
Adaptive Security in the Threshold Setting:

From Cryptosystems to Signature Schemes

Anna Lysyanskaya and Chris Peikert

Laboratory for Computer Science
Massachusetts Institute of Technology

Cambridge, MA 02139, USA
{anna,cpeikert}@theory.lcs.mit.edu

Abstract. Threshold cryptosystems and signature schemes give ways
to distribute trust throughout a group and increase the availability of
cryptographic systems. A standard approach in designing these protocols
is to base them upon existing single-server systems having the desired
properties.

Two recent (single-server) signature schemes, one due to Gennaro et
al., the other to Cramer and Shoup, have been developed which are prov-
ably secure using only standard number-theoretic hardness assumptions.
Catalano et al. proposed a statically secure threshold implementation
of these schemes. We improve their protocol to make it secure against
an adaptive adversary, thus providing a threshold signature scheme with
stronger security properties than any previously known.

As a tool, we also develop an adaptively secure, erasure-free threshold
version of the Paillier cryptosystem.

1 Introduction

The goal of threshold cryptography [14, 15] is to enable a cluster of cooperating
servers to securely and efficiently implement such cryptographic tasks as sign-
ing and decrypting. A threshold cryptographic system should remain functional
and secure even when a fraction (say, almost one half) of the servers become
malicious. This problem is well-motivated in practice.

One of the strongest adversarial models in this setting is the so-called adap-
tive erasure-free model. In this setting (1) the adversary corrupts servers over
time depending on its entire view of the computation; and (2) upon becoming
corrupted, the players have to hand over to the adversary their entire computa-
tion history; i.e., nothing can be erased.

Although results in general multi-party computation guarantee feasibility [6,
5, 10], they cannot be directly applied without incurring a considerable compu-
tation penalty. In contrast, threshold protocols are tailor-made for a specific task
at hand and are therefore much more practical.

Securing threshold cryptographic systems against adaptive attacks has been
the subject of extensive recent research [7, 17, 21]. Erasure-free solutions have also
been considered [21]. However, none of these papers considered the question of

334 A. Lysyanskaya, C. Peikert

constructing adaptively secure threshold versions of signature schemes provably
secure against adaptive chosen message attacks [18, 12].

On the other hand, statically secure threshold versions of the Gennaro et
al. [18] and Cramer-Shoup [12] signature schemes has been proposed by Cata-
lano et al. [8]. Unlike the adaptive adversary, the static adversary’s corruption
strategy is independent of the computation history and can be assumed to be
fixed in advance. It is known that statically secure protocols are not necessarily
adaptively secure [6, 5, 10]. While Catalano et al. suggest that it is possible to
turn their statically-secure solution into an adaptively secure one, they do not
give an explicit construction.

In this paper, we extend the protocol of Catalano et al. and obtain the first
construction of erasure-free adaptively secure threshold version of the Cramer-
Shoup signature scheme. Our results apply as well to the Gennaro et al. [18]
signature scheme. Practical threshold signature schemes with this level of secu-
rity have not been exhibited before.

The general structure of our results. The protocol of Catalano et al. is con-
structed as follows: first, they give a secure protocol for the honest-but-curious
adversary, i.e. the adversary whose corruption strategy may be adaptive, but
who cannot force the players he controls to deviate from their respective pro-
tocols. Then, they show how to secure it against an adversary that forces the
players to deviate from their protocols arbitrarily. In this second step, they are
only able to exhibit static security.

Our starting point is the honest-but-curious protocol of Catalano et al. In
order to make it adaptively secure in the erasure-free model, we utilize the tech-
niques due to Cramer et al. [11].

Cramer et al. show how, given a threshold cryptosystem with certain desir-
able properties, to securely (in the static model) compute any arithmetic circuit.
The general structure of their construction is as follows: the inputs to the circuit
are given in encrypted form. The circuit is evaluated gate-by-gate. To evaluate
each gate, the players run a corresponding protocol. For example, for the multi-
plication gate, the players run a special protocol that, on input two ciphertexts
E(a) and E(b), produces a ciphertext E(ab). Once all the gates are evaluated,
the players jointly decrypt the ciphertext that corresponds to the output of the
last gate. Cramer et al. [11] provide a statically secure multiplication protocol
and a statically secure threshold cryptosystem with the required properties.

We extend the results of Cramer et al. in two ways: (1) we observe that their
multiplication protocol is adaptively secure under a weaker definition that al-
lows probability of failure, provided that the underlying threshold cryptosystem
is adaptively secure; and (2) we exhibit an adaptively secure threshold cryptosys-
tem with the required properties, namely, we show how to secure the Fouque et
al. [16] version of the Paillier cryptosystem [24] against the adaptive adversary.

We then plug the resulting adaptively secure multiplication protocol into a
slight modification of the honest-but-curious protocol of Catalano et al.

This approach has more general applications. It is intuitively simpler to con-
struct protocols secure against the honest-but-curious adversary than ones se-

Adaptive Security in the Threshold Setting 335

cure against the active adversary. In fact the first results in secure multi-party
computation were of this flavor [19]. Guided by our example, one can convert a
protocol for the honest-but-curious case into one that is secure against an ac-
tive and adaptive adversary in the erasure-free model, at only a small cost in
efficiency.

2 The adaptive adversary model

In this paper, we use a standard model [7] to describe the execution of proto-
cols and the capabilities of the adversary. We assume the existence of l parties
communicating over a synchronous broadcast channel with rushing, where up to
a threshold t < l/2 of them may be corrupted. The value k will represent the
security parameter.

A t-limited adaptive adversary may choose to corrupt any party at any point
over the lifetime of the system, as long as it does not corrupt more than t parties
in total. The choices may be based on everything the adversary has seen up to
that point (all broadcast messages and the computation histories of all other
corrupted parties). When an adaptive adversary corrupts a party, it is given
the entire computation history of that party and takes control of its actions for
the life of the system. Note that this prohibits the honest parties from making
erasures of their internal states at any time.
Summary of definitions and techniques. As expected, security of a protocol
is defined in the adaptive model using the simulation paradigm. For any adaptive
adversary A, there must exist a simulator S which interacts with A to provide a
view which is computationally indistinguishable from the adversary’s view of the
real protocol. The main difficulty in designing secure protocols in the adaptive
model is in being able to fake the messages of the honest parties such that there
are consistent internal states that can be supplied to the adversary when it
chooses to corrupt new parties. In fact, we will design the protocols such that
the simulator can supply consistent states on behalf of all honest parties except
one, which we call the “single inconsistent party,” [7] and denote PS . We stress
that the inconsistent party is chosen at random by the global simulator, and
remains the same throughout all simulator subroutines.

We will design simulators that supply a suitable view to the adversary pro-
vided PS is not corrupted, or said another way, the adversary’s view will be
indistinguishable from a real invocation up to the point at which PS is corrupted
(if ever). Of course, if PS does become corrupted, then we may assume that
the adversary detects the simulation perfectly; we call the probability of this
event the error of the protocol. In order to make a reduction from a single-
server signature scheme to a threshold version, we will require that the error be
non-negligibly smaller than one. In particular, because 2t < l, the error of our
protocols will be less than 1/2.

