ENCRYPTED MESSAGES FROM THE HEIGHIS OF CRYPTOMANIA

Craig Gentry, IBM

TCC 2013

Joint work with Sanjam Garg, Shai Halevi, Amit Sahai, Brent Waters Supported by IARPA contract number D11PC20202

Tokyo, Japan

Fully Homomorphic Encryption (FHE)

- \square Awe some !
 - I give the cloud encrypted program E(P)
 - For (possibly encrypted) x, cloud can compute E(P(x))
 - \Box I can decrypt to recover P(x)
 - Cloud learns nothing about P, or even P(x)
- □ Problem...
 - What if I want the cloud to learn P(x) (but still not P)?
 - So that the cloud can take some action if P(x) = 1.

Obfuscation

Obfuscation

- □ I give the cloud an "encrypted" program E(P).
- For any input x, cloud can compute E(P)(x) = P(x).
- Cloud learns "nothing" about P, except $\{x_i, P(x_i)\}$.
- □ Barak et al: "On the (Im)possibility of Obfuscating Programs"
- Difference between obfuscation and FHE:
 In FHE, cloud computes E(P(x)) and can't decrypt to get P(x).
- Step in right direction? Modify FHE so that cloud can detect when some special value, say '0', is encrypted
 A zero test (or equality test)

FHE with a Zero Test

- □ Seems as powerful as FHE (if message space is large).
- \Box To regain semantic security:
 - Use a composite N = pq message space
 - Mod-p part for message, mod-q part for randomness
- Perhaps more powerful
 - Control when cloud extracts information
 - Eg, when residues mod-p and mod-q "align" to 0.
- Difficulty:
 - Can we enable zero-testing without breaking the FHE scheme?

Black Box Fields (BBFs) [BL96]

□ BBFs:

- Each element x encoded by arbitrary string [x] (maybe more than 1)
- Given [x], [y], BBF oracle provides [x+y] and $[x \cdot y]$
- Equality test: Given [x], [y], Eq([x],[y]) outputs 1 iff x = y.

□ Sort of like FHE scheme with zero test

Attacks on Black Box Fields

- BBF Problem: Given encoding [x] of x in F_p, output x.
 Solvable in sub-exponential time.
 - Technique: Solve DL_A(x,y) over elliptic curve with smooth order.
 Solvable in quantum polynomial time [vDHI03]
- □ Corollary: FHE over F_p with a zero test is breakable in subexponential or quantum polynomial time.
- □ Not fatal, but troubling.
- □ Anyway, we don't have a construction of FHE with zero test.

Somewhat HE (SW HE) with a Zero Test

□ SWHE

- Can evaluate functions of degree bounded by some polynomial in the security parameter
- □ SWHE with zero test
 - Boneh-Lipton subexponential attack does not apply. Nor does quantum attack.
 - Turns out to be like a multilinear map!

Bilinear Maps

Cryptographic bilinear map (for groups)

Groups G₁, G₂ of order p with generators g₁,g₂
Bilinear map:

 $e: G_1 \times G_1 \rightarrow G_2$ where

• $e(g_1^a, g_1^b) = g_2^{ab}$ for all a, b 2 F_p . • Biline ar DDH: Given $g_1^{a_1}, g_1^{a_2}, g_1^{a_3}$ 2 G_1 , and h2 G_2 , distinguish whether $h = g_2^{a_1a_2a_3}$ or is random.

