) = axQ, where xQ = φ(P ). In this case, the Weil
pairing allows us to determine whether the tuple (P, aP, bP, cP ) is such that
ab = c mod q:

ab = c mod q ⇐⇒ e(P, φ(cP )) = e(aP, φ(bP )).

With the isomorphism φ, the Weil pairing provides an algorithm for Decision
Diffie-Hellman. Note that the algorithm for DDH requires two evaluations of the
Weil pairing for points over Fplα .

3.2 A Special Supersingular Curve

Using the machinery of Section 3.1, we derive GDH groups with small repre-
sentation from the supersingular elliptic curves E given by y2 = x3 + 2x ± 1
over F3l . As we will see, these are unique supersingular elliptic curves with se-
curity multiplier 6. Hence, the MOV reduction maps the discrete log problem in
E/F3l to F∗

36l . This means that we can use relatively small values of l to obtain
short signatures, but the security is dependent on a discrete log problem in a
large finite field. We use two simple lemmas to describe the behavior of these
curves (see also [23, 13]).

Lemma 1. The curve E+ defined by y2 = x3 + 2x+ 1 over F3l satisfies

#E+/F3l =

{

3l + 1 +
√
3 · 3l when l = ±1 mod 12, and

3l + 1−
√
3 · 3l when l = ±5 mod 12

The curve E− defined by y2 = x3 + 2x− 1 over F3l satisfies

#E−/F3l =

{

3l + 1−
√
3 · 3l when l = ±1 mod 12, and

3l + 1 +
√
3 · 3l when l = ±5 mod 12
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Proof. See [13, section 2]. ut

We have thus shown how to construct an elliptic curve with 3l + 1±
√
3 · 3l

points over F3l , simply by selecting one of E
− and E+ as appropriate, whenever

l mod 12 equals ±1 or ±5.

Lemma 2. Let E be an elliptic curve defined by y2 = x3 + 2x ± 1 over F3l ,
where l mod 12 equals ±1 or ±5. Then #(E/F3l) divides 3

6l − 1.

Proof. We have x6−1 = (x3−1)(x3+1) = (x−1)(x2+x+1)(x+1)(x2−x+1),
so for any integer x it follows that (x2 − x + 1) | (x6 − 1). In particular, when
x = 3l, we see that (32l − 3l + 1) | (36l − 1). Now when E is an elliptic curve as
above, we know that #(E/F3l) is either 3

l + 1 +
√
3 · 3l or 3l + 1−

√
3 · 3l. But

(

(3l + 1) +
√
3 · 3l
)(

(3l + 1)−
√
3 · 3l
)

= 32l−3l+1. Thus #(E/F3l) | (36l−1).

Together, Lemmas 1 and 2 show that, for the relevant values of l, the curves
E+/F3l and E

−/F3l will have security parameters α at most 6 (more specifically:
α | 6). Whether the security parameter actually is 6 for a particular prime
subgroup of a curve must be determined by computation.

Automorphism of E+, E−/F36l : For l such that l mod 12 equals ±1 or ±5,
compute three elements of F36l , u, r+, and r−, satisfying u2 = −1, (r+)3+2r++
2 = 0, and (r−)3 + 2r− − 2 = 0. Now consider the following maps over F36l :

φ+(x, y) = (−x+ r+, uy) and φ−(x, y) = (−x+ r−, uy)

Lemma 3. Let l mod 12 equal ±1 or ±5. Then φ+ is an automorphism of
E+/F36l and φ− is an automorphism of E−/F36l . Moreover, if P is a point
of order q on E+/F3l (or on E−/F3l) then φ+(P ) (or φ−(P )) is a point of
order q that is linearly independent of P .

Proof. See Silverman [22, p. 326]. ut

For a point P of order q on any of these curves, the appropriate automorphism
allows us to solve a Decision Diffie-Hellman question on G = 〈P 〉, as we have
shown in the previous section.