In all of our protocols, any deviation that is detectable by all honest parties
will cause the misbehaving party to be excluded from all protocols for the life of
the system. Upon detecting a dishonest party, the others restart only the current

336 A. Lysyanskaya, C. Peikert

protocol from the beginning. Intuitively, this strategy prevents an adversary from
gaining some advantage by failing to open its commitments after witnessing the
honest parties’ behavior. This rule will apply in each round of every protocol,
even when not stated explicitly. In our simulators, we will be explicit about when
misbehaving parties cause the protocol to be restarted, and when they cause the
adversary to be rewound.

A note about the round-efficiency of this rule: the number of rounds of a single
protocol execution is bounded only by a constant multiple of the threshold t
(since one corrupt party may force a restart every time). However, the adversary
can force a total of only O(t) extra rounds to be executed over all invocations,
which is a negligible amortized cost over the life of the system. (This assumes
that all protocols are constant-round when no malicious parties are present,
which will be the case.)

3 Tools

In this section we address a special kind of zero-knowledge proof called a Σ-
protocol [11]. First we summarize Σ-protocols in the two-party setting, then
we demonstrate how to implement them in a multiparty setting using trapdoor
commitments. A reader familiar with the work of Cramer et al. [11] can skip to
section 4.

Two-party Σ-protocols. The two-party Σ-protocols we use here are, in sum-
mary, honest-verifier perfect zero-knowledge proofs of knowledge with perfect
completeness in which the knowledge extractor needs only two different conver-
sation in order to extract a witness. We refer the reader to Cramer et al. [11] for
formal definitions.

Trapdoor commitments. A trapdoor commitment scheme is much like a reg-
ular commitment scheme: a party P commits to a value by running some proba-
bilistic algorithm on the value. The commitment gives no information about the
committed value. At some later stage, P opens the commitment by revealing
the committed value and the random coins used by the commitment algorithm.
P must not be able to find a different value (and corresponding random string)
that would yield the same commitment.

Trapdoor commitment schemes have one additional property: there exists
a trapdoor value which allows P to construct commitments that he can open
arbitrarily, such that this cheating is not detectable. Cramer et al. [11] provide
a formal definition.

Multiparty Σ-protocols. The goal of a multiparty Σ-protocol is for many
parties to make claims of knowledge such that all parties will be convinced.
If all players are honest-but-curious, a naive way of achieving this goal is to
make each prover participate in a separate (two-party) Σ-protocol with each
of the other players. However, this approach incurs significant communication
overhead, and it is not secure against an active adversary, since Σ-protocols are
only honest-verifier zero-knowledge.

Adaptive Security in the Threshold Setting 337

Part of an efficient multiparty Σ-protocol involves choosing a shared k-bit
challenge string, though no particular distribution is required1. We simply need
two different invocations to generate different challenge strings, except with
negligible probability. The challenges are generated as follows: in a preprocess-
ing phase, generate a key for a collision-resistant hash function from {0, 1}l to
{0, 1}k. To generate a challenge, each party contributes one random bit, then
the hash function is applied to the concatentation of these bits. If two identical
challenges are created, then either the inputs to the hash function were identical
(which happens with probability at most 1/2l/2 since at least half the parties
are honest), or a collision in the hash function is found.

The complete description of a multiparty Σ-protocol is as follows: in a pre-
processing phase, a public key ki for a trapdoor commitment scheme is generated
for each Pi, and is distributed to all the parties by a key-distribution protocol
which hides the trapdoor values. In a single proof phase, some subset P ′ of
parties contains the parties who are to prove knowledge.

1. Each Pi ∈ P ′ computes ai, the first message of the two-party Σ-protocol. It
then broadcasts a commitment ci = C(ai, ri, ki), where ri is chosen randomly
by Pi.

2. A challenge r is generated by the parties, as described above. This single
challenge will be used by all the provers.

3. Each Pi ∈ P ′ computes the answer zi to the challenge r, and broadcasts
ai, ri, zi.

4. Every party can check every proof by verifying that ci = C(ai, ri, ki) and
that (ai, r, zi) is an accepting conversation in the two-party Σ-protocol.

Cramer et al. [11] prove the security of this protocol against a static adversary.
We have shows that it is also secure in the adaptive setting, using the single
inconsistent party technique. We refer the reader to the full version [22] of this
paper for the proof.

4 Threshold signatures using a threshold cryptosystem

Suppose an adaptive-chosen-message-secure signature scheme (such as Cramer-
Shoup [12]) and a semantically secure cryptosystem (such as Paillier [24]) are
given. Our signature scheme will be constructed as follows: besides the key pair
(PK,SK) for a secure signature algorithm, the key generation algorithm also
generates the key pair (E,D) for some semantically secure cryptosystem. The
public key for the resulting signature scheme will be (PK,E,E(SK)), while
the secret key is simply the secret key of the underlying signature scheme, i.e.,
SK. The signature and verification algorithms are the same as in the signature
scheme given. It is easy to see, by a hybrid argument, that this resulting signature
scheme is secure against the adaptive chosen message attack.

In the following sections, we will describe secure protocols for key generation
and signing, and give proofs of security for these protocols.
1 Thanks to an anonymous referee for suggesting this improvement, due to Nielsen [23].

338 A. Lysyanskaya, C. Peikert

4.1 Key generation

Recall the Cramer-Shoup signature scheme. The public key of the signer is a
tuple (N,h, x, e′, H), where: N = pq is an RSA modulus such that p = 2p′ + 1,
q = 2q′+1, and p′,q′ are both primes (p and q are called safe primes); the values
h, x ∈ Z∗n are both quadratic residues modulo N ; e′ is a random prime number;
H is a collision-resistant hash function. The signature on a message m is a tuple
(e, y′, y) such that: e 6= e′ is a random prime number; y′ is a random quadratic

residue modulo N ; ye = xhH(x′) where x′ = y′e
′

hH(m) mod N .

The key generation algorithm for the Cramer-Shoup cryptosystem generates
a public key PK = (N,h, x, e′, H) and a secret key SK = φ(N). Our public key
will also include a Paillier public key (g, n) (where n is a product of two safe
primes, and g has order n modulo n2), and a ciphertext E(φ(N)) = gφ(N)rn mod
n2 for a random 1 ≤ r ≤ n2.

Our key generation protocol will not be efficient, but since it is only carried
out once, this efficiency penalty can be ignored. It will proceed in two steps. In
Step 1, the parties will run a general multi-party computation to generate the
public key (PK,E,E(SK)), as follows: each party Pi will contribute a random
string ri. The resulting key will be computed using the circuit for single-server
key generation with randomness obtained by the exclusive-or of the ris: R =
⊕li=1ri. The inputs to Step 2 are the values {ri} (i.e., the coins from Step 1) and
fresh random bits {r′i}. Then, using general MPC, the parties will compute the
auxiliary information, emulating the one-server algorithm provided in section 5.2.
For the underlying general MPC we can use the protocol due to Cramer et
al. [10], which is adaptively secure and tolerates any number of corruptions
below one half of the servers. In order to implement secure channels required
by Cramer et al. [10], we use the non-committing encryption technique due to
Canetti et al. [6] and Damg̊ard and Nielsen [13].

