Limits on the Usefulness of Random Oracles

Iftach Haitner, Eran Omri, Hila Zarosim

TCC 2013

The Complexity of Cryptography

- Most cryptographic primitives cannot be achieved unconditionally (they require hardness assumptions)
- A fundamental question: What are the minimal assumptions for different cryptographic primitives?
 - What are one-way functions (OWF) sufficient for?
- Random Oracle model (parties have access to a truly random function) implements strongest OWF
 - If a primitive *P* is "implied" by any OWF then *P* should be achievable in the random oracle model [Impagliazzo-Rudich 89]

The Power of a Random Oracle

- Free randomness
- Implements many cryptographic primitives, e.g., one-way functions and cryptographic hash functions, with extremely strong security, and thus implies what ever these primitive imply
- Can even be used for constructing secure protocols for tasks that are hard to implement in the standard model, and even **completely unachievable**:
 - E.g., the Fiat-Shamir paradigm [Fiat-Shamir 87]
 - Provably secure in the random-oracle model [Pointcheval-Stern 96]

An instantiation of it - cannot be proven secure under any "implementation" of a

Malicious vs. Semi-Honest Settings Malicious setting • Helpful - e.g., commitment schemes, zero-knowledge proofs, coin-tossing (*limited fairness) • All trivially obtainable in the semihonest setting Not helpful - key-agreement, OT, MPC. · · · [IR89]

<u>In this work:</u>

What is the exact power of the TCC 2013 dom-oracle model in the sem i^{8} May 2013

Our Results

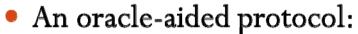
Main thm (informal): Any no-input, m-round semi-honest protocol π in the random oracle model has an (almost) <u>equivalent</u> m-round, (stateless) semi-honest, no-input protocol $\widehat{\pi}$ in the <u>no-</u> <u>oracle</u> model (i.e., information-theoretic model)

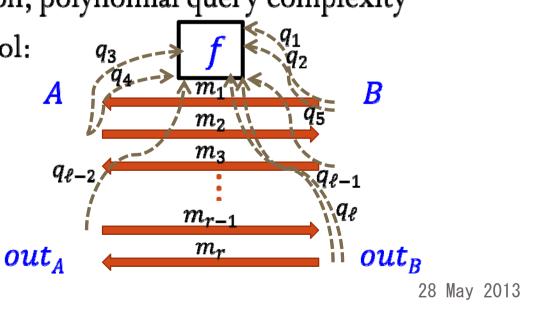
Applications:

- An alternative proof for impossibility of key agreement [IR89]
- Impossibility of accurate two-party differentially private for the inner product functionality
- Impossibility of non-trivial no-input (randomized) semi-honest secure-computation

Implication: No black-box reduction to OWF for these primitives

TCC 2013


Related Work


- [Impagliazzo-Rudich 89]— no key-agreement protocols in the random-oracle model
 - No black-box KA from OWFs
- [Barak-Mahmoody 09] improved query complexity of [IR89]'s attacker – match O(n²) upper bound of [Merkle 82]
- [Mahmoody-Maji-Prabhakaran 12] No deterministic, poly-size domain semi-honest 2-party SFE in the RO model

TCC 2013

The Model

- Two parties oracle machines
- Oracle is a random function $f: \{0,1\}^n \rightarrow \{0,1\}^n$
- Semi-honest adversaries follow the prescribed protocol, may try to obtain additional info.
- Unbounded computation, polynomial query complexity

Exemplifying Main Issues - Key Agreement

- <u>No-oracle model (information-theoretic)</u> No key agreement
 - At each point of an execution given the transcript so far t, the views of A and B are in a <u>product</u> distribution:

 $\Pr[(v_A, v_B)|t] = \Pr[v_A|t] \cdot \Pr[v_B|t]$

• At the end of the protocol, attacker can sample a view for **B**, and the output of this view agrees with the **A**'s key with the **same**

probability as dealer B $q_2 \neq f(0^{lages} B)$ Random opacle model If v_A , v_B have intersecting queries (not determined by t), then they are not independent $out_A = f(0^n)$

No product distribution on views (oracle answers may not agree) Still – easy to attack – output $f(0^n)$

Eliminating Views' Dependencies

- Main idea: make all oracle queries that were asked with high probability until now – sample views conditioned on the transcript t and the query/answer pairs we obtained
 - [IR89]: attacker Eve samples random executions to obtain queries
 - [BM09]: attacker Eve computes actual probability of each possible query
 - [Here]: algorithm Finder similar to [BM09]'s Eve

