Communication Locality in Secure Multi-Party Computation How to Run Sublinear Algorithms in a Distributed Setting

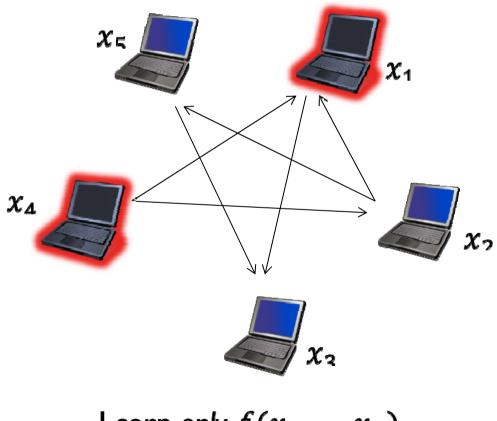
Elette Boyle MIT Shafi Goldwasser MIT & Weizmann

MIT

Stefano Tessaro

Secure Multi-Party Computation (MPC)

[Goldreich-Micali-Wigderson87] Jointly compute function f on secret inputs



Learn only $f(x_1, \ldots, x_n)$

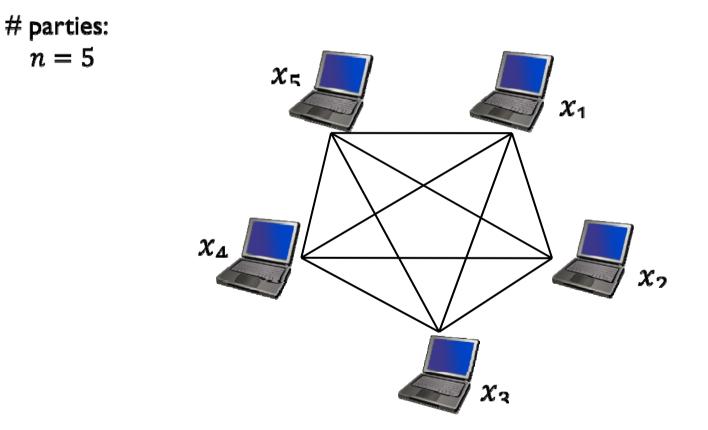
Selection of Prior MPC Work

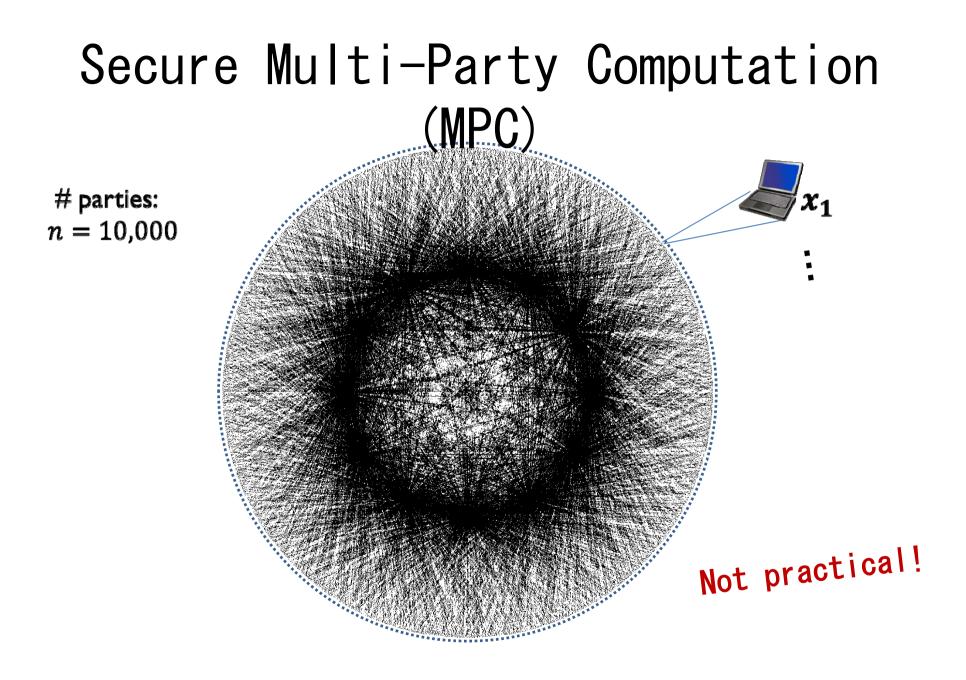
- Original Constructions [GMW87, BGW88, CCD88,...] – Communication complexity: $\Omega(n^2 \cdot |f|)$
- Scalable MPC [Damgard-Ishai06, Damgard-Nielsen07, ...] – Communication complexity: O(poly(n) + |f|)
- FHE-Based [Asharov-Jain-LopezAlt+12]