The protocol described above will be secure: suppose we are given a target
public key (PK,E, S(SK)). Our goal is to construct a simulator S which, on
input the identity of an inconsistent party PS , simulates the adversary’s view
of the computation provided the adversary does not corrupt PS . We can use
the simulator SMPC as a subroutine. For Step 1, S will give SMPC the value
(PK,E, S(SK)) as the target output. We will also supply it with some random
coins for parties that are corrupted at the beginning. As more parties get cor-
rupted over time, SMPC will request that we provide it with their inputs. S
will just provide some more random coins each time that happens. If the adver-
sary ever tries to corrupt the inconsistent party PS , S aborts. Since the actual
randomness of the algorithm is the exclusive-or of the coins of all parties, the re-
sulting view will be correct. For Step 2, we will first run the one-server algorithm
for generating the simulated auxiliary information and the simulated secret in-
formation for all but one party PS . This one-server algorithm is described in
section 5.2. We will then run the simulator SMPC in the same way as for Step 1.

Adaptive Security in the Threshold Setting 339

4.2 Computing a signature

Signature generation is done in three steps: (1) generation of (y′, e); (2) gen-
eration of a verifiable additive sharing of e−1 mod φ(N); and (3) computation

of y such that ye = xhH(x′) where x′ = y′e
′

hH(m) mod N , i.e. computation of

(xhH(x′))1/e mod N .
Adaptively secure erasure-free threshold protocols for selecting a random

number already exist (see, for example, the one due to Jarecki and Lysyan-
skaya [21]). These can be employed for performing Step 1.

Suppose a secure protocol for computing an additive sharing of e−1 mod
φ(N) has been performed. Let di denote the share held by player Pi. Suppose
it is backed up with a public ciphertext E(di). Each player Pi computes x

′ =
y′e

′

hH(m) mod N and reveals (xhH(x′))di , and proves that this was done correctly
by invoking the Σ-protocol for proving equality of discrete logarithms. (If a
player fails, his di is decrypted so that the other players can compute whatever
is needed without him.) This takes care of Step 3.

Therefore, the only challenging piece is the computation of a verifiable addi-
tive sharing of e−1, i.e., Step 2. Following the example of Catalano et al., we cast
this as the modular inversion problem. The problem is as follows: suppose E(φ)
is public. On input e, the task is to compute an additive sharing of the value
d ≡ e−1 mod φ, with public backup encryptions of each share. For the problem
at hand, the value φ is, of course, φ(N).
Simulating signature generation given a signature. Suppose the simula-
tors for each specific steps are given (simulators for steps 1 and 3 are known; the
one for step 2 is given below). Here is how we simulate the signature generation.
Our input is a signature on message m: (e, y′, y). First, we run the simulator
for Step 1 and simulate the distributed generation of (e, y′). Then we run the
simulator for Step 2 and arrive at a verifiable additive sharing of e−1. Finally, we
run the simulator for Step 3 to simulate raising the value xhH(x′) to the power
e−1 to obtain y.
Background for the modular inversion protocol. Catalano et al. [8] present
two versions of a modular inversion protocol which are secure against a static
adversary. The first is private but not robust, while the second adds robustness at
the cost of more complexity. Here we give an adaptively secure version, based on
their simpler protocol. Our protocol requires O(lk) bits to be broadcast, which
is the same cost as the protocol of Catalano et al.

We assume the existence of a homomorphic threshold cryptosystem, defined
in Appendix B. We denote an encryption of a message x as x when the public
key is clear from the context. We also assume a trapdoor commitment scheme
as described in section 3.

Using an adaptively secure multiparty Σ-protocol, the Mult protocol from
Cramer et al. [11] is secure against an adaptive adversary as well, because its
simulator only uses a single inconsistent party.
A preliminary subprotocol. First we assume existence of a secure protocol
Mad (meaning “multiply, add, decrypt”) which has the following specification:

340 A. Lysyanskaya, C. Peikert

(1) public inputs w, x, y, z to all parties, (2) public output F = wx + yz for all
parties.

Given a suitable homomorphic threshold cryptosystem, Mad can be imple-
mented using the secure Mult and Decrypt protocols. We give the protocol
and a proof of security in Appendix A.
Two preliminary Σ-protocols. In the inversion protocol, each party provides
a ciphertext and must prove that it is an encryption of zero. In addition, each
party must publish a ciphertext and prove that the corresponding plaintext
lies within a specified range. We describe both of these proofs for the Paillier
cryptosystem in section 5.1.
The inversion protocol. The Invert protocol has the following specification:

– common public input (pk, e,N, φ, {ki}). Here pk is the public key of the
homomorphic cryptosystem, e is a prime to be inverted modulo the secret
φ, N is an upper bound on the value of φ, and {ki} is the set of all public
trapdoor commitment keys.

– secret input ski, the ith secret key share, to party Pi.
– common public output di where di is described below.
– secret output di from each party. The {di} constitute an additive sharing of
the inverse, i.e.

∑

Pi∈P di = e−1 mod φ.

The protocol proceeds as follows:

1. Each Pi publishes a random encryption 0i of zero, and proves that it is valid
(see section 4.2). All parties internally compute φB = (¢0i)¢ φ.

2. Each Pi chooses random λi from the range [0 . . . N2], and random ri from
the range [0 . . . N3], and encrypts them to get λi and ri, respectively.

3. Each Pi broadcasts a commitment to his ciphertexts λi and ri.
4. Step R. Each Pi decommits by broadcasting λi and ri, and the random
strings used to generate the commitments.

5. Each party proves that its λi and ri values are within the proper respective
intervals: each party first publishes commitments to both values, then proves
that the committed values are the same as their respective plaintexts, and
finally proves that the committed values are within range.

6. Each party proves knowledge of its plaintexts λi and ri using a multiparty
Σ-protocol. Let λ =

∑

i∈P λi, R =
∑

i∈P ri, and F = Re+ λφ.

7. The parties run theMad protocol on e,R, λ, and φB , whereR = ¢i∈P ri, λ =
¢i∈Pλi by addition of ciphertexts. This protocol securely computes the value
F = Re+ λφ as the common output.

8. Each party determines whether (e, F) = 1. Because e is prime, (e, F) 6= 1
only if e divides λ, which happens with probability about 1/e because at least
one λi is chosen at random. If (e, F) 6= 1, the parties repeat the protocol.
Otherwise, all parties compute a, b such that

aF + be = 1 ⇐⇒ aRe+ aλφ+ be = 1

⇐⇒ (aR+ b) ≡ e−1 mod φ.

Adaptive Security in the Threshold Setting 341

Pi’s share is di = ari for i > 1, and d1 = ar1 + b for i = 1. Note that any
party can use the homomorphic properties of the cryptosystem to compute
an encryption di for any i ∈ P , because the values of a and b are known to
all parties, as well as encryptions ri for all i ∈ P .

Theorem 1 (Security of inversion protocol). For t < l/2, Invert is an
adaptively t-secure protocol for computing an additive sharing of e−1 mod φ.

Proof: We will assume a secure key-generation protocol for the homomorphic
cryptosystem. We describe the construction of such a protocol for a threshold
Paillier cryptosystem in section 5. We will also assume a secure key-generation
protocol for the trapdoor commitment scheme.