3.3 Hashing onto Elliptic Curves

The GDH signature scheme needs a hash function h : {0, 1}∗ → G∗ where G
is a GDH group. We are proposing to use a subgroup of an elliptic curve as a
GDH group. Since it is difficult to build hash functions that hash directly onto
a subgroup of an elliptic curve we slightly relax the hashing requirement.
Let E/Fpl be an elliptic curve of orderm defined by y

2 = f(x). Let P ∈ E/Fpl

be a point of prime order q, where q2 - m. We wish to use the subgroup G = 〈P 〉
as a GDH group for the GDH signature scheme. Suppose we are given a hash
function h′ : {0, 1}∗ → Fpl × {0, 1}. Such hash functions h′ can be built from
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standard cryptographic hash functions. The security analysis will view h′ as a
random oracle. We use the following deterministic algorithm calledMapToGroup
to hash messages in {0, 1}∗ onto G∗. Fix a small parameter I = dlog2 log2(1/δ)e,
where δ is some desired bound on the probability of failure.

MapToGrouph′ : The algorithm defines h : {0, 1}∗ → G∗ as follows:

1. Given M ∈ {0, 1}∗, set i← 0;
2. Set (x, b)← h′(i ‖M) ∈ Fpl × {0, 1};
3. If f(x) is a quadratic residue in Fpl then do:

3a. Let y0, y1 ∈ Fpl be the two square roots of f(x). We use b ∈ {0, 1} to
choose between these roots. View y0, y1 as polynomials of degree l − 1
over Fp. Then ensure that the constant term of y0 is not greater than the
constant term of y1 when viewed as integers in [0, p] (swapping y0 and y1

if necessary). Set P̃M ∈ E/Fpl to be the point P̃M = (x, yb).

3b. Compute PM = (m/q)P̃M . Then PM is in G.
If PM is in G∗ then output MapToGrouph′(M) = PM and stop.

4. Otherwise, increment i, and goto Step 2; If i reaches 2I , report failure.

The failure probability can be made arbitrarily small by picking an appropriately
large I. For each i, the probability that h′(i ‖ M) leads to a point on G∗

is approximately 1/2 (where the probability is over the choice of the random
oracle h′). Hence, the expected number of calls to h′ is approximately 2, and the

probability that a given message M will be found unhashable is 1/22
I ≤ δ.

Lemma 4. Suppose the GDH signature scheme is (t, qH , qS , ε)-secure in the
subgroup G when using a random hash function h : {0, 1}∗ → G∗. Then it
is (t − 2IqH lgm, qH , qS , ε)-secure when the hash function h is computed with
MapToGrouph′ where h

′ is a random hash function h′ : {0, 1}∗ → Fpl × {0, 1}.

Proof Sketch: Suppose a forger algorithm F ′ (t, qH , qS , ε)-breaks the Gap Signa-
ture Scheme on the subgroup G when the hash function h is computed using
MapToGrouph′ . We construct an algorithm F that (t + 2IqH lgm, qH , qS , ε)-
breaks the scheme when h is a random oracle h : {0, 1}∗ → G∗.

Our new forger F will run F ′ as a black box. F will use its own hash oracle
h : {0, 1}∗ → G∗ to simulate for F ′ the behavior of MapToGrouph′ . It uses an
array sij , of elements of Fpl ×{0, 1}. The array has qH rows and 2I columns. On
initialization, F fills sij with uniformly-selected elements of Fpl × {0, 1}.
F then runs F ′, and keeps track (and indexes) all the unique messages Mi

for which F ′ requests an h′ hash. When F ′ asks for an h′ hash of a message
w ‖Mi whose Mi F had not previously seen (and whose w is an arbitrary I-bit
string), F scans the row sij , 0 ≤ j < 2I . For each (x, b) = sij , F follows Step 3
of MapToGroup, above, seeking points in G∗. For the smallest j for which sij
maps into G∗, F replaces sij with a different point (xi, bi) defined as follows.
Let Qi = h(Mi) ∈ G∗. Then F constructs a random Q̃i = (xi, yi) ∈ E/Fpl such

that (m/q)Q̃i = Qi. It sets sij = (xi, bi) where bi ∈ {0, 1} is set so that (xi, bi)
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maps to Q̃i in Step 3a of MapToGroup. Then MapToGrouph′(Mi) = h(Mi) as
required.
Once this preliminary patching has been completed, F is able to answer h′

hash queries by F ′ for strings w′ ‖Mi by simply returning siw′ . The simulated h′

which F ′ sees is statistically indistinguishable from that in the real attack. Thus,
if F ′ succeeds in breaking the signature scheme using MapToGrouph′ then F ,
in running F ′ while consulting h, succeeds with the same likelihood, and suffers
only a running-time penalty from maintaining the additional information and
running the exponentiation in Step 3 of MapToGroup. ut

