
Very-efficient flipping
of many coins

(between two parties)

Luís T. A. N. Brandão

Early presentation of results at rump session
of Theory of Cryptography Conference 2014

February 25, San Diego, USA

The author is a Ph.D. student at FCUL-DI and CMU-ECE. Support for this research was provided
by the Fundação para a Ciência e a Tecnologia (Portuguese Foundation for Science and
Technology) through the Carnegie Mellon Portugal Program under Grant SFRH/BD/33770/2009.

University of Lisbon and Carnegie Mellon University

(Minor adjustments on Feb 28, when preparing upload to Internet)

1. Commit contribution of Alice

2. Send contribution of Bob

3. Open contribution of Alice

4. Locally combine (XOR) the two contributions

Alice Bob

Simulator

Extract Alice's
contribution

Equivocate
Alice's needed

contribution



Commitment scheme
needs be both

extractable (X) and
equivocable (Q),

i.e., be X&Q.



X&Q

What if we want
to flip MANY

coins, e.g., 2TB?

The traditional coin-flipping template

Simulator

Several constructions exist
... with group-elements or

group-operations in
number or with size

proportional to # coins
Open() (Two recent independent works

devise more efficient methods)

Very-efficient flipping of many coins (rump session TCC 2014) Slide 2 Feb 25, 2014

A new approach
Can we achieve a BIG X&Q commitment using only:
- a FEW SMALL X-commits and a FEW SMALL Q-commits;
- and symmetric primitives (PRG, hash function, XORs) Yes!

?
An initial intuition

Extractable and Equivocable
commitment

X&Q
Equivocable
commitment

Calculate hashExpand using PRG

(Short) Seed (Short) Hash
(Large) Seed-expansion

(super fast) (super fast)

0 1 1 ... 0 1 0 0 1 1 ... 0 1 01 0 1 1 …...... 1 0 1 0

Q

Extractable
commitment

X

Very-efficient flipping of many coins (rump session TCC 2014) Slide 3 Feb 25, 2014

One-pass simulatable coin-flipping

0.2. Cut-and-choose: [s]=JV + JE

0.3. Alice opens verification instances (JV)

{Open(,): }jJV

Extract seed,
expand,

remove mask

(cut-and-choose based technique)

= Hash(PRG())0.4. Bob verifies (JV):

PRG()

{ }:j J E

1. X-Commit contribution of Alice

Open()

0. Prepare seeds and hashes

{(,): }X Q j[s]

0.1. Alice commits seeds and hashes

Send needed contribution,
and equivocate hashes



3. Q-open contribution of Alice

4. Locally combine contributions:

2. Send contribution of Bob

 (send contribution and open hashes)

 high probability that a portion of
remaining instances (JE) are consistent

Simulator

Simulator

Very-efficient flipping of many coins (rump session TCC 2014) Slide 4 Feb 25, 2014

Summary

● A new approach for flipping many coins
– Uses few X-commits of seeds and Q-commits of hashes

– Leverages throughput of PRG and hash function

● Overlooked in this short presentation:
– Verifiability condition for simulator to check that extracted hash

is consistent with masked contribution.

– How to reduce communication, by fragmenting the contribution
using an efficient Information dispersal algorithm (and
respective reconstruction).

– Probabilities associated with the cut-and-choose.

– A much simpler solution exists if rewinding is allowed.

Very-efficient flipping of many coins (rump session TCC 2014) Slide 5 Feb 25, 2014

Thank you for your attention!

The images used in this presentation were
taken from openclipart.org and clker.com,
with the expectation of being in the public-

domain and available for free usage.

(soon to be on eprint)

lbrandao at {alunos.fc.ul.pt, cmu.edu}

Very-efficient flipping
of many coins

Very-efficient flipping of many coins (rump session TCC 2014) Slide 6 Feb 25, 2014

If rewinding is OK, use another template

2. Alice X-commits seed of a mask, and
 sends her masked contribution

1. Bob Q-commits hash of his contribution

4. Alice opens the seed of her
 contribution mask

5. Locally unmask contribution of
 Alice and combine contributions

Alice Bob

Q

(, )X

3. Bob sends his contribution
 and Q-opens its hash

Open()

PRG()

Alice Bob

Open()

(Slide prepared for rump session but not shown due to time constraint)

Very-efficient flipping of many coins (rump session TCC 2014) Slide 7 Feb 25, 2014

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7