■ Bilinear group ≈ Degree-2 HE with equality test ■ $Enc_i(a) \rightarrow g_i^a$

Multilinear Maps

- Cryptographic k-multilinear map (for groups)
 Groups G. G. of order p with generators g.
 - Groups G₁, ..., G_k of order p with generators g₁, ..., g_k
 Family of maps:

 $e_{i,j}:G_i\times G_j\to G_{i+j} \ \text{ for } i+j\leq k \text{, where }$

- $e_{i,j}(g_i^a, g_j^b) = g_{i+j}^{ab}$ for all a,b 2 F_p . • Notation Simplification: $e(g_{i_1}, ..., g_{i_t}) = g_{i_1+...+i_t}$. • k-line ar DDH: Given $g_1^{a_1}, ..., g_1^{a_{k+1}} 2 G_1$, and h2 G_k , distinguish whether $h = g_k^{a_1...a_{k+1}}$ or is random.
- k-linear group ≈ Degree-k SWHE with a zero test
 Enc_i(a) = g_i^a. Eval degree-k polys on level-1 encodings.

Probabilistic Encodings and Extraction

- □ For multilinear groups, encoding is deterministic
 - Zero test is immediate
 - Extraction: Parties that arrive at the same encoding can easily extract a shared key
- □ For a SWHE scheme with a zero test, encoding is probabilistic
 - A zero test doesn't imply an extraction procedure.
 - So, let's assume an extraction procedure for now.

Multilinear Maps: Applications

Thanks to Brent for some of these slides

Applications

- Easy Application: (k+1)-partite key agreement using k-linear map [Boneh-Silverberg '03]:
 - **D** Party i generates level-0 encoding of a_i .
 - Party I broadcasts level-1 encoding of a_i .
 - Each party separately computes key e(g₁, ..., g₁)<sup>a₁...a_{k+1}.
 Secure assuming k-linear DDH: Given g₁^{a₁},..., g₁<sup>a_{k+1} 2 G₁, and h2 G_n, hard to distinguish whether h = g_k<sup>a₁...a_{k+1}.
 </sup></sup></sup>
- □ More interesting applications:
 - Attribute-based encryption for circuits [GGHSW12].
 - Witness encryption [GGSW13]

Attribute Based Encryption (ABE)

<u>Setup</u> $(1^{\lambda},F)$: takes as input a security parameter and a class of functions $F = \{f : \{0,1\}^n \rightarrow \{0,1\}\}.$

Outputs master secret and public keys MSK, MPK.

KeyGen(MSK,f): Authority uses MSK to generate a key SK_f for the function f. f represents a user's "key policy" that specifies when it can decrypt.

Encryption(MPK, A, M): Outputs CT that encrypts M under string $A \in \{0,1\}^n$. "A" may be "attributes" needed by decrypter.

Prior Work on ABE

- \Box F = simple functions in prior ABE schemes
 - Example: F = formula s.
 - For F = circuits, prior schemes have exponential complexity
- □ Tools:
 - Bilinear maps [SW05,GOSW06,...]
 - □ Lattices (learning with error (LWE)) [Boyen13].
- Big open problem: Efficient ABE for circuits
 Just like HE for circuits was open.
 Note: Monotone circuits → general circuits.

ABE for Circuits using MMaps [GGHSW12]

AND gate: similar to OR gate

L= # levels; k = L+1; n-bit inputs

k-linear map: $G_1, ..., G_k; g_1, ..., g_k$

 $MSK = g_1^{\alpha} \text{ for uniform } \alpha \text{ in } F_p$ MPK = $g_1, h_1, \dots h_n \in G_1, g_k^{\alpha} \in G_k$

KeyGen: Random $r_w \leftarrow F_p$ for each wire w in circuit, except $r_w = \alpha$ for output wire.

OR gate: Input wires x,y and output wire w at depth j. Choose random a_w , b_w in F_p . Give $g_1^{a_w}$, $g_j^{r_w-a_wr_x}$, $g_1^{b_w}$, $g_j^{r_w-b_wr_y}$. AND gate: Give $g_1^{a_w}$, $g_1^{b_w}$, $g_1^{r_w-a_wr_x-b_wr_y}$.