3.4 A concrete short signature scheme

To summarize things so far, we describe a concrete signature scheme using the
GDH group derived from the curve E/F3l defined by y

2 = x3+2x±1. Some useful
instantiations of these curves are presented in Table 1. Note that we restrict these
instantiations to those where l is prime, to avoid Weil-descent attacks [9, 10]. As
explained in Section 3.3, we use MapToGrouph′ to map arbitrary bit strings
to points of order q on E, using a hash function h′ from arbitrary strings to
elements of Fpl and an extra bit.

curve l Signature Size DLog Security Multiplier MOV Security
dlg2me dlg2 qe α dlg2 xe

E− 79 126 126 6 752

E+ 97 154 151 6 923

E+ 149 237 220 6 1417

E+ 163 259 256 6 1551

E− 163 259 259 6 1551

E+ 167 265 262 6 1589

Table 1. Supersingular elliptic curves for GDH Signatures. Here m = #(E/F3l), and
q is the largest prime dividing m. The MOV reduction maps the curve onto a field
with x elements.

A concrete signature scheme:

Key generation Given one of the values l in Table 1, let E/F3l be the cor-
responding curve and let q be the largest prime factor of the order of the
curve. Let P ∈ E/F3l be a point of order q. pick a random x ∈ Z∗

q and set
R← xP . Then (l, q, P,R) is the public key and x is the private key.

Signing To sign a message M ∈ {0, 1}∗ use algorithm MapToGrouph′ to map
M to a point PM ∈ 〈P 〉. Set SM ← xPM . The signature σ is the x coordinate
of SM . Therefore, σ ∈ F3l .

Verification Given a public key (l, q, P,R), a message M , and a signature σ
do:
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1. Find a point S ∈ E/F3l of order q whose x-coordinate is σ and whose
y-coordinate is y for some y ∈ F3l . If no such point exists reject the
signature as invalid.

2. Set u ← e(P, φ(S)) and v ← e(R,φ(h(M))), where e is the Weil pairing
on the curve E/F36l and φ : E → E is the automorphism of the curve
described in Lemma 3.

3. If either u = v or u−1 = v, accept the signature. Otherwise, reject.

Note that both (σ, y) and (σ,−y) are points on E/F3l that have σ as their
x-coordinate. Either one of these two points can be the point SM used to gen-
erate the signature in the signing algorithm. Indeed, since (σ, y) = −(σ,−y)
on the curve, we have that e(P, φ(−S)) = e(P, φ(S))−1. Therefore, u = v
tests that (P,R, h(M), S) is a Diffie-Hellman tuple, while u−1 = v tests that
(P,R, h(M),−S) is a Diffie-Hellman tuple.
The next lemma shows that an attacker capable of existential forgery under

a chosen message attack (in the random oracle model) is also capable of solving
the Diffie-Hellman problem in E/F3l .

Lemma 5. Suppose E/F3l is one of the curves given in Table 1, q is the largest
prime dividing #E, P is a point of order q on E, and no algorithm (t0, ε0)-
breaks Computational Diffie-Hellman on G = 〈P 〉. Let h′ : {0, 1}∗ → F3l×{0, 1}
be a random oracle. Then the concrete signature scheme described above is
(t, qH , qS , ε)-secure against existential forgery on adaptive chosen-message at-
tacks (in the random oracle model), where

t ≤ t0 − 2cA(lg q)(qH + qS)− 2IqH lgm− 2τ and ε ≥ 2e · qSε0,

and cA is a small constant.