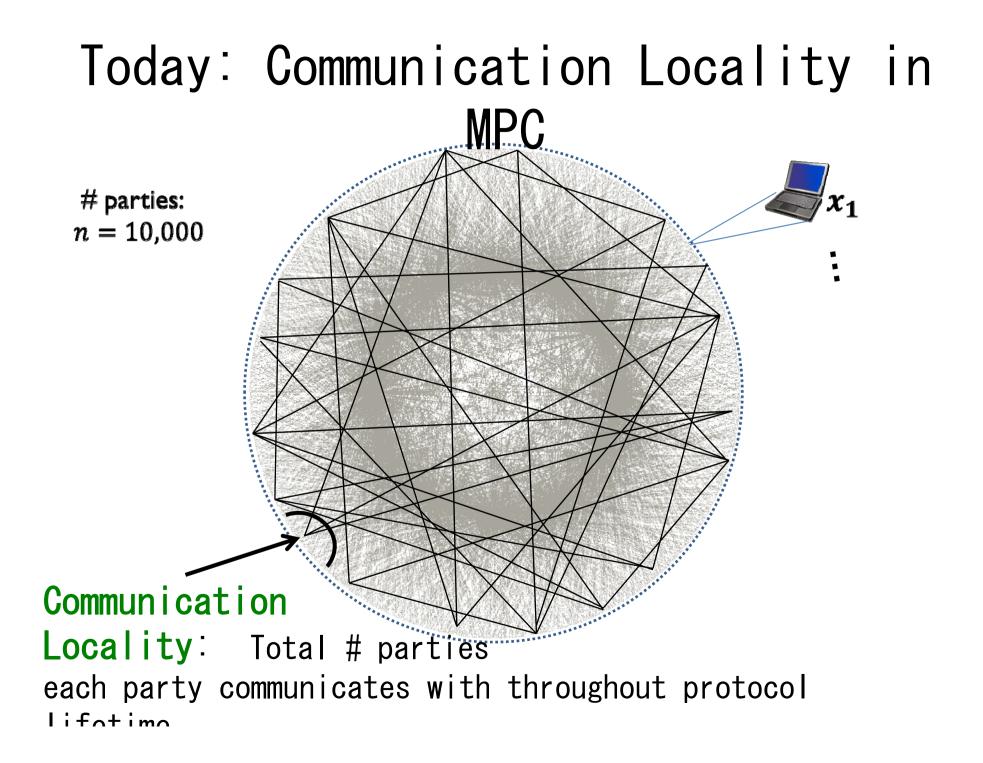
– Communication complexity: $\Omega(n^2)$ independent of f

Everyone talks to everyone

Secure Multi-Party Computation (MPC)





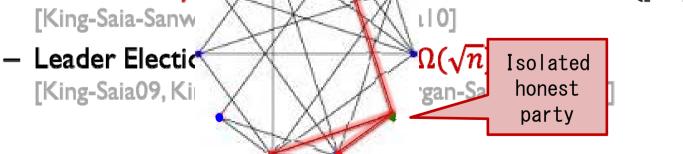


Prior Work

- MPC when Underlying Network is Incomplete
 - Almost-everywhere MPC for certain polylog(n)-deg networks
 [Chandran-Ostrovsky|0, Chandran-Garay-Ostrovksy|2]

- Star gr weake n - o(n) parties receive correct output [Dwork-Peleg-Pippenger-Upfal88] vi-Lindell-Pinkas [1] functionality

- Dynamically Chosen Communication Network
 - tion, BA: $CC = \Omega(polylog(n))$



- Almost-every

This Work:

Full MPC, polylog(*n***)** communication locality, using cryptography

General MPC

<u>Theorem I</u>: There exists general *n*-party MPC s.t.