Encryption: Enc. M for attributes $A \in \{0,1\}^n$ s $\leftarrow F_p$, $CT = M \cdot g_k^{\alpha s}$, g_1^s , $\forall y \in A$, h_y^s **Decryption**: Gate-by-gate to output wire, compute $g_{j+1}^{r_ws}$ for wires at depth j

Summary of ABE for Circuits

□ Now we have ABE for arbitrarily complex policies

- The scheme is quite simple.
- Ciphertexts are "succinct"
 - Do not grow with size of circuit.
 - Grow with size of input.
 - Grow with depth of circuit (due to our construction of mmaps)
- Security: based on k-linear DDH
- □ Interesting concurrent work:

□ [GVW13] ABE for circuits based on IWE

Witness Encryption

Can we encrypt a message so that it can opened only by a recipient who knows a *witness to a NP relation*?

- Unlike ABE:
 - No "a uthority" in the system
 No "secret key" per se
- □ Related concepts:
 - **Rudich'89:** Comp. secret sharing for NP-comp access structures

Like a proof of the Riemann Hypothesis.

Witness Encryption: Definition

NP la ngua ge L with witness relation
$$R(\cdot, \cdot)$$

Encrypt $(1^{\lambda}, x, M) \rightarrow CT$
Decrypt(CT, w) $\rightarrow (M \cup \bot)$
Notice the gap.
No immediate security
promises when x in L
 $\forall \lambda, M, x \in L \text{ s.t. } R(x,w) = w$
Security

If x is not in L, then $Enc(1^{\lambda}, x, M_0) \approx_c Enc(1^{\lambda}, x, M_1)$

Exact Cover Problem [Karp72]

Problem: x includes n and subsets T₁, ..., T_m ⊆ [n]
 Witness: I ⊆ [m] s.t. {T_i : i ∈ I} partitions [n]

Examples:

4, ({2,3}, {2,4}, {1,4}) 4, ({2,3}, {2,4}, {1})

Our WE Construction (for Exact Cover)

$$\Box \operatorname{Encrypt}(1^{\lambda}, (n, (T_1, \dots, T_m \subseteq [n])), M \in G_n)$$

□ n-linear group family G₁, ..., G_n, generators g₁, ..., g_n.
 □ Choose random a₁, ..., a_n ∈ F_p.

$$C = M \cdot g_n^{a_1 \dots a_n} \qquad C_i = (g_{|T_i|})^{\prod_{j \in T_i} a_j} \text{ for all } i \in [m]$$

 $\Box \text{ Decrypt}(CT, w = I = (i_1, \dots, i_t))$

 $C/e(C_{i_1}C_{i_2}, ..., C_{i_t})$

Limitations in Proving

Suppose we have a black box reduction of WE to some non-interactive assumption. Either:

Assumption depends on NP instance

Reduction uses enough computation to decide relation R

Decision No Exact Cover Problem Family

 $\begin{pmatrix} n, (T_1, \dots, T_m \subseteq [n]) \end{pmatrix}, \qquad \mathcal{G}(1^{\lambda}, n) \to (G_1, \dots, G_n)$ $a_1, \dots, a_n, r \leftarrow F_p, \quad C_i = (g_{|T_i|})^{\prod_{j \in T_i} a_j} \text{ for all } i \in [m]$

Distinguish
$$C = g_n^{a_1 \dots a_n}$$
 from g_n^r .

Fun Application of WE Public Key Enc with Super-Fast KeyGen

□ Let $F : {0,1}^{\lambda} \rightarrow {0,1}^{2\lambda}$ be a PRG.

SK = PRG seed $s \in \{0,1\}^{\lambda}$. PK = F(s).

Encrypt(PK, M)

\square Karp-Levin reduction $x \in L$ iff PK is in range of F.