Proof. By assumption, G is a (τ, t0, ε0)-GDH group, where τ is equal to twice
the time necessary to compute the Weil pairing on G. Assuming the existence of
a random oracle h from arbitrary bit strings to G∗, the generic GDH signature
scheme (given in Section 2.2) on G is (t1, qH , qS , ε1)-secure against existential
forgery on adaptive chosen-message attacks by the main theorem (Section 4),
where

t1 ≤ t0 − 2cA(lg q)(qH + qS) and ε1 ≥ 2e · qSε0, (∗)
and cA is a small constant.
By Section 3.3, we can construct a hash function h onto G∗ from the hash

function h′. By Lemma 4, the generic GDH signature scheme on G, using al-
gorithm MapToGrouph′ is (t2, qH , qS , ε2)-secure against existential forgery on
adaptive chosen-message attacks by the main theorem (Section 4), where

t2 = t1 − 2IqH lgm and ε2 = ε1. (∗∗)

The only difference between the generic GDH signature scheme on G and the
concrete scheme on G described above is that signatures in the latter scheme are
elements of F3l , rather than G. Given an adversary F that breaks the concrete
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scheme, we can construct an algorithm A that breaks the generic scheme, as
follows. The public key is identical in the two schemes, so A simply provides F
with the R given to it. Hashes are identical in the two schemes, so A passes F ’s
hash requests to its own hash oracle, and provides F with the answer. When F
requests a signature on a message M , A obtains the signature S ∈ E from its
signature oracle, and gives F the x-coordinate σ of S. Finally, when F outputs
a forgery σ∗ (for the concrete scheme) on a messageM ∗, A finds a point S∗ ∈ E
whose x-coordinate is σ∗. By the discussion above, either (P,R, h(M ∗), S∗) is
a Diffie-Hellman tuple, in which case S∗ is a signature on M∗ in the concrete
scheme, or (P,R, h(M∗),−S∗) is a Diffie-Hellman tuple, in which case −S∗ is a
signature on M∗ in the concrete scheme. A outputs M ∗ along with the appro-
priate one of S∗ and −S∗.
The additional time required for this simulation is dominated by the two addi-

tional signature verifications, each of which takes time τ . Thus if the generic GDH
scheme is (t2, qH , qS , ε2)-secure, the concrete GDH scheme is (t3, qH , qS , ε3)-
secure, where

t3 = t2 − 2τ and ε3 = ε2. (∗∗∗)
Combining (∗), (∗∗), and (∗∗∗) yields the required reduction. ut

3.5 An open problem: short signatures with high security

In the previous section we proposed using a supersingular curve over F∗
3`
to build

a short signature scheme as secure as discrete log in F∗
36` . However, there is no

reason to stick with supersingular curves. Using other elliptic or hyper-elliptic
curves it might be possible to achieve even higher security multipliers.
In Section 3.2, we showed that the curves E+ and E− over F3l have security

parameter α at most 6. This is, in fact, the maximum value of α for any super-
singular curve [15, 23]. Instantiating the GDH signature scheme on (necessarily
non-supersingular) elliptic curves with slightly higher values of α would increase
the work required for verification, but also increase security against MOV-related
attacks at comparable signature bit lengths.
Consider an elliptic curve E/Fpl withm points, a large prime q | m, a security

parameter α for the subgroup of order q, and two linearly independent points,
P and Q, of order q, where P ∈ E/Fpl , and Q ∈ E/Fplα . Note that a point
Q ∈ E/Fplα linearly independent of P must exist by [2] assuming q - pl − 1. For
such a curve, there is not necessarily an automorphism that maps between 〈P 〉
and 〈Q〉. We therefore slightly modify the Gap Signature Scheme to use the two
groups together.
It is easy to decide whether a tuple (P, aP,Q, bQ) is such that a = b, using

the Weil pairing. We call this the co-Decision Diffie-Hellman problem, and it has
an obvious computational variant: given the tuple (P,Q, aQ), compute aP . The
modified (co-gap) signature scheme is as follows.

Key Generation Let P ∈ E/Fpl and Q ∈ E/Fplα be two linearly independent

points of prime order q as described above. Pick x
R← Z∗

q , and compute
R← xQ. The public key is (E/Fpl , q,Q,R). The secret key is x.
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Signing Given a secret key x, and a message M ∈ {0, 1}∗ use MapToGrouph′
to map M to a point PM ∈ 〈P 〉. Set SM ← xPM . The signature σ is the
x-coordinate of SM , an element of Fpl .