Let kP be the public commitment keys for all the parties. Let PS be the
inconsistent party and tS be its trapdoor value determined by the simulator for
the key-generation protocol. Given A, we will construct a simulator subroutine
SInvert which takes input (A, pk, e,N, φ, kP , PS , tS).
SInvert operates as follows:

1. For each honest Pi except PS , honestly publish and prove validity of a ran-
dom encryption of zero. For PS , publish a blinding of N ¯ φ and run EΣ
(see section 3) with the trapdoor value tS to give a false proof of validity (do
not extract witnesses from the corrupt parties, however). If any parties gave
invalid proofs, restart the protocol and exclude them. At this stage, φB = N ,
and all of the parties hold an encryption of N instead of an encryption of φ.

2. Through the decommitment phase, behave honestly. That is, choose random
λi and ri for each honest party, commit to their ciphertexts, and decommit
honestly. If any parties fail to decommit, restart the protocol and exclude
them.

3. During the round in which the parties prove plaintext knowledge, use the
subroutine EPOPK to determine the values λi and ri for all corrupted parties
Pi who supplied valid proofs. If any parties fail to give valid proofs, restart
the protocol and exclude them.

4. Set R′ =
∑

i∈P ri and λ
′ =

∑

i∈P λi. Run SMad on e,¢i∈P ri,¢i∈Pλi, φB =

N , and F ′ = R′e+ λ′N .
5. Proceed exactly according to the protocol, repeating if (e, F ′) 6= 1.

It is clear that the simulator runs in expected polynomial time. It remains to
be shown that the output of the simulator is computationally indistinguishable
from the output of a real run of the protocol. Let us assume for now that this is
not the case, and that there is an adversary A which can distinguish between a
real-life execution of Invert and an interaction with SInvert with non-negligible
advantage. We will provide a reduction that usesA to break the semantic security
of the cryptosystem, thus establishing a contradiction. The reduction will employ
a hybrid simulator interacting with A.

Consider the simulator SHybrid which receives the public key pk of the ho-
momorphic cryptosystem, the public commitment keys kP , the identity of the
inconsistent party PS , and its commitment trapdoor value tS . In addition, it is

342 A. Lysyanskaya, C. Peikert

supplied with N, e, φ, φ, a ciphertext b where b is either 0 or 1, and an auxil-
iary input representing the state of the adversary A. The adversary’s interaction
with SHybrid, and its resulting decision (whether the interaction was real or sim-
ulated), will determine with non-negligible probability whether b was 0 or 1. The
hybrid simulator works as follows:

1. For each Pi 6= PS , publish a random encryption of zero and proves its validity.
For PS , publish (N − φ)¡ b and give a false proof of validity using EΣ and
the trapdoor tS . Let φB be as in the Invert protocol.

2. For all uncorrupted Pi 6= PS , honestly choose λi and ri and commit to
their ciphertexts. For PS , choose λS and rS from the proper ranges, but use
the commitment trapdoor tS to create cheating commitments. Receive all
commitments from the corrupt parties. Let the set of corrupt parties at this
point be called C. Let λH =

∑

i6∈C λi and RH =
∑

i6∈C ri.
3. For all honest Pi 6= PS , decommit the ciphertexts honestly. For PS , open
the cheating commitments as λS and rS . If any parties fail to open their
commitments, restart the protocol (excluding those parties forever).

4. Honestly prove plaintext knowledge for all honest parties, and use EPOPK to
extract λi and ri for all Pi ∈ C who provided valid proofs. If any parties fail
to give valid proofs, restart the protocol (excluding those parties forever).
Let λC =

∑

i∈C λi, and RC =
∑

i∈C ri. Solve for λ
′
H and R′H such that F =

(λC+λH)φ+(RC+RH)e = (λC+λ
′
H)N+(RC+R

′
H)e. We shall prove that

such λ′H and R
′
H are easy to compute, and are statistically indistinguishable

from λH and RH (respectively). Then execute the following loop:

(a) Rewind the adversary to Step R in the protocol. For all honest parties
Pi 6= PS , again honestly decommit to their ciphertexts λi, ri. For PS ,
open the cheating commitments as blinded ciphertexts λ′S and r

′
S , where

λ′S = λS ¢ ((λ
′
H − λH) ¡ b), and r′S = rS ¢ ((R

′
H − RH) ¡ b). Receive

decommitments from each corrupt party (which, if valid, must be the
same as the earlier valid decommitment). If any parties refuse to open
their commitments, go to the beginning of the loop.

(b) Honestly prove plaintext knowledge on behalf of all honest parties Pi 6=
PS , and use EPOPK and the commitment trapdoor tS to provide fake
proofs of plaintext knowledge for λ′S and r

′
S . Also receive proofs of plain-

text knowledge from the corrupt parties. If any parties give invalid proofs,
go to the beginning of the loop.

(c) Exit the loop.

5. Run SMad on e, R and λ (as in the real protocol), φB , and the value F .
Finish according to the protocol.

First we must analyze the running time of the hybrid simulator. It suffices to
show that the loop is executed a polynomial number of times in expectation. Note
that the loop is only reached if all parties open their commitments and prove
plaintext knowledge correctly. Let ε0 be the probability that the the adversary
behaves in this way, given that PS publishes random encryptions λS , rS , and let
ε1 be defined similarly, given that PS publishes random encryptions λ′S , r

′
S . By

Adaptive Security in the Threshold Setting 343

semantic security, ε0 is negligibly close to ε1. The contribution of the loop to the
expected running time, therefore, is negligibly more than ε0 times the expected
number of times the loop is executed (which is 1/ε0), so the contribution of the
loop is O(1).

We now prove the correctness of the reduction. Certainly if the adversary
corrupts any party besides PS , the hybrid can supply a valid computation history
because it is acting honestly on behalf of that party. We now show that if b = 0,
the output of SHybrid is indistinguishable from a real run of the Invert protocol.
Similarly, if b = 1, the output is indistinguishable from the output of SInvert.
Therefore an adversary that can detect a simulation of Invert can be used to
break the semantic security of the underlying cryptosystem.

First, assume that b = 0. Then it is easy to verify that the hybrid acts
honestly on behalf of all the uncorrupted parties, and in the first round PS
indeed publishes a random encryption of zero, so φB = φ. The only deviation
from the real protocol occurs in the creation of cheating commitments for PS and
in the proofs of plaintext knowledge, but these commitments are computationally
indistinguishable from honest commitments. Because λ′S = λS and r

′
S = rS , the

behavior of PS is indistinguishable from an honest party’s behavior in the real
protocol.

Now assume that b = 1. Then PS publishes a random encryption of N −φ as
in the simulation, and φB = N . Note that all λi, ri belonging to honest parties
are chosen uniformly except for λ′S and r

′
S . But as we will show, the distributions

of those variables are statistically indistinguishable from the respective uniform
distributions. So in fact the behavior of PS in the hybrid is indistinguishable
from its behavior under SInvert.

It only remains to be proven that λS , rS are similarly-distributed with λ
′
S , r

′
S

(respectively), which we do here. We assume for simplicity that N−φ = O(
√
N),

as is the case when φ = φ(N) and N is the product of two large primes of
approximately equal size. First we state the following lemma:

Lemma 1 ([8]). Let x, y be two integers such that (x, y) = 1 and A,B two
integers such that A < B, x, y < A, and B > Ax. Then every integer z in the
closed interval [xy−x−y+1, Ax+By−xy+x+y−1] can be written as ax+by
where a ∈ [0, A] and b ∈ [0, B]. Furthermore, there exists a polynomial-time
algorithm that on input x, y, and z, outputs such a and b.