Rest of This Talk

• Formal statement of our main theorem

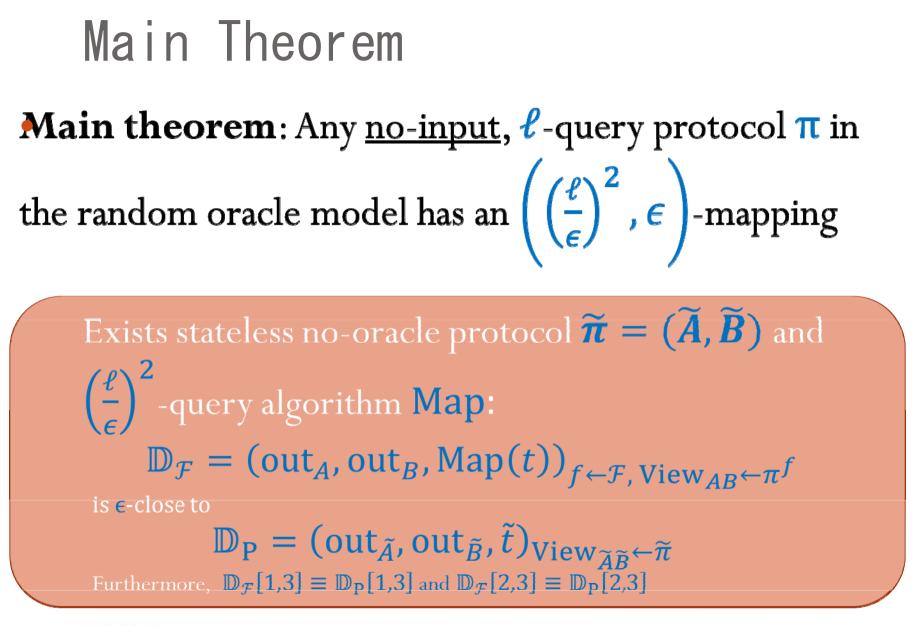
• Proof idea

• Applications

- Limits to Random Oracle key agreement
- Limits to Random Oracle differentially private computation

TCC 2013

Oracle Model to no-oracle Model Mapping


Def: a function family \mathcal{F} and an oracle-aided protocol $\pi = (A, B)$ have a (T, ϵ) -mapping if:

• Exist no-oracle protocol $\tilde{\pi} = (\tilde{A}, \tilde{B})$ and T-query algorithm Map:

Oracle-aided
$$\pi$$

 $\mathbb{D}_{\mathcal{F}} = (\operatorname{out}_{A}, \operatorname{Map}^{f}(t))_{f \leftarrow \mathcal{F}, \operatorname{View}_{AB} \leftarrow \pi^{f}} \overset{\epsilon}{\approx} \begin{bmatrix} \operatorname{No-oracle} \tilde{\pi} \\ \mathbb{D}_{P} = (\operatorname{out}_{\tilde{A}}, \operatorname{Map}, \tilde{t})_{\operatorname{View}_{\tilde{A}\tilde{B}} \leftarrow \tilde{\pi}} \end{bmatrix}$

- Furthermore, $\mathbb{D}_{\mathcal{F}}[1,3] \equiv \mathbb{D}_{P}[1,3]$ and $\mathbb{D}_{\mathcal{F}}[2,3] \equiv \mathbb{D}_{P}[2,3]$
- Holds for every <u>partial</u> execution
- Map should be <u>consistent</u> (with partial executions)

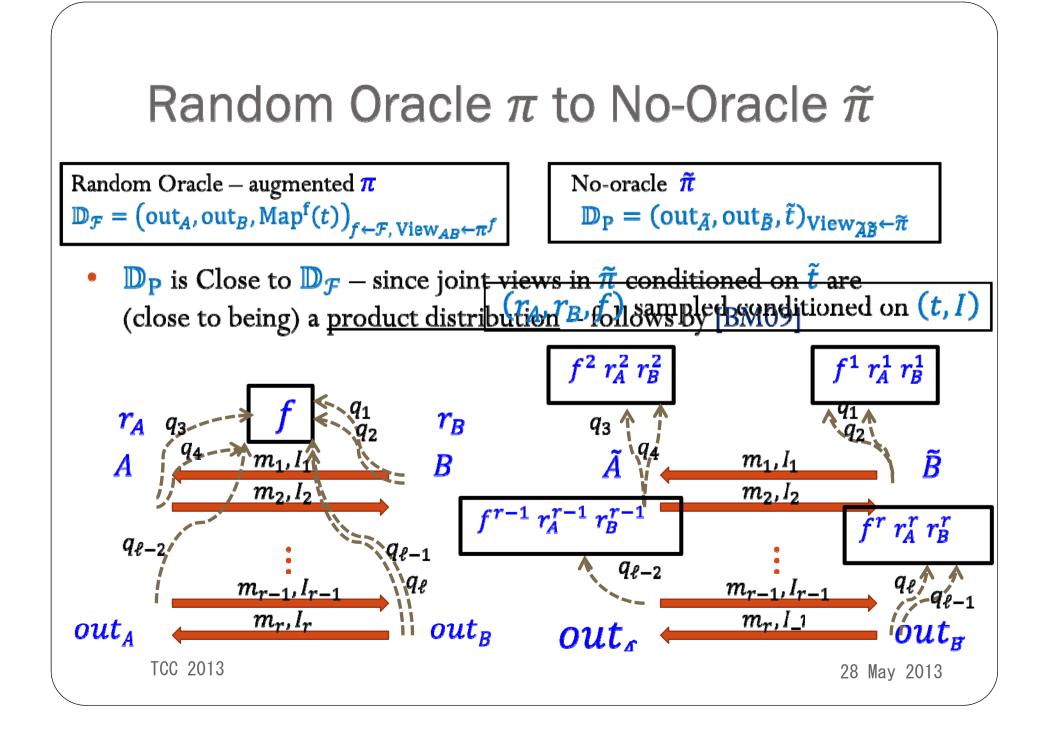
TCC 2013

TCC 2013

Proving Main Theorem Main thm: Any random oracle model, no-input, ℓ -query protocol has $\left(\left(\frac{\ell}{\epsilon}\right)^2, \epsilon\right)$ -mapping