Verification Given a public key (E/Fpl , q,Q,R), a messageM , and a purported
signature σ, let S be a point on E/Fpl of order q whose x-coordinate is σ
and whose y-coordinate is y for some y ∈ Fpl (if no such point exists reject
the signature as invalid). Set u ← e(Q,S) and v ← e(R, h(M)). If either
u = v or u−1 = v, accept the signature. Otherwise, reject.

By reasoning analogous to that in Section 3.4, the tests in the verification
phase ensure that either (Q,R, h(M), S) or (Q,R, h(M),−S) is a valid co-Diffie-
Hellman tuple. While the public key, R, is an element of E/Fplα , and thus long,
a signature σ is an element of E/Fpl , and thus relatively short. The security
of this scheme follows from the assumption that no adversary (t, ε)-breaks the
co-Computational Diffie-Hellman problem.
The challenge, therefore, is to construct elliptic curves with larger values of α,

say α = 10. It is currently an open problem to build a family of elliptic curves
with security multiplier α = 10.
Galbraith [8] constructs supersingular curves of higher genus with a “large”

security multiplier. For example, the supersingular curve y2 + y = x5 + x3 has
security multiplier 12 over F2l . Since a point on the Jacobian of this curve of
genus two is characterized by two values in F2l (the two x-coordinates in a
reduced divisor) the length of the signature is 2l bits. Hence, we might obtain a
signature of length 2l with security of computing CDH in the finite field F212l .
This factor of 6 between the length of the signature and the degree of the finite
field is the same as in the elliptic curve case. Hence, this genus 2 curve does not
improve the security of the signature, but does give more variety in signature
lengths beyond those given in Table 1. Since this curve is defined over a field
of characteristic two it is better suited for computation than curves defined
over of fields of characteristic three. Galbraith shows that Jacobians of genus 2
supersingular curves have a maximum security multiplier of 12. Therefore, genus
2 supersingular curves will not give short signature with higher security. It is an
open problem whether one can build a family of hyper-elliptic curves of genus 3
that would give short signatures with higher security.

4 Proof of Security Theorem

We prove, in the random oracle model, that GDH signatures are secure in GDH
groups. The proof is similar to that given for full-domain hash RSA signatures
by Coron [6], but the presentation is different. The point of this method is that
the break-probability ε for the signature scheme does not depend on the number
of hash queries a forger makes, but only depends on the number of signature
queries made by the adversary.

Theorem (Gap Signature Security). If G is a (τ, t′, ε′)-GDH group, then the
Gap Signature Scheme on G is (t, qH , qS , ε)-secure against existential forgery on
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adaptive chosen-message attacks, where

t ≤ t′ − 2τcA(qH + qS) and ε ≥ 2e · qSε′,

and cA is a small constant (in practice, at most 2).

The proof follows, in stages.

4.1 Overview

Assume an algorithm F (t, qH , qS , ε)-breaks the Gap Signature Scheme on G.
We will use F to construct an algorithm A that (τ, t′, ε′) breaks Computational
Diffie-Hellman on G, where t′ and ε′ are as above.
Given a forger F for the GDH group G, we build an algorithm A that uses

F to break CDH on G. A is given a challenge (g, ga, gb). It uses this challenge to
construct a public key that it provides to F . It then allows F to run. At times,
F makes queries to two oracles, one for message hashes and one for message
signatures. These oracles are puppets of A, which it manipulates in constructive
ways. Finally, if all goes well, the forgery which F outputs is transformed by A
into an answer to the CDH challenge.
We assume that F is well-behaved in the sense that it always requests the

hash of a message M before it requests a signature for M , and that it always
requests a hash of the message M ∗ that it outputs as its forgery. It is trivial to
modify any forger algorithm F to have this property.
A needs to engage in a certain amount of bookkeeping. In particular, it must

maintain a list of the messages on which F requests hashes or signatures. Each
message M , as it arrives from F , is assigned an index i; i is obviously bounded
above by qH . The message is stored in Mi, its hash in hi, and its signature (if
available) in σi.