Let us denote λ as λC + λH , λ
′ as λC + λ′H , R as RC + RH , and R′ as

RC + R′H . We apply this lemma twice, first with x = φ, y = e, and again with
x = N , y = e to conclude that any integer F in the interval [δ,∆] can be written
both as λφ+Re, and as λ′N +R′e, where λ, λ′ ∈ [0, nN2] and R,R′ ∈ [0, nN3].
Here δ = Ne− e+ 1, and ∆ = n(N2φ+N3e)− φe+ φ+ e− 1.

Now, given any fixed λC , RC (the sums of the adversaries’ chosen values in
the protocol) and any λH (respectively, RH) distributed as the sum of at least
n/2 honestly-chosen uniform values from [0, N 2] (respectively, [0, N3]), it is easy
to see by Chernoff bounds that the probability that F falls outside the range
[δ,∆] is negligible since both bounds fall far away from the mean of F .

344 A. Lysyanskaya, C. Peikert

Now suppose F ∈ [δ,∆] and λC , RC are fixed as in the protocol. Given a
pair λH , RH such that F = (λC + λH)φ + (RC + RH)e, we present an efficient
mapping that produces λ′H , R

′
H such that F = (λC+λ

′
H)N +(RC+R

′
H)e. That

is, λφ−λ′N = (R′−R)e. Since (N, e) = 1, for any given λ there exists a unique
and efficiently-computable λ′ ∈ [λ, λ + e − 1] such that λφ − λ′N is a multiple
of e. This determines the value λ′H −λH +λS = λ′S (one of the values published
by the first honest party in the hybrid simulator), and from that we can solve
for R′ −R+ rS = r′S (the other published value).

We need only show that λS , λ
′
S and rS , r

′
S are close enough in a statistical

sense, i.e. that their differences are small relative to the sizes of the intervals

from which they are drawn. Indeed, |λ
′−λ|
N2 ≤ e

N2 ≤ 1
N and

|r1−r′1| =
|λφ− λ′N |

e
=

∣

∣

∣

∣

(λ− λ′)φ
e

+
λ′(φ−N)

e

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

φ− nN2
√
N

e

∣

∣

∣

∣

∣

≤ nN2
√
N

Thus
|r1−r′1|
N3 ≤ n√

N
which again is negligible. This completes the proof.

5 An adaptively secure threshold Paillier cryptosystem

We introduce the following notation: for any n ∈ N, λ(n) denotes Carmichael’s
lambda function, defined as the largest order of the elements of Z∗n. It is known
that if the prime factorization of an odd integer n is

∏k
i=1 q

fi
i , then λ(n) =

lcmi=1...k(q
fi−1
i (qi − 1)).

Our protocols will make use of two tools: Shamir secret sharing over the
integers [26], and proofs of discrete log equality in groups of unknown order [9,
4].

5.1 The Paillier cryptosystem

The Paillier cryptosystem [24] is based on composite-degree residuosity classes,
and has the desired homomorphic properties. It is based upon the Carmichael
lambda function in Z∗n2 and two useful facts regarding it: for all w ∈ Z∗n2 , wλ(n) =

1 mod n, and wnλ(n) = 1 mod n2. Here we recall the cryptosystem.
Key generation. Let n = pq where p, q are primes. Let g = (1+ n)abn mod n2

for random a, b ∈ Z∗n. The public key is (n, g) and the secret key is λ(n).
Encryption. To encrypt a message M ∈ Zn, randomly choose x ∈ Z∗n and
compute the ciphertext c = gMxn mod n2.

Decryption. To decrypt c, compute M = L(cλ(n) mod n2)
L(gλ(n) mod n2)

mod n where the do-

main of L is the set Sn = {u < n2 : u = 1 mod n} and L(u) = u−1
n .

Other useful properties. The Paillier cryptosystem is homomorphic, in the
sense of the definition in Appendix B. Cramer et al. [11] provide Σ-protocols for
proof of plaintext knowledge and proof of correct multiplication. We also require
a proof that a ciphertext is an encryption of zero; is merely a proof of nth residu-
osity modulo n2. Such a proof and is virtually identical to a zero-knowledge proof

Adaptive Security in the Threshold Setting 345

of quadratic residuosity mod n as given by, for example, Goldwasser et al. [20]
Finally, we require a proof that, given a ciphertext, the corresponding plaintext
lies within a specified range. Boudot [2] describes such a proof for committed
values, and a proof of equality between a committed value and a ciphertext in
the Paillier cryptosystem can be constructed using standard techniques (see, for
example, Camenisch and Lysyanskaya [3]).

The security of the scheme is based upon the composite residuosity class
problem, which is exactly the problem of decrypting a ciphertext. Semantic
security can be proven based on the hardness of detecting nth residues mod
n2.

Fouque et al. [16] present a threshold version of the Paillier cryptosystem,
using techniques developed by Shoup [27] for threshold RSA signatures. The
version presented there is known to be secure only in the static adversary model,
assuming the semantic security of the non-threshold version.

5.2 An adaptively secure threshold version

Here we present the novel result of a threshold Paillier cryptosystem which is
secure in the adaptive adversary model, based upon the security of Paillier’s cryp-
tosystem and the existence of trapdoor commitment schemes. This cryptosys-
tem is inspired by the statically-secure threshold version presented in Fouque et
al. [16]
Description of the protocols. Recall ∆ = l!, where l is the number of parties.

Key generation. We first describe key generation in terms of an l-party func-
tion on input k, the security parameter. This function is evaluated by a trusted
party, who distributes the proper values to the parties.

Choose an integer n, the product of two strong primes p, q of length k such
that p = 2p′ + 1 and q = 2q′ + 1, and gcd(n, φ(n)) = 1. Set λ = 2p′q′ = λ(n).
Choose random (a, b)← Z∗n×Z∗n, and let g = (1+n)abn mod n2. The secret key
is the value βλ for a random β ← Z∗n, which is shared additively as follows: for
all parties Pi but one, choose random si ← Znλ, and choose the last si such that
∑

i∈P si = βλ mod nλ. The public key is the triple (g, n, θ), where θ = aβλ mod
n. To compute public verification keys, choose a random public square v from
Z∗n2 , and let vi = vsi mod n2. In addition, compute polynomial backups for each
si as follows: let ai,0 = ∆si, and choose random ai,j ← [−∆2n3/2, . . . ,∆2n3/2],

then define a polynomial over the integers fi(X) =
∑t

j=0 ai,jX
j (so that fi(0) =

∆si). To each party Pj , give the values fi(j) for all i. Finally, compute public
commitments for these backup shares using any perfectly-hiding commitment
scheme, such as Pedersen’s [25]. Let the public value wi,j be a commitment to
fi(j) under public key kj and random string ri,j , and give ri,j to party Pj .