Proof idea: let $\pi = (A, B)$ be the random oracle protocol

- Emulate by a stateless no-oracle protocol $\tilde{\pi}$:
 - In each round given that the transcript so far is t –
 - 1. active party samples a joint view (v_A, v_B) conditioned on t, and
 - 2. computes next message accordingly
- If views were in prod. distribution $(\Pr[(v_A, v_B)|t] = \Pr[v_A|t] \cdot \Pr[v_B|t])$: Then, we would be done, unfortunately, they are NOT
 - Solution: use Algorithm Finder to bring them close to prod. distribution

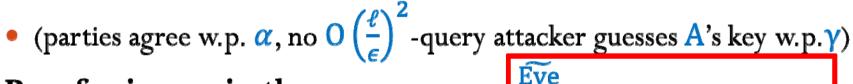

TCC 2013

Algorithms Finder and Map

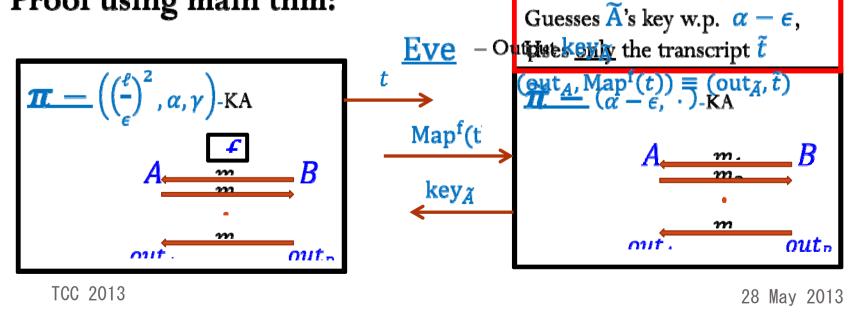
Algorithm Finder

- Input: partial transcript *t* and set of query/answer pairs *I*
- Oracle: f
- **Output:** set of query/answer pairs I' containing <u>all</u> queries asked with probability at least δ by either party
- Lemma [BM09] (reproved [Here]): the views of A and B, given (t, Finder(t, I)), are <u>close to</u> being a <u>product distribution</u>
- Algorithm Map:
 - Give a transcript t augment each partial transcript by applying Finder
 - A syntactic operation

TCC 2013



Applications


- Limits to Random Oracle key agreement
 - Reproving [Imagliazzo, Rudich 89]
- Limits to Random Oracle differentially private computation
 Limits to with-input (randomized) protocols

Revisiting [IR89] - Key agreement (warm-up)

Cor 1 (reproving [IR89], [BM09]): No *l***-**query random-oracle $\left(O\left(\frac{\ell}{\epsilon}\right)^2, \alpha, \gamma\right)$ -KA protocol with $\alpha > \gamma$

Proof using main thm:

Differentially Private 2-Party Inner-Product

Def: A protocol (A,B) is (k, α) -DP, if for any $x, y, y' \in \{0,1\}^n$ with $H_d(y, y') = 1$, and any k-query distinguisher D, it holds that

$$\frac{\Pr[D(\operatorname{View}^A(x, y)) = 1]}{\Pr[D(\operatorname{View}^A(x, y')) = 1]} \le e^{\alpha}$$

- All parties (including D) are equipped with (the same) random function
- Similarly defined for View^B

Thm [McGregor, Mironov, Pitassi, Reingold, Talwar, Vadhan 09]: Any no-oracle protocol for the inner product that is α -DP, errs by $\Omega(\frac{\sqrt{n}}{\log n})$, where *n* is the input length and α in (0,1) 100 2013

Limits to DP 2-Party Inner-Product

Cor. 2: Any ℓ -query random-oracle model protocol for the inner product that is $\left(\left(\frac{\ell}{\epsilon}\right)^2, \alpha\right)$ -DP, errs with $\Omega(\frac{\sqrt{n}}{\log n})$, where n is the input length and α in (0,1)

Proof: in the paper

 <u>Remark</u>: Lower-bound for with-input protocols – is obtained from the result on no-input protocols

Summary

- A mapping from semi-honest protocols (without inputs) in the RO model to nooracle model
 - Semi-honest secure computation (without inputs) cannot be black-box reduced to one-way functions
- Simplification of previous treatment of these questions
- Applications: lower bound on random oracle protocols.
 - Two-party differential privacy [here]
 Main Open questions
 Handling with-input randomized

TCC 2013