4.2 Construction of A

Rather than describeA’s behavior and prove its efficacy in toto, we will construct
A in a series of “games,” in which increasingly sophisticated A-variants run F ;
the final variant, A6, is the A we seek.
(Each of the A-variants will depend on a probability constant ζ, which will

be optimized later, to yield the best possible reduction. Define Bζ to be the
probability distribution over {0, 1} where 1 is drawn with probability ζ, and 0
with probability 1− ζ.)

Game 1. A1 is given a challenge (g, g
a, gb). In setup, it constructs PK ← (ga).

Then, for each i, 1 ≤ i ≤ qH , A1 picks a random bit si
R← Bζ , and a random

number ri
R← Z∗

p. It then sets hi ← gri , and σi ← (ga)ri . Note that (g, ga, hi, σi)
is a valid Diffie-Hellman tuple, so σi is a signature on any message whose hash
is hi. A1 then runs F with public key PK.
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When F requests a hash on a message Mi, A1 responds with hi; when F
requests a signature on a message Mi, A1 responds with σi.
Finally, F halts, either conceding failure or returning a a forged signature

(M∗, σ∗), where M∗ = Mi∗ for some i
∗ (on which F had not requested a sig-

nature). If F succeeds in forging, A1 outputs “success”; otherwise, it outputs
“failure”.
The hashes hi are uniformly distributed in G, so A1’s hash oracle is a random

oracle. Moreover, the signatures σi are all valid. In the random oracle model,
therefore, F , when run by A1, behaves exactly as it would when running on its
own. Thus

AdvA1
= Pr

[

AF
1 (g, g

a, gb) = success : a, b
R← Z∗

p

]

= Pr

[

Verify(PK,M∗, σ∗) = valid :
(PK,SK)

R← KeyGen,
(M∗, σ∗)

R← F(PK)

]

= ε,

where the first probability is taken over the coin tosses of A1 and F , and over
the choices of a and b. Since a is chosen uniformly from Z∗

p, g
a, the public key

A1 provides F , is uniformly distributed in G.

Game 2. A2 functions as does A1, with a single exception. If F fails, A2 outputs
“failure”; if F succeeds, outputting a forgery (M ∗, σ∗), where i∗ is the index
of M∗, then A2 outputs “success” if si∗ = 1, but “failure” if si∗ = 0.
Clearly, F can get no information about any si, so its behavior cannot depend

on their values. Thus the final trip test A2 performs is independent of the game
to that point. Thus we have

AdvA2
= AdvA1

· Pr [si∗ = 1] = ζε,

since each si is drawn from Bζ .

Game 3. A3 functions as does A2, but, again, with a modification. If F fails
to create a forgery, A3 also fails. If F succeeds in finding a forgery on Mi∗ , A
claims success only if si∗ = 1, and F asked for signatures only on messages Mi

for which si = 0.
Again, F can get no information about any si. Each of its signature requests

can cause A to declare failure at the game’s end, with probability ζ, but it cannot
know, during the game, whether any of them did. The si’s are independent, so
each of F ’s signature requests is an independent trial insofar as disqualification
by si is concerned. Moreover, si∗ is independent of any si’s for which F requests
signatures, so the test that si∗ equals 1 is again an independent trial, and the
analysis of Game 2 is not affected.
The probability of F ’s not being disqualified because of any particular signa-

ture request is 1− ζ. If F makes k signature oracle queries, where k necessarily
is at most qS , and if, moreover, it makes those queries on the messages with
indices i1, . . . , ik, then

AdvA3
= AdvA2

· Pr
[

sij = 0, j = 1, . . . , k
]

= ζε · (1− ζ)k ≥ (1− ζ)qSζε.
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Game 4. A4 functions as does A3, except that, if F requests a signature on a
message Mi for which si = 1, A declares failure and halts immediately.
We may fully describe a run of A by fixing the challenge, A’s random bits,

and F ’s random bits; these collectively determine the value of each si, and the
indices on which F requests signatures. Let us call unlucky any runs in which
F requests a signature on some Mi for which si = 1. A3 would already declare
failure on any unlucky runs: if F declares failure, A3 does also; if F finds a
forgery, A3 fails anyway because of the unlucky signature query. Thus A3 and
A4 will agree (with output “failure”) on all unlucky runs; they will also agree
on all lucky runs, since the modification of A4 relative to A3 is not invoked on
those runs. Thus we have

AdvA4
= AdvA3

≥ (1− ζ)qSζε.