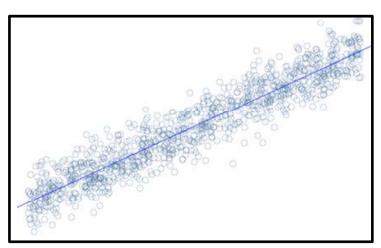
- a) Tolerates $(1/3 \epsilon)n$ static Byzantine faults
- **b)** Communication locality: polylog(*n*)
- c) Comm per party: $O(n \cdot \ell \cdot \text{polylog}(n))$ bits, $(\ell = \text{input size})$
- d) Setup: signature keys + Common Random String (CRS)

Uses: digital signatures, FHE, simulation-sound NIZKs * Can achieve (a) & (b) assuming *only* signatures + PKE

Special Focus: Sublinear Algorithms Input query complexity of f is $q(n) \in o(n)$

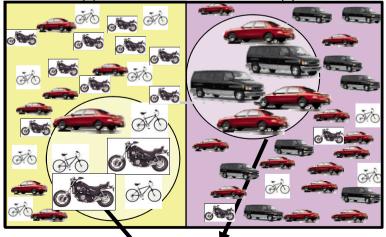
Execution of f with randomness r:

• Example applications:



Distribution testing

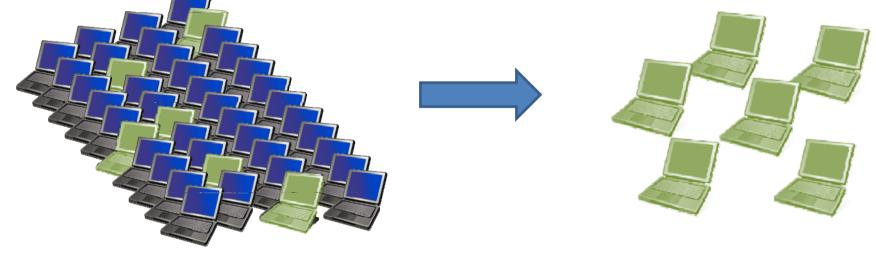
Transactions of 20-30 yr Transactions of 30-40 yr



Testing for trends

Securely Evaluating Sublinear Algorithms

In principle: requires much *less* communication



n parties

q(n) parties

Main Challenge: Must hide *which inputs* are used!

Related Work: Sublinear *Two-Party* Setting

- Communication-Preserving MPC [Naor-Nissim01]
 - Sublinear communication
 - Super-polynomial computation
- MPC on RAM programs [Ostrovsky-Shoup97, Damgard-Meldgard-Nielsen11, Gordon-Katz-Kolesnikov+12, Lu-Ostrovsky13]
- Sublinear MPC for specific functions [Feigenbaum-Ishai-Malkin+01, Indyk-Woodruff06, …]

MPC for Sublinear Algorithms

- <u>Theorem 2</u>: MPC for sublinear algorithms f with query complexity q s.t.
 - a) Tolerates $(1/3 \epsilon)n$ static Byzantine faults
 - **b)** Communication locality: $q \cdot polylog(n)$
 - c) Comm per party: $O((n + \ell) \cdot \operatorname{polylog}(n))$ bits
 - d) Setup: signature keys + Common Ka Compared to CRS)

Uses: digital signatures, FHE, simulation-sound NIZKs

 $(n \cdot \ell)$

Note: Achieves *standard* MPC security

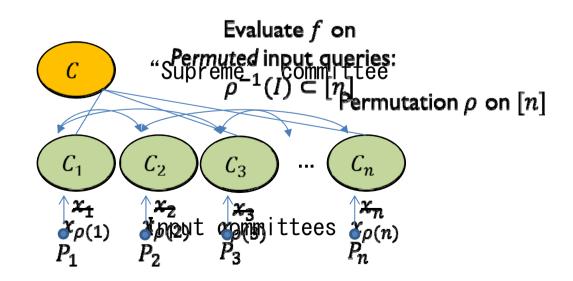
Protocol for Sublinear Algorithms: Overview of Nonadaptive Case

1. Committee Setup

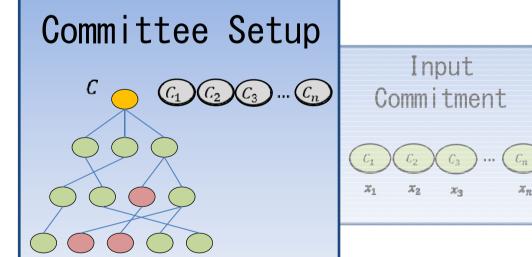
2. Input Commitment

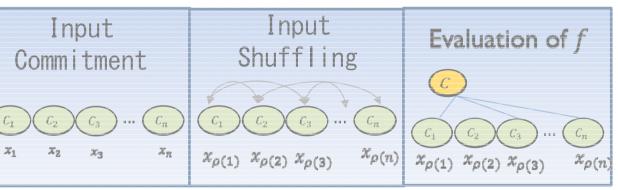
3. Oblivious Input Shuffling

4. Evaluation of f

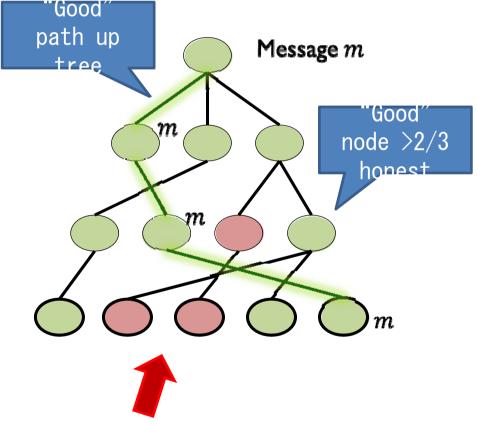


PHASE 1: COMMITTEE SETUP





Starting Point: *Almost-Everywhere* Committee [KingEsaFaction [KingEsaFaction]

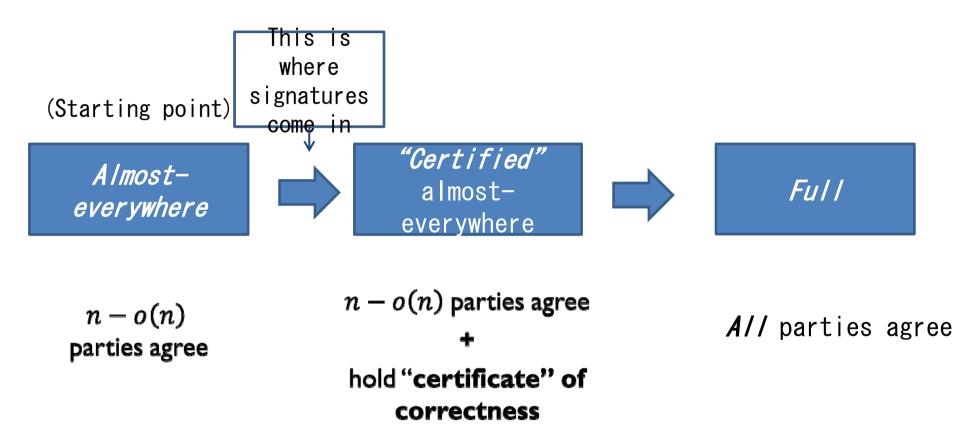


Properties:

- Depth, degree polylog(n)
- polylog(n) parties per node
- (1 o(1)) fraction "good" nodes per layer
- $\Rightarrow (1 o(1)) \text{ fraction of} \\ \text{leaves have "good" path} \\ \text{up tree} \end{cases}$

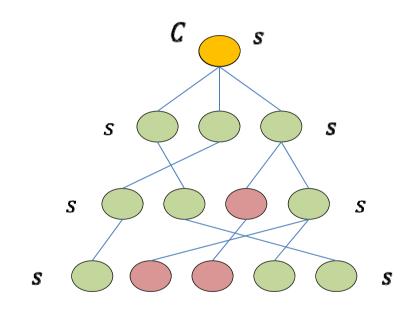
Problem: o(1) fraction of leaf nodes may receive bad information!