 $\blacksquare \operatorname{Encrypt}_{\mathsf{WE}}(1^{\lambda}, \mathsf{x}, \mathsf{M}) \to \mathsf{CT}$

 $\Box \text{ Decrypt}(SK = s, CT)$

 \square s \rightarrow witness w

 $\Box \operatorname{\mathsf{Decrypt}}_{\mathsf{WE}}(\mathsf{CT},\mathsf{w}) \to \mathsf{M}$

Proof Sketch for PKE Scheme

□ PRG security \rightarrow indistinguishable whether PK is a PRG output or truly random

□ If PK truly random, then x not in L(with high prob), and we can rely on soundness of WE scheme

Multilinear Maps from Ideal Lattices

Cryptographic Multiline ar Maps: Do They Exist?

Boneh and Silverberg '03 say it's unlikely cryptographic m-maps can be constructed from abelian varieties:

"We also give evidence that such maps might have to either come from outside the realm of algebraic geometry, or occur as *'unnatural' computable maps arising from geometry*."

Unnatural geometric maps: Why not the 'noisy' mappings of lattice-based crypto?

Overview of Our Noisy M-Maps

□ Encoding: m → g_i^m (groups) becomes m → Enc_i(m) for us.
 □ Enc_i(m) is a "level-i encoding of m".

- Our encoding system builds on the NTRU encryption scheme.
- □ Zero test: For k-linear maps, we use a level-k zero tester to test equality of level-k encodings and extract keys.
- □ Repairs: Zero testers cause security issues to fix.
 - Certain a spects of the "message space" of our encodings must be kept secret.
 - Our params only enable encoding of random elements.
 Sufficient for our ABE and WE applications.

Starting Point: the NTRU Cryptosystem

NTRU's concept: The following are indistinguishable:

- A random element of $R_q = Z_q[x]/(x^N-1)$. (q=127,N=257)
- □ A ratio a/b ∈ R_q of "small" elements. That is, a and b are polynomials in R_q with small coefficients e.g. in {-1,0,1}.
- □ Secret key: uniform $z \in R_q$.
- □ Public key: c₁ = a₁/z, c₀ = a₀/z ∈ R_q with a₁,a₀ small.
 □ Let p be a small integer or <u>ideal generator</u> w/ gcd(p,q)=1 (p=3)
 □ Make sure a₁ = 1 mod p and a₀ = 0 mod p.
- □ Ciphertexts: A ciphertext that encrypts m ∈ R_p has the form e/z ∈ R_q, where e is "small" and e = m mod p.
 - \Box c₁ encrypts 1, and c₀ encrypts 0.

NTRU Cryptosystem Encrypt, Decrypt

Encrypt(PK,m) for "small" m

- **Generate random "small"** $r \in R_q$.
- **Output ciphertext** $CT = m \cdot c_1 + r \cdot c_0 \in R_q$.
- Observe: $CT = (ma_1 + ra_0)/z \in R_q$, where $ma_1 + ra_0$ is "small" and equals m mod p.
- Encryption implicitly uses additive homomorphism of NTRU.
- Decrypt(SK,CT):
 - □ Compute $CT \cdot z = ma_1 + ra_0 \in R_q$.
 - Get ma₁+ra₀ exactly (unreduced mod q) since it is "small".
 - Reduce modulo p to recover m.

Basic NTRU: Summary

- \square Ciphertext that encrypts m has form e/z, where
 - 🗖 e is small
 - $\Box e = m \mod p$
 - □ z is the secret key
- \square To decrypt, multiply by z and reduce mod p.
- Public key has encryptions of 1 and 0 (c₁ and c₀).
 To encrypt m, multiply m with c₁ and add "random" encryption of 0.

NTRU: Additive Homomorphism

- □ Given: CT_1 , CT_2 that encrypt m_1, m_2 2 R_p .
 - $\Box CT_i = e_i / z 2$ R_q where e_i is small and $e_i = m_i \mod p$.
- □ Set $CT = CT_1 + CT_2$ 2 R_q and $m = m_1 + m_2$ 2 R_p . Then CT encrypts m.
 - CT = $(e_1 + e_2)/z$ where $e_1 + e_2 = m \mod p$ and $e_1 + e_2$ is "sort of small". It works if $|e_i| \ll q$.