The immediate halt in unlucky runs is a shortcut and does not affect the outcome
distribution.

Game 5. A5 is based on A4. In the setup phase, for each i, if si = 1, A5 sets
hi ← gb · gri and σi ← ?, a placeholder value; if si = 0, it sets hi ← gri and
σi ← (gb)ri , as before.

G is a cyclic group of prime order, so multiplication by any element of G, and
gb in particular, induces a permutation on G. Thus if r is uniformly distributed
in Z∗

p, g
r and gb ·gr have identical, uniform distributions in G. F cannot learn any

information about the si’s from examining the hi’s it is given. A5 is unable to
provide signatures on messages for which si = 1, but that is unimportant, since
any runs in which F asks for such a signature are failed immediately. Therefore,
F will behave under A5 exactly as it does under A4, and

AdvA5
= AdvA4

≥ (1− ζ)qSζε.

Game 6. A6 behaves as does A5. In those games where A5 outputs “success”,
however, A6 outputs “success” and, in addition, outputs σ

∗/(ga)ri∗ , where i∗

is the index of the message M∗ for which F output a forged signature σ∗. (A6,
like the A’s before it, only succeeds when F succeeds.)
Clearly, A6 succeeds with precisely the same probability as A5, so

AdvA6
= AdvA5

≥ (1− ζ)qSζε.

Moreover, A6 only succeeds if si∗ = 1, which means that hi∗ = gb ·gri∗ . If σ∗ is a
valid signature onM∗ =Mi∗ , then (g, g

a, hi∗ , σ
∗) must be a valid Diffie-Hellman

tuple, so σ∗ must equal hai∗ = gab · (gri∗ )a. Thus, in every instance on which A6

claims to succeed, it also outputs σ∗/(ga)ri∗ = gab, which is indeed the answer
to the Diffie-Hellman challenge posed to it.

4.3 Optimization and Conclusion

The algorithm A6 thus uses the GDH-signature forger F to solve CDH chal-
lenges. What remains is to optimize the parameter ζ to achieve a maximal prob-
ability of success. The function (1−ζ)qSζε is maximized at ζ = 1/(qS+1), where
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it has the value

1

qS + 1
·
(

1− 1

qS + 1

)qS

· ε = 1

qS
·
(

1− 1

qS + 1

)qS+1

· ε.

(The latter equality follows from taking partial fractions.) Now A’s success prob-
ability ε′ is at least as great as this. For large qS , (1− 1/(qS + 1))qS+1 ≈ 1/e.
A’s running time includes the running time of F . The additional overhead

imposed by A is dominated by the need to evaluate group exponentiation for
each signature and hash request from F . Any one such exponentiation may be
computed by using at most 2 lg p group actions, and thus at most 2 lg p time
units, on G (see [16]). A may need to answer as many as qH + qS such requests,
so its overall running time is t′ ≤ t + 2cA(lg p)(qH + qS), Where cA is a small
constant that accounts for the remainder of A’s administrative overhead; in
practice, cA should be at most 2.
To summarize: if there exists a forger algorithm F that (t, qH , gS , ε)-breaks

the GDH signature scheme on G, then there exists an algorithm A that (t′, ε′)-
breaks CDH on G, where

t′ = t+ 2cA(lg p)(qH + qS) and ε′ =
1

qS
·
(

1− 1

qS + 1

)qS+1

· ε.

Conversely, if G is a (τ, t′, ε′)-GDH group, then there can exist no algorithm F
that (t, qH , qS , ε)-breaks the GDH signature scheme, where

t = t′ − 2cA(lg p)(qH + qS) and ε = qSε
′

/(

1− 1

qS + 1

)qS+1

.

For all positive qS , the radicand in the latter equation is greater than 1/2e, so
the equation may be rewritten as ε ≤ qSε

′ · 2e. This completes the proof.