It is well known [19, 1, 6, 10] that for any l-party function, there is an adap-
tively secure protocol which evaluates it. Therefore there is a simulator which,
given all the outputs of the function (excluding any values belonging only to PS),
interacts with the adversary and gives it a suitable view of the key generation
protocol. In section 5.2 we describe how to provide suitably-distributed inputs

346 A. Lysyanskaya, C. Peikert

to this simulator. This key generation protocol may be very inefficient, but it is
only executed once to initialize the threshold cryptosystem.
Encryption. To encrypt a messageM ∈ Zn, pick random x← Z∗n and compute
the ciphertext c = gMxn mod n2.
Computing decryption shares. Player Pi computes his decryption share ci =
csi mod n2, and proves via a Σ-protocol that c2i (in base c

2) and vi (in base v)
have the same discrete log si in Z∗n2 .
Combining shares. If any party Pi refuses to publish his ci, or gives an invalid
proof, then the other parties reconstruct his secret share si as follows. Each
party Pj publishes its backup share fi(j) and random string ri,j , and all parties
verify that wi,j matches those values. Because there are at least t + 1 honest
parties, each party may pick some t+ 1 honestly-published values fi(j), and by
interpolation, discover si = fi(0)/∆ and compute ci = csi mod n2.

Now each party has a correct value ci = csi mod n2, for all i. The message
can be computed by each party as follows:

L
(
∏

i∈P ci
)

θ
=
L
(

c
∑

si mod nλ
)

θ
=
L(cβλ)

θ
=
L(gβλM)

θ
=
aβλM

θ
=M mod n

since the value θ = aβλ mod n is part of the public key.
Simulating decryption. The input to the decryption simulator is a tuple
({si}, {vP }, {ai,j}, {wi,j}, {ki}, g, n, θ, v, c,M, PS , tS ,A). The sets and (g, n, θ)
are simulated values corresponding to those in the real protocol; c is the ci-
phertext to be decrypted and M is its decryption; PS is the identity of the
single inconsistent party and tS is its commitment trapdoor; A is an arbitrary
input corresponding to the state of the adversary before the protocol execution.
In the next section, we describe how these simulated values can be generated
from only a public key from the single-server Paillier cryptosystem.

The simulator acts honestly on behalf of all uncorrupted parties Pi (excluding
PS) by publishing ci = csi mod n2 and proving correctness of the decryption
shares. On behalf of PS , the simulator publishes cS = (1+Mθn)

∏

i6=S c
−si mod

n2 and provides a false proof of correctness using tS . If any corrupted party
fails to provide a correct decryption share, the simulator honestly interpolates
that party’s secret share as in the decryption protocol, and proceeds normally.
The simulator then honestly computes the plaintext by multiplying the published
shares, yielding (1+Mθn) mod n2, applying L, and dividing by θ to get common
output M .

The view of the adversary under the simulation is statistically indistinguish-
able from a real run of the protocol, provided that all public inputs are suitably
simulated. If the adversary corrupts any party Pj (other than PS), that party’s
behavior over every invocation of the protocol is consistent with the secret sj
revealed to the adversary. In addition, the adversary is entitled to see fi(j) and
ri,j , for all i. When j 6= S, the values are consistent with anything else the adver-
sary has seen. For i = S, we prove below that with high probability, any set of at
most t values fS(j) is distributed similarly regardless of the value being shared,
and therefore the simulated values fi(j) are statistically indistinguishable from
those in a real run.

Adaptive Security in the Threshold Setting 347

Simulating key generation. We now show that the outputs of the key gener-
ation function can be simulated (up to statistical closeness), given a public key
(g′, n) and the identity of the single inconsistent party PS . (It is sufficient to
simulate every value produced by the key generation function, except the secret
share sS belonging to PS . This is because the entire simulation is aborted if the
adversary ever attempts to corrupt PS , so we need not simulate its private data.)
When these values are given to the simulator for the key-generation protocol, it
generates a suitable view for the adversary.

Choose random (x, y, θ) ← Z∗n × Z∗n and let g = (g′)xyn mod n2. Choose
random α ← Z∗n, and let v = g2α. Then for each player, choose random si ←
[0, . . . , bn/2c−1], and create verification shares vi = vsi mod n2 for all parties but

PS . For PS , set vS = (1+2αθn)v
−∑

i6=S si mod n2. Finally, create commitments
wi,j honestly (from polynomials with free terms ∆si and random coefficients)
for all i and j, and random ri,j .

First, note that the statistical difference between the uniform distributions on
[0, . . . , bn/2c−1] and Znλ is O(n

−1/2), so any set of at most l−1 secret keys si is
statistically indistinguishable between a real and simulated run. Both g and θ are
uniformly chosen from their respective domains, and are identically-distributed
with their respective values in the real protocol. In addition, v is a random
element of Qn2 , the cyclic group of squares mod n2. Because |Qn2 | = pqp′q′,
and φ(pqp′q′) = (p− 1)(q − 1)(p′ − 1)(q′ − 1), v is a generator of Qn2 with high
probability, and is identically-distributed with its value in the real protocol.

Note that any set of at most l−1 simulated verification keys vi is statistically
close to a real set. However, in the real protocol with a fixed v, the values of l−1
verification shares induce a distribution upon the last (because the values of l−1
secret shares si induce a distribution upon the last). That is, it is necessary and
sufficient that

∏

i∈P vi = vβλ mod n2 for some uniformly-chosen β from Z∗n. In
the simulation, we choose

∏

i∈P vi = vβλ = (1+2αθn) mod n2 without knowing
λ but just by randomly choosing θ, which induces a uniform distribution upon
β as desired.

Finally, we note that the simulated set {wi,j} is identically-distributed to
its counterpart in the real protocol, by the perfect-hiding of the commitment
scheme.

It remains to be shown that the simulated values fi(j) for all i and for
the adversary’s chosen j are indistinguishable from those in a real run. It is
clear that the fi(j) are identically distributed for i 6= S, because the simulator
behaves honestly. It is also obvious that the points of different polynomials are
independent. We therefore show that with high probability, the values fS(j)
seen by the adversary are consistent with a polynomial having free term ∆ŝS
and coefficients from the proper range, for any value of ŝS .

Let fS(X) be the polynomial used in the simulation, that is, fS(X) = ∆sS+
∑t

i=1 aS,jX
j where the aS,j are randomly chosen. Say that the adversary has

corrupted a set of parties C, with |C| ≤ t. We wish to find a polynomial f̂S(X)

such that f̂S(0) = ∆ŝS for an arbitrary ŝS , and f̂S(i) = fS(i) for i ∈ C. Consider
a polynomial h(X) such that h(0) = ∆(ŝS − sS), and h(i) = 0 for i ∈ C. Then

348 A. Lysyanskaya, C. Peikert

we have f̂(X) ≡ f(X) + h(X). By interpolation,

h(X) =
∑

i∈C
h(i) ·

∏

j 6=i,j∈{0}∪C

z − j
i− j = ∆(ŝS − sS)

∏

j∈C

z − j
−j

so the coefficient of X i in h(X) is: ∆(ŝS − sS)
∑

B⊆C,|B|=i

∏

j∈B(−j)
∏

j∈C(−j) ∈ Z which
is bounded in absolute value by

∑

B⊆C,|B|=i
∆(ŝS−sS) ≤ ∆(ŝS−sS)

(

t

i

)