NTRU: Multiplicative Homomorphism

- Given: CT_1 , CT_2 that encrypt $m_1, m_2 2 R_p$.
 - $\Box c_i = e_i / z 2$ R_q where e_i is small and $e_i = m_i \mod p$.
- Set CT = CT₁·CT₂ 2 R_q and m = m₁·m₂ 2 R_p. Then CT encrypts m under z² (rather than under z).
 CT = (e₁·e₂)/ z² where e₁·e₂=m mod p and e₁·e₂ is "sort of small". It works if | e_i| «√q.

NTRU: Any Homogeneous Polynomial

- □ Given: CT_1 , ..., CT_t encrypting m_1 ,..., m_t . □ $CT_i = e_i / z 2$ R_q where e_i is small and $e_i = m_i \mod (p)$.
- □ Let f be a homogeneous polynomial of degree d. Set $CT=f(CT_1, ..., CT_t)2 R_q, m = f(m_1, ..., m_t)2 R_p$ Then CT encrypts m under z^d .
 - CT = $f(e_1, ..., e_t)/z^d$ where $f(e_1, ..., e_t) = m \mod p$ and $f(e_1, ..., e_t)$ is "sort of small". It works if $|e_i| \ll q^{1/d}$.

Homorphic NTRU: Summary

- Ciphertext that encrypts m at "level d" has form e/ z^d:
 e is small
 - \square e = m mod p
 - z is the secret key
- \square To decrypt, multiply by z^d and reduce mod p.
- □ How homomorphic?: For any degree-d homogeneous $f(x_1, ..., x_t)$, we get a "level-d" encryption of $f(m_1, ..., m_t)$ from "level-1" encryptions { $CT_i = e_i / z$ } of { m_i }, if e_i 's are small enough.
- "Noise" size of numerator grows exp. with degree.
 Works OK if d is (sublinear) polynomial in security param.

Adding a Zero/ Equality Test to NTRU

- Given level-k encodings $CT_1 = e_1/z^k$ and $CT_2 = e_2/z^k$, how do we test whether they encode the same m?
- □ Fact: If they encode same thing, then $e_1 e_2 = 0 \mod (p)$. Moreover, $(e_1 - e_2)/p$ is a "small" polynomial.
- □ Zero-Testing parameter:
 - a_{ZT} = h·z^k/p for "medium-size" h (e.g. | h| ≈ q^{3/4})
 a_{ZT}(CT₁-CT₂) = h(e₁-e₂)/p
 If CT₁, CT₂ encode same thing, then denominator p disappears

 | h(e₁-e₂)/p|
 is "medium-sized", unreduced mod q.
 a_{ZT} CT₁ and a_{ZT} CT₂ have same most significant bits → extract key

 Otherwise, denominator p "randomizes" things mod q.

 \square Small ideal generator p must be secret. Ideal (p) is public.

Summary of Our Noisy M-Maps

- E Level-i encoding of $m \in R_p$ has form e/z^i , where
 - 🗖 e is small
 - □ e m ∈ ideal (p)
 - z is secret
- **D** Public params have encodings of 1 and 0 (c_1 and c_0).
- To encode a random element, sample "small" m, multiply m with c₁ and add "random" encoding of 0.
- Homomorphisms work as in NTRU
- Level-k zero tester h·z^k/p enables zero-testing at level k or below.