5 Experimental results

5.1 Implementation Details

We experimented with the scheme of Section 3.4. Recall that signing is a single
multiplication on the curve y2 = x3 + 2x ± 1 over F3l . Verifying a signature
requires two Weil pairing computations over F36l . Hence, verifying takes more
time than signing.
For efficiency, rather than working in F36l directly (which involves manipu-

lating polynomials of degree 6l), we work with extensions of F36 of degree l. To
speed up arithmetic in F36 we construct lookup tables (of size 36) for quickly
multiplying two elements. Elements of F36 are represented by their exponent
relative to a chosen generator, so that multiplication and division corresponds
to addition modulo 36− 1. Addition is done using a multiplication, division and
table lookup via the identity a+ b = a(1 + a−1b). The constants r+, r−, u used
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in the automorphism φ also lie in F36 and can be quickly found by a brute force
search.
We map an element a in F3l to an element of F36l using the obvious injection:

a is represented by a polynomial of degree l with coefficients in F3, and we simply
view it as a polynomial with coefficients in F36l .
We use the Tate pairing [7] instead of the Weil pairing, since it has similar

properties and is easier to compute: the Weil pairing requires two iterations of
Miller’s algorithm [17] and one division while the Tate pairing needs only one
call to Miller’s algorithm and an additional exponentiation.
Because Miller’s algorithm involves the computation of various quotients, sev-

eral divisions can be avoided since we may scale the numerator and denominator
by arbitrary constants. We used sliding windows for every exponentiation-like
operation, that is, exponentiation in F36l , Miller’s algorithm, and multiplication
of a point on the curve. Point multiplication can be sped up further by using
signed sliding windows, converting to weighted projective coordinates (though
this may not help; it depends on the implementation of the field operations), and
taking advantage of the fact that some points are fixed for the whole system.
Recall that the output of the Tate pairing is a coset representative in F∗

36l .
Signature verification then consists of checking that the output of two Tate
pairings lie in the same coset. This could be done by finding the quotient of
the outputs, and raising it to the appropriate power (and comparing with the
identity element). However, we can replace the division with a multiplication by
exploiting the bilinearity of the Tate pairing: dividing by e(A,B) is equivalent
to multiplying by e(A,−B) = 1/e(A,B) (−B can be easily computed from B
by negating the y-coordinate).
The x-coordinate is an element of F3l and is represented as a polynomial of

degree at most l−1 with coefficients in F3. For output, it is viewed as a number in
base 3, and then encoded in base-64. For l = 97, which has 923-bit discrete-log se-
curity, an example signature looks as follows: “KrpIcV0O9CJ8iyBS8MyVkNrMyE”.
This is under half the size of the standard 320-bit DSS signature (with 1024-bit
discrete security).

5.2 Running Times

The following table shows the time required to verify a signature. Recall that a
verification is much more expensive than signature generation because it requires
computing two pairings. The program was run on a 1GHz Pentium III computer
running GNU/Linux.

l sig-length Dlog Security curve Running Time
(bits) dlog2 xe (seconds)

79 126 752 E− 1.6
97 154 923 E+ 2.9
149 237 1417 E+ 9.6
163 259 1551 E+ 13.3
163 259 1551 E− 13.4
167 265 1589 E+ 14.0
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When using elliptic curves to get short GDH signatures we are forced to
use a curve over a field of characteristic three. This slows down arithmetic on
the curve. It is possible that the running times above can be improved using
higher genus curves over fields of characteristic two as discussed at the end of
Section 3.5. Similarly, the techniques of [13] for computing on the curves E+

and E− over F3l may slightly improve these numbers.

6 Conclusions

We presented a short signature based on the Weil pairing. The length of a signa-
ture is one element of a finite field. Standard signatures based on discrete log such
as DSA require two elements. When working with the curve y2 = x3+2x±1 over
F3l the MOV attack maps the CDH problem in this curve to a CDH problem in
F36l . Hence, we can use small values of l to obtain short signatures with security
comparable to the security of 320-bit DSA. For example, we obtain a signature of
length 154 bits where breaking the scheme reduces to solving the Diffie-Hellman
problem in a finite field of size approximately 2923. In Section 3.5 we outlined an
open problem that would enable us to get even better security while maintaining
the same length signatures. We hope future work on constructing elliptic curves
or higher genus curves will help in solving this problem.
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