≤ ∆(ŝS − sS)t!
i!(t− i)! ≤ ∆(ŝS−sS)t! ≤ ∆2n2/2

since ŝS , sS ∈ {0, . . . n2/2}.
Now the coefficients of f̂(X) are outside of the desired range only if any of

the coefficients of f(X) are outside of [−∆2(n3 − n2)/2, . . . ,∆2(n3 − n2)/2]. By
the union bound, this happens with probability at most t/n, which is negligible.
In addition, there is a bijection between the coefficients of f and the coefficients
of f̂ when sS , ŝS , and C are fixed. Therefore the distribution of the coefficients
of f̂ is statistically close to uniform, as desired.
A reduction from the original cryptosystem. With these simulations in
hand, the reduction from one-server semantic security to threshold semantic
security is straightforward. Assume there is an adversary that can break the
security of the threshold cryptosystem. Given a public key (g′, n) for the single-
server Paillier cryptosystem, we first simulate the key generation protocol and
any decryptions as described above. (Recall that the public key of the threshold
cryptosystem is (g = (g′)xyn mod n2, n, θ) for some uniformly-chosen x, y, θ.)
The adversary then outputs two messages m0,m1, which we send to an ora-
cle, who responds with a random encryption c of mb for some random bit b. We
compute χ = cx mod n2 (where x is the value chosen by the key generation simu-
lator) and give it to the adversary. By assumption, the adversary can distinguish
with non-negligible advantage whether χ is an encryption of m0 or m1 under
(g, n, θ). This is equivalent to whether c is an encryption of m0 or m1 under
(g′, n), hence we have broken the semantic security of the original cryptosystem.
This completes the reduction.

Acknowledgements We are indebted to Ron Rivest for valuable discussions.
We would also like to thank the anonymous referees for their detailed and
thoughtful comments. Anna Lysyanskaya acknowledges the support of an NSF
graduate fellowship, the Lucent Technologies GRPW program, and the Merrill-
Lynch grant given to R. L. Rivest. Chris Peikert is supported by an MIT Presi-
dential Fellowship, sponsored by Akamai Technologies.

References

1. Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for
non-cryptographic fault-tolerant distributed computation. In Proc. 20th Annual
ACM Symposium on Theory of Computing (STOC), pages 1–10, 1988.

Adaptive Security in the Threshold Setting 349

2. Fabrice Boudot. Efficient proofs that a committed number lies in an interval. In
Bart Preneel, editor, Advances in Cryptology — EUROCRYPT 2000, volume 1807
of Lecture Notes in Computer Science, pages 431–444. Springer Verlag, 2000.

3. Jan Camenisch and Anna Lysyanskaya. An identity escrow scheme with appointed
verifiers. In Joe Kilian, editor, Advances in Cryptology — CRYPTO 2001, volume
2139 of Lecture Notes in Computer Science, pages 388–407. Springer Verlag, 2001.

4. Jan Camenisch and Markus Michels. A group signature scheme based on an RSA-
variant. Technical Report RS-98-27, BRICS, Departement of Computer Science,
University of Aarhus, November 1998. Preliminary version in:Advances in Cryp-
tology — ASIACRYPT ’98, vol. 1514 of LNCS.

5. Ran Canetti. Security and composition of multi-party cryptographic protocols.
Journal of Cryptology, 13(1):143–202, 2000.

6. Ran Canetti, Uri Feige, Oded Goldreich, and Moni Naor. Adaptively secure multi-
party computation. In Proceedings of the 28th Annual ACM Symposium on Theory
of Computing, pages 639–648, 1996.

7. Ran Canetti, Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Ra-
bin. Adaptive security for threshold cryptosystems. In Advances in Cryptology—
CRYPTO 99. Springer-Verlag, 1999.

8. Dario Catalano, Rosario Gennaro, and Shai Halevi. Computing inverses over a
shared secret modulus. In Bart Preneel, editor, Advances in Cryptology — EURO-
CRYPT 2000, volume 1807 of Lecture Notes in Computer Science, pages 190–206.
Springer Verlag, 2000.

9. David Chaum and Torben Pryds Pedersen. Wallet databases with observers. In
Ernest F. Brickell, editor, Advances in Cryptology — CRYPTO ’92, volume 740 of
Lecture Notes in Computer Science, pages 89–105. Springer-Verlag, 1993.

10. Ronald Cramer, Ivan Damg̊ard, Stefan Dziembowski, Martin Hirt, and Tal Ra-
bin. Efficient multiparty computations secure against an adaptive adversary. In
Advances in Cryptology—EUROCRYPT 99, pages 311–326. Springer-Verlag, 1999.

11. Ronald Cramer, Ivan Damg̊ard, and Jesper Buus Nielsen. Multiparty computation
from threshold homomorphic encryption. In Birgit Pfitzmann, editor, Advances in
Cryptology — EUROCRYPT 2001, Lecture Notes in Computer Science. Springer
Verlag, 2001.

12. Ronald Cramer and Victor Shoup. Signature schemes based on the strong RSA
assumption. In Proc. 6th ACM Conference on Computer and Communications
Security, pages 46–52. ACM press, nov 1999.

13. Ivan Damg̊ard and Jesper Buus Nielsen. Improved non-committing encryption
schemes based on a general complexity assumption. In Mihir Bellare, editor, Ad-
vances in Cryptology — CRYPTO ’00, volume 1880 of Lecture Notes in Computer
Science, pages 432–450. Springer Verlag, 2000.

14. Yvo Desmedt. Society and group oriented cryptography. In Advances in
Cryptology—CRYPTO 87. Springer-Verlag, 1987.

15. Yvo Desmedt and Yair Frankel. Threshold cryptography. In Advances in Cryp-
tology — CRYPTO ’89, volume 435 of Lecture Notes in Computer Science, pages
307–315. Springer-Verlag, 1990.

16. P. Fouque, G. Poupard, and J. Stern. Sharing decryption in the context of voting
or lotteries. In Financial Cryptography 2000, Lecture Notes in Computer Science.
Springer Verlag, 2000.

17. Yair Frankel, Philip MacKenzie, and Moti Yung. Adaptively-secure optimal-
resilience proactive RSA. In Advances in Cryptology—ASIACRYPT 99. Springer-
Verlag, 1999.

350 A. Lysyanskaya, C. Peikert

18. Rosario Gennaro, Shai Halevi, and Tal Rabin. Secure hash-and-sign signatures
without the random oracle. In Jacques Stern, editor, Advances in Cryptology —
EUROCRYPT ’99, volume 1592 of Lecture Notes in Computer Science, pages 123–
139. Springer Verlag, 1999.

19. Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game
or a completeness theorem for protocols with honest majority. In Proc. 19th Annual
ACM Symposium on Theory of Computing (STOC), pages 218–229, 1987.

20. Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity
of interactive proof systems. In Proc. 27th Annual Symposium on Foundations of
Computer Science, pages 291–304, 1985.

21. StanisÃlaw Jarecki and Anna Lysyanskaya. Adaptively secure threshold cryptogra-
phy: introducing cocurrency, removing erasures. In Bart Preneel, editor, Advances
in Cryptology — EUROCRYPT 2000, volume 1807 of Lecture Notes in Computer
Science, pages 190–206. Springer Verlag, 2000.

22. Anna Lysyanskaya and Chris Peikert. Adaptive security in the threshold set-
ting: From cryptosystems to signature schemes. Manuscript. Available from
http://eprint.iacr.org.

23. Jesper Buus Nielsen. Personal communication.
24. Pascal Paillier. Public-key cryptosystems based on composite residuosity classes.

In Jacques Stern, editor, Advances in Cryptology — EUROCRYPT ’99, volume
1592 of Lecture Notes in Computer Science, pages 223–239. Springer Verlag, 1999.

