
Algorithms in HElib 
Shai Halevi and Victor Shoup 

http://eprint.iacr.org/2014/106 

http://eprint.iacr.org/2014/106


What’s HElib? 

• A software library implementation of 
homomorphic encryption (HE) 

• Implements the ring-LWE variant of [BGV12] 

• Written in C++, uses NTL for poly-arithmetic 

• Open source (GPL), available off 
https://github.com/shaih/HElib/ 

• Focused on effective use of “ciphertext 
packing” [SV11] and the routing 
techniques from [GHS12] 

https://github.com/shaih/HElib/
https://github.com/shaih/HElib/


What’s Implemented in HElib? 

Low level: the cryptosystem itself 

• Useful analogy: “assembly language” for 
homomorphic computations 

• The HE schemes serves as a “hardware platform” 

• Defining the available operations and their cost 
 

Higher level: algorithms over this “platform” 

• Routing algorithms 

• Simple linear functions 



The HE “platform” 

• Each ciphertext encrypts a vector 𝑣 ∈ 𝐹𝑛 

• 𝐹 can be “any finite field” of our choice 

• 𝑛 is determined by the system parameters 

• Typical values are 𝑛 ∈ [100, 1000] 

• Operations are rotations, element-wise 
addition & multiplication 

• This is a SIMD environment 

• Not very different from Intel SSE etc. 



The HE “platform” 

• Cost measured in time, noise 

• Noise plays the role of circuit depth 

Operation Time cost Noise cost 

Constant Addition Cheap Cheap 

Addition Cheap Cheap 

Constant Mult. Cheap Moderate 

Multiplication Expensive Expensive 

Rotation Expensive Cheap 



Routing Procedures 

• Rotations  Arbitrary Permutations 
using “Generalized” Benes networks 

• Standard Benes works for size-2𝑛 networks 

• Has depth 2𝑛, “cost” 4𝑛 

• Two different generalizations: 

• Network size  𝑎𝑖
𝑛
𝑖=1  with depth 2𝑛, “cost” 2 𝑎𝑖𝑖  

• Network size 𝑁 with depth 2 log2𝑁, cost 4 log2 𝑁 

• Combining the two generalizations to optimize 
depth, cost 



Routing Procedures 

• Rotations  Arbitrary Permutations 
using “Generalized” Benes networks 

• Standard Benes works for size-2𝑛 networks 

• Has depth 2𝑛, “cost” 4𝑛 

• Two different generalizations: 

• Network size  𝑎𝑖
𝑛
𝑖=1  with depth 2𝑛, “cost” 2 𝑎𝑖𝑖  

• Network size 𝑁 with depth 2 log2 𝑁, cost 4 log2 𝑁 

• Open: unify these two generalizations 

• May yield a 2x performance improvement 



Illustrative Timing Results 

Cyclotomic 
Field 

Vector 
size 

Network 
depth 

Network 
size 

Permutation 
time 

𝑚 = 4369 𝑛 = 256 3 
7 

10 

60 
35 
31 

4.1 sec 
3.6 sec 

3.8 sec* 

𝑚 = 8191 𝑛 = 630 5 
7 
9 

37 
30 
28 

5.0 sec 
4.3 sec 
4.0 sec 

𝑚 = 21845 𝑛 = 1024 5 
7 
9 

66 
45 
41 

21.2 sec 
18.3 sec* 
16.7 sec* 

* Larger depth requires larger parameters 