Security of NTRU

- Lattice attacks on NTRU apply to our n-linear maps.
 NTRU semantically secure if ratios g/f 2 R_q of "small" elements are hard to distinguish from random elements
 NTRU can be broken via lattice reduction (eventually)
- [Lenstra, Lenstra, Lovász '82]: Given a rank-n lattice L, the IIL algorithm runs in time poly(n) and outputs a 2ⁿ-approximation of the shortest vector in L
 - **I** [Schnorr'93]: 2^{k} -approximates SVP in $2^{n/k}$ time (roughly)

Attacks that Exploit the Zero Tester

- \Box Concept of the attack:
 - The zero-tester is not an "oracle"
 - Zero-testing could actually leak useful information
- □ Attack in practice
 - Actually, our zero test does leak *useful* information.
 - Our m-maps are imperfect
 - Some assumptions that are true for "generic" m-maps are false for our m-maps

Source Group Decision Assumptions

Example: Decision Linear Assumption in bilinear groups.
 Distinguish (f, g, h, f^x, g^y, h^{x+y}) from (f, g, h, f^x, g^y, h^z).
 All elements in source group G₁, none in target group G₂.

□ k-linear source group assumption: All encodings are at level \leq k-1.

Source group assumptions false with our m-maps
 if params includes level-1 encodings of 0

Target Group Decision Assumptions

- □ Example: k-linear DDH or Decision No Exact Cover.
- Target group assumption for k-linear m-maps: The two distributions are statistically the same, except for encodings at level k.
- □ Target group assumptions for our m-maps seem ok.

k-linear DDH for GGH encodings: Given
◆ Params: Level-1 encodings c₀, c₁ of 0 and 1 and level-k zero-testing parameter a_{zt} = hz^k/p
◆ Level-1 encodings e_i/z of m_i for i ∈ [k+1]
◆ Level-k encoding of either m₁…m_{k+1} or random Distinguish which is the case.

Havor of the Attack

□ An "attack" on low-level encodings

- Take a level-i encoding e/z^i for $i \le k-1$ (low-level encoding)
- Multiply it with
 - A level-(k-i) encoding of 0 (from params)
 - The level-k zero tester
- Extract useful information about what is encoded
- □ What is leaked?
 - $\square E \mod (p) = m \mod (p)$
 - Not mitself i.e., not a small representative of m's coset
 - Not a "level-0 encoding" of m
- Preventing the attack on level-k encodings
 (p) is public, but small p is secret. No "level-0 encoding" of 0.

Summary

- □ "Noisy" cryptographic multilinear maps
 - **SWHE** with a zero test
 - Built on the NTRU cryptosystem
 - Stronger computational assumptions than NTRU.
- □ Applications:
 - ABE for Circuits
 - Witness Encryption

Future Directions

- □ Security
 - Need more cryptanalysis of our m-maps
 - M-maps based on better assumptions (like LWE)?
- □ Applications
 - Functional encryption?
 - Some types of obfuscation?

Thank You! Questions?

Revisiting Multilinear DDH

- Ineffective attack: Multiply the k+1 contributions to get an encoding at level k+1; not useful (similar to bilinear groups)
 - $\Box (E' z^{k+1}) \cdot (hz^{k/} p) = Eh/pz.$ Can't get rid of denominator.

Attacks that Exploit the Zero Tester

□ Additional attacks:

- The principal ideal I = (p) is not hidden.
 - Recall $a_{zt} = hz^{k/p}$, $h_0 = a_0/z$ and $h_1 = a_1/z$ with $a_0 = c_0p$.
 - The terms $a_{zt} \cdot h_0^{i} \cdot h_1^{k-i} = h \cdot c_0^{i} \cdot p^{i-1} \cdot e_1^{k-i}$ likely generate I.
- But we must hide p itself
 - An attacker can break our scheme with a "small" generator p' of I = (p)
- An attacker that finds a good basis of I can break our scheme.

What Does Zero Testing Leak?