Toward Full Agreement



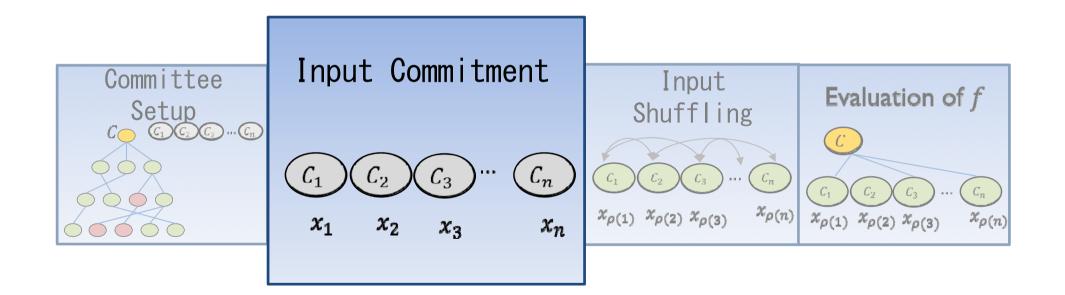
Supreme & Input Committees

Supreme Committee
 Input Committees



Defined using PRF $C_i \coloneqq F_s(i)$

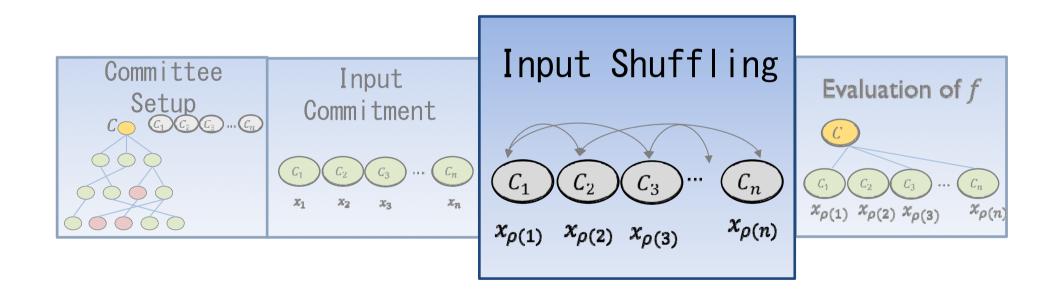
$$C_1$$
 C_2 C_3 C_4 \cdots C_n



Each party P_i Verifiably Secret Shares (VSS) his input to C_i

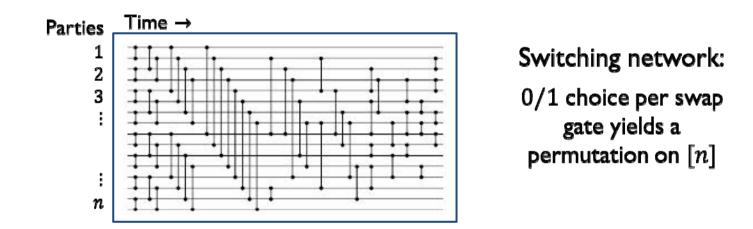
[Chor-Goldwasser-Micali-Awerbuch85]

PHASE 3: INPUT SHUFFLING

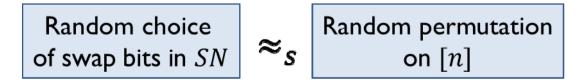


Switching Networks

• Pairwise swaps among C_i 's



• Lemma: $\exists polylog(n)$ -depth switching network SN s.t.

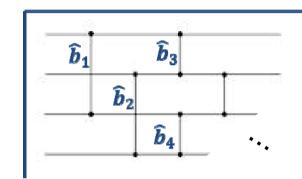


Oblivious Shuffling

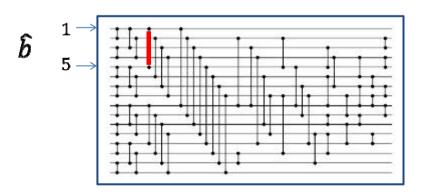
• Generating Shuffle:

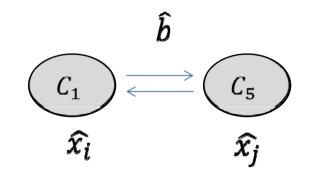
С

obliviously generates FHE-encrypted swap bits **b**j



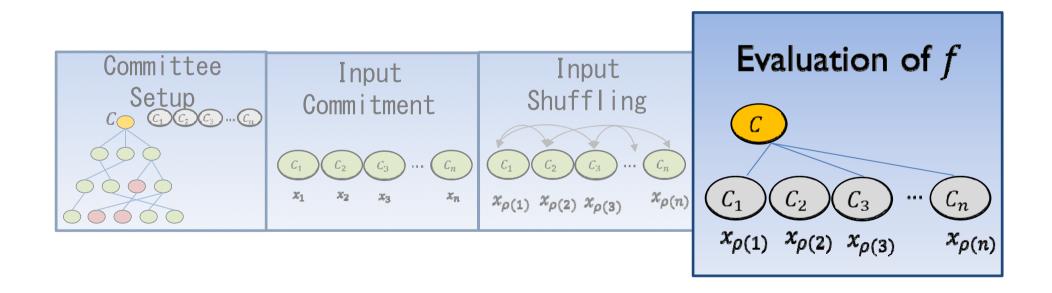
• Implementing Shuffle:





Homomorphically Evaluate: $Swap-Or-Not(b, x_i, x_j)$

Phase 4: Evaluation of f



Summary of Contributions

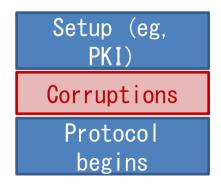
Communication Locality: A New Metric in MPC

Achieve communication locality **polylog**(*n*) using cryptography

Sublinear Algorithms in MPC Context

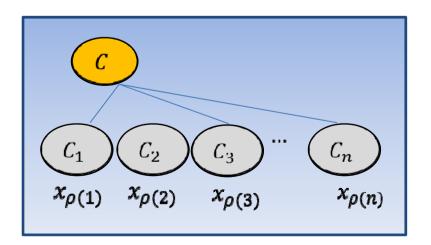
Our Model

- Network Model
 - Synchronous network
 - Public-Key Infrastructure (PKI)
 - Ability to communicate with anyone
- Adversarial Model
 - Byzantine faults of t parties
 - Faults scheduled:
 - post PKI
 - pre protocol execution



C Leads Evaluation of f

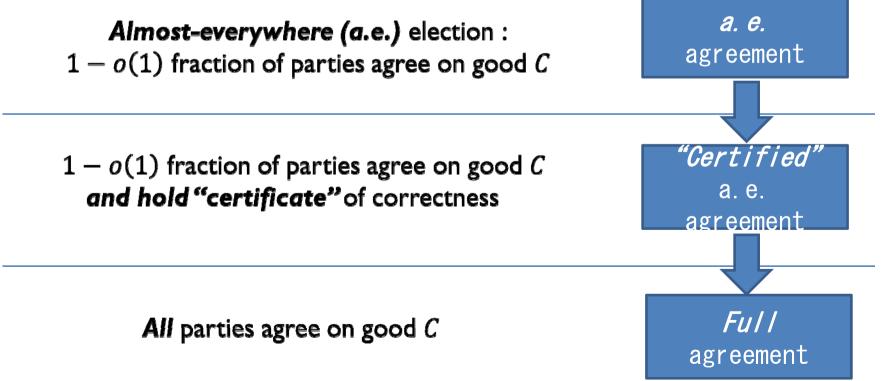
- Committee C samples permuted input indices: ρ⁻¹(I)
 & queries each input committee C_{ρ⁻¹(i)}
- Each queried committee $C_{\rho^{-1}(i)}$ sends held input value
- C evaluates f on these inputs, corresp to I