25. Torben Pryds Pedersen. Non-interactive and information-theoretic secure verifiable
secret sharing. In Joan Feigenbaum, editor, Advances in Cryptology – CRYPTO
’91, volume 576 of Lecture Notes in Computer Science, pages 129–140. Springer
Verlag, 1992.

26. Adi Shamir. How to share a secret. Communications of the ACM, 22(11):612–613,
November 1979.

27. Victor Shoup. Practical threshold signatures. In Bart Preneel, editor, Advances
in Cryptology — EUROCRYPT ’00, volume 1807 of Lecture Notes in Computer
Science, pages 207–220. Springer Verlag, 2000.

A The Mad protocol

The Mad protocol takes common inputs w, x, y, z and returns common output
F = wx+ yz. It is implemented as follows:

1. Each party publishes a trapdoor-commitment to a random string ri for use
in the multiplication-by-ring-element algorithm.

2. The parties open their commitments, and compute r as the exclusive-or of
all properly-decommitted strings.

3. Each party runs the multiplication-by-ring-element algorithm on inputs w
and x with random string r, yielding a common random ciphertext wx.

4. The parties enter the Mult protocol on y, z, yielding common random ci-
phertext yz.

5. Each party uses the deterministic addition-of-ciphertexts algorithm to com-
pute a common input wx+ yz to the Decrypt protocol, yielding common
output F = wx+ yx, as desired.

For the proof of security, we refer the reader to the full version [22] of the
paper.

Adaptive Security in the Threshold Setting 351

B Homomorphic threshold encryption

Here, for self-containment, we provide a modification of the definitions given by
Cramer et al. [11]. The modification is that we require security in the adaptive
setting.

B.1 Threshold cryptosystems

Here we define threshold encryption schemes and their security properties.

Definition 1. An adaptively-secure threshold cryptosystem for parties P =
{P1, . . . , Pl} with threshold t < l and security parameter k is a 5-tuple
(K,KG,M,E,Decrypt) having the following properties:

1. (Key space) The key space K = {Kk,l}k,l∈N is a family of finite sets of the
form (pk, sk1, . . . , skl). We call pk the public key and ski the private key
share of party Pi. For C ⊆ P we denote the family {ski}i∈C by skC .

2. (Key generation) There exists an adaptively t-secure key generation l-party
protocol KG which, on input 1k, computes, in probabilistic polynomial time,
public output pk and secret output ski for party Pi, where (pk, sk1, . . . , skl) ∈
Kk. We write (pk, sk1, . . . , skl)← KG(1k) to represent this process.

3. (Message sampling) There exists some probabilistic polynomial-time algo-
rithm which, on input pk, outputs a uniformly random element from a mes-
sage space Mpk. We write m←Mpk to describe this process.

4. (Encryption) There exists a probabilistic polynomial-time algorithm E which,
on input pk and m ∈Mpk, outputs an encryption m = Epk(m)[r] of m. Here
r is a uniformly random string used as the random input, and Epk(m)[r]
denotes the encryption algorithm run on inputs pk and m, with random tape
containing r.

5. (Decryption) There exists an adaptively t-secure protocol Decrypt which,
on common public input (c, pk) and secret input ski for each uncorrupted
party Pi, where ski is the secret key share of the public key pk (as generated
by KG) and c = Epk(m)[r] is an encrypted message for some r, returns m
as a common public output.

6. (Threshold semantic security) For all probabilistic circuit families {Sk} (the
message sampler) and {Dk} (called the distinguisher), all constants c > 0,
all sufficiently large k, and all C ⊆ P such that |C| ≤ t,

Pr[(pk, sk1, . . . , skl)← KG(1k); (m0,m1, s)← Sk(pk, skC); i
R← {0, 1};

e← E(pk,mi); b← Dk(s, e) : b = i] < 1/2 + 1/kc

B.2 Homomorphic properties

We also need the cryptosystem to have the following homomorphic properties:

352 A. Lysyanskaya, C. Peikert

1. (Message ring) For all public keys pk, the message space Mpk is a ring in
which we can compute efficiently using the public key only. We denote the
ring (Mpk, ·pk,+pk, 0pk, 1pk). We require that the identity elements 0pk and
1pk be efficiently computable from the public key.

2. (+pk-homomorphic) There exists a polynomial-time algorithm which, given
public key pk and encryptions m1 ∈ Epk(m1) and m2 ∈ Epk(m2), outputs
a uniquely-determined encryption m ∈ Epk(m1 +pk m2). We write m =
m1¢m2. Likewise, there exists a polynomial-time algorithm for performing
subtraction: m = m1 ¯m2.

3. (Multiplication of a ciphertext by a ring element) There exists a prob-
abilistic polynomial-time algorithm which, on input pk, m1 ∈ Mpk and
m2 ∈ Epk(m2), outputs a random encryption m ← Epk(m1 ·pk m2). We
assume that we can multiply a ring element from both the left and right. We
write m← m1¡m2 ∈ Epk(m1 ·pkm2) and m← m1¡m2 ∈ Epk(m1 ·pkm2).
Let (m1 ¡m2)[r] denote the unique encryption produced by using r as the
random coins in the multiplication-by-ring-element algorithm.

4. (Addition of a ciphertext and a ring element) There exists a probabilis-
tic polynomial-time algorithm which, on input pk, m1 ∈ Mpk and m2 ∈
Epk(m2), outputs a uniquely-determined encryption m ∈ Epk(m1 +pk m2).
We write m = m1 ¢m2.

5. (Blindable) There exists a probabilistic polynomial-time algorithm B which,
on input pk and m ∈ Epk(m), outputs an encryption m′ ∈ Epk(m) such that
m′ = Epk(m)[r], where r is chosen uniformly at random.

6. (Check of ciphertextness) By Cpk we denote the set of possible encryptions
of any message, under the public key pk. Given y ∈ {0, 1}∗ and pk, it is easy
to check whether y ∈ Cpk.

7. (Proof of plaintext knowledge) Let L1 = {(pk, y) : pk is a public key ∧ y ∈
Cpk}. There exists a Σ-protocol for proving the relation RPOPK over L1 ×
({0, 1}∗)2 given by RPOPK = {((pk, y), (x, r)) : x ∈ Mpk ∧ y = Epk(x)[r]}.
Let EPOPK be the simulator for this Σ-protocol, which is just a special case
of EΣ described in section 3.

8. (Proof of correct multiplication) Let L2 = {(pk, x, y, z) : pk is a public key∧
x, y, z ∈ Cpk}. There exists a Σ-protocol for proving the relation RPOCM

over L2 × ({0, 1}∗)3 given by RPOCM = {((pk, x, y, z), (d, r1, r2)) : y =
Epk(d)[r1] ∧ z = (d¡ x)[r2]}.

We call any such scheme meeting these additional requirements a homomor-
phic threshold cryptosystem.

From these properties, it is clear how to perform addition of two ciphertexts:
use the +pk algorithm, following by an optional blinding step. The remaining
operation to be supported is secure multiplication of ciphertexts. That is, given
a and b, determine a ciphertext c such that c = a ·pk b, without leaking any
information about a, b, or c. Cramer et al. [11] give the Mult protocol for
multiplication, and prove its security against a static adversary.