 \Box Let e/ zⁱ be a level-i encoding of m for i < k.

$$(e/z^{i}) \cdot c_{1}^{k-1-i} \cdot c_{0} \cdot a_{ZT} = (e/z^{i}) \cdot (a_{1}/z)^{k-1-i} \cdot (a_{0}/z) \cdot (hz^{k}/p)$$
$$= e \cdot a_{1}^{k-1-i} \cdot a_{0}' \cdot h$$

 $\blacksquare e \cdot a_1^{k-1-i} \cdot a_0' \cdot h \text{ unreduced mod } q.$

- We get e's coset mod p.
- We get a "bad level-0 encoding" of m.
 - A "good" level-i encoding has a small numerator.

Using a Good Basis of I

 \square Player i's DH contribution: a level-1 encoding of a_i .

- Easy to compute a_i's coset of I. (Notice: this is different from finding a "small" representative of a_i's coset, a level-0 encoding of a_i.)
 - Compute level-(n-1) encodings of 1 and $a_i: e/z^{n-1}, e'/z^{n-1}$.
 - Multiply each of them with a_{zt} and $h_0 = c_0 p/z$.
 - We get bec_0 and $be'c_0$.
 - Compute $be'c_0 / bec_0 = e' / e$ in R_p to get a_i 's coset.
- Spoofing Player i: If we have a good basis of I, player i's coset gives a level-0 encoding of a_i. The attacker can spoof player i.

Dimension-Halving for Principal Ideal Lattices

- □ There are better attacks on principal ideal lattices than on general ideal lattices. (But still inefficient.)
- □ [GS'02]: Given □ a basis of I = (u) for u(x) 2 R and
 - u's relative norm $u(x)\overline{u}(x)$ in the index-2 subfield $Q(\zeta_N + \zeta_N^{-1})$,

we can compute u(x) in poly-time.

- □ Corollary: Set $v(x) = u(x)/\bar{u}(x)$. We can compute v(x) given a basis of J = (v).
 - We know v(x)'s relative norm equal 1.

Dimension-Halving for Principal Ideal Lattices

□ Attack given a basis of I = (u):

- First, compute $v(x) = u(x)/\bar{u}(x)$.
- Given a basis $\{u(x)r_i(x)\}$ of I, multiply by 1+1/v(x) to get a basis $\{(u(x)+\bar{u}(x))r_i(x)\}$ of $K = (u(x)+\bar{u}(x))$ over R.
- Intersect K's lattice with subring $\mathbf{R}' = \mathbf{Z}[\zeta_N + \zeta_N^{-1}]$ to get a basis { $(u(x) + \bar{u}(x))s_i(x) : s_i(x) \mathbf{2} \quad \mathbf{R}'$ } of K over \mathbf{R}' .
- Apply lattice reduction to lattice $\{u(x)s_i(x) : s_i(x) \ge R'\}$, which has half the usual dimension.

A "Straight Line Program (SLP)" Model of Attacks on Our M-Maps

- SLP attack model: Attacker can +,-,×,÷ encodings in R_q (until it gets a level-i encoding of 0, i ≤ k).
 View encodings as formal rational polynomials P/Q.
 The ops +,-,×,÷ give more rational polynomials.
 Which ones can it compute?
- □ Params: a_1/z , a_0/z , $h \cdot z^k/p$

Weight the variables

Set $w(a_i) = w(z) = w(p) = 1$ and w(h) = 1-k.

• $w(a_i/z) = 0$. Weight of all terms above is 0.

□ Given params, +,-,×,÷ only yield terms of weight 0.

SLP Attacks Don't Break Target Group Assumptions

□ SLP attacker against MDDH

- First attack: Try to compute level-k encoding E/ z^k of m₁…m_{k+1} from params and the parties' encodings e_i/ z.
 E/ z^k must have weight zero.
 - E must have weight k.
 - But E must have $e_1 \cdots e_{k+1}$ inside it; else hopeless.
 - Now numerator's weight is too large. Must reduce weight using h (it is the only negative weight term).
 - But h is middle size, so numerator is not small anymore.
- Second attack: Try to find nontrivial relation among the encodings of the MDDH instance.

Analysis is similar: relation must have degree $\geq k+1$.