Phase 1 Overview: Committee Setup

• First goal: Elect "good" committee C

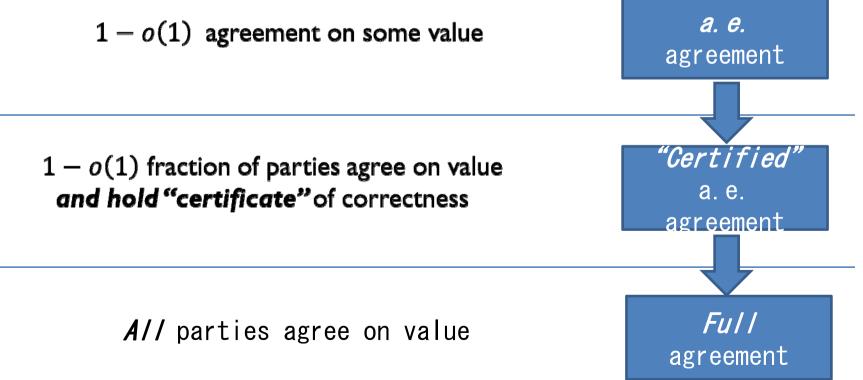
<u>Starting point:</u>



Phase 1 Overview: Committee Setup

• Second Goal: Allow C to **broadcast**

<u>Starting point:</u>

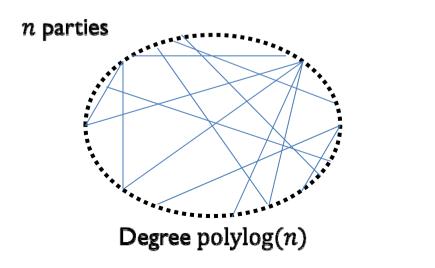


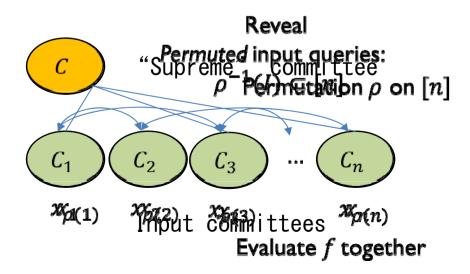
Protocol for Sublinear Algorithms: Overview

- 1. Communication Graph
 + Committee Setup
- 2. Input Commitment

3. Input Shuffling

4. Evaluation of f





Combining Signatures into Certificate

• Option 1: Append as list

 $\sigma_{1} \rightarrow \sigma' = (\sigma_{1}, \sigma_{2}) \qquad \qquad \text{``Certificate'' for } m \equiv (\sigma_{1}, \sigma_{2}, \dots, \sigma_{k})$ $\text{with} \geq n/2 \text{ valid signatures}$

• Option 2: Use <u>Multisignatures</u> [***]

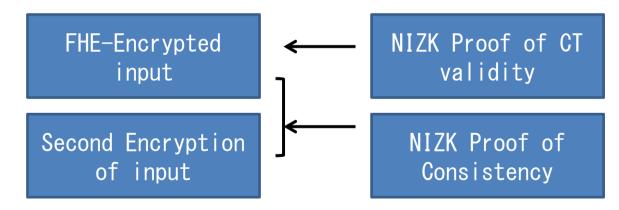
Multisigs: Can combine sigs on same msg into short object

 $vk_1, \sigma_1 \\ \rightarrow \sigma' \leftarrow Combine(\sigma_1, \sigma_2) \\ vk_2, \sigma_2$

"Certificate" for $m \equiv \sigma', 1_S$ Valid multisig wrt $\{vk_i\}_{i\in S}, |S| \ge n/2$

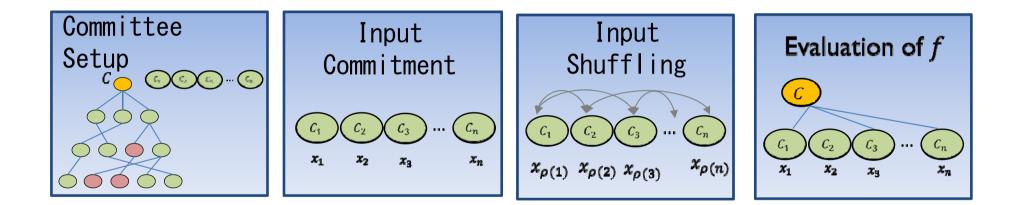
Step 2: Input Commitment $P_i \circ \overleftarrow{c_i}$

- Use Verifiable Secret Sharing (VSS) [CGMA85]
 - Values to share:



- Public keys generated by C & "broadcast"
- C_i verifies proofs, keeps FHE ciphertext

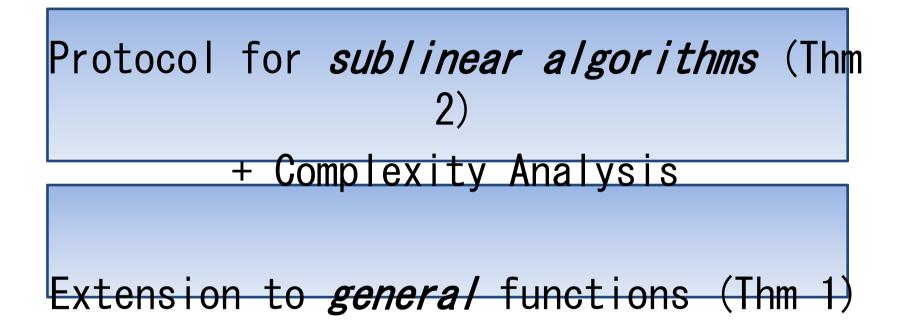
PHASE 1: COMMITTEE SETUP



Analyzing Communication

Protocol Step	Comm Locality	Comm cxy	# Rounds
A.e. leader election			n bits to describe
Certifying a.e.		$O(n \cdot