
Outsourcing Private RAM
Computation

Craig Gentry Shai Halevi
Mariana Raykova Daniel Wichs

Private Outsourcing

•Client wants to leverage resources of a powerful
server to compute 𝑓(𝑥) without revealing 𝑥.

•Efficiency Requirements:
•Client works much less than computing 𝑓(𝑥)
• Server does about as much work as computing 𝑓(𝑥)

• Private outsourcing is possible using FHE...

• But FHE works over circuits rather than RAM programs.

I’m very
efficient!

Private Outsourcing

• Private outsourcing is possible using FHE...

• But FHE works over circuits rather than RAM programs.
• RAM complexity << circuit complexity (𝑇 vs. 𝑇2)
• For programs where “data resides in memory”, the gap can be fully

exponential (e.g., Google search).

•Note: using ORAM, can run computation on outsourced data
where client & server work as hard as the RAM.

Private Outsourcing

Our Work

• First constructions that allow private outsourcing of
RAM computation.
•Client work ≈ input size |𝑥|.
•Server work ≈ RAM run time of 𝑓(𝑥).

Our Work

• “basic” construction from iO
• Client does one-time preprocessing for a program, then can

outsource many independent computations for cheap.

• “best case” construction from a variant of diO.
• Client can also outsource a large database.

Each computation can read/write to the database.

• No pre-processing for the program.

“Reusable Garbled RAM”

• Program 𝑃  Garbled 𝑃
• Client “preprocessing” can be related to RAM run-time of 𝑃.

• Input 𝑥  Garbled 𝑥
• Client “online work” related only to |𝑥|

•Garbled 𝑃+ 𝑥  𝑃(𝑥) and nothing more
• Server work related to RAM run-time of 𝑃.

• Prior Work: “one-time” garbled RAM. [LO13,GHLORW14]
• One garbled input per garbled program. Not useful for outsourcing.

•New: “reusable” garbled RAM.
• Many garbled inputs for the same garbled program.

Our Approach
•Combination of:

• “One-time Garbled RAM” [LO13,GHLORW’14]
• “Reusable garbled circuits” [GKPVZ’13]

• Idea: Create a reusable garbled circuit that gets 𝑥
computes a fresh one-time garbled RAM: 𝑃, 𝑥

Main Difficulty

Need to garble circuit with small input, huge output

Want to have small garbled inputs.
• Not achieved by known constructions [GKPVZ13].

• Show: not possible with simulation-based security.

•New: make due with weaker notions of security for
garbled circuits: “distributional indistinguishability”

•New: constructions of such reusable garbled circuits
with “right efficiency” based on obfuscation.
•Open Problem: weaker assumptions!

Don’t turn me into a
circuit!

Thank You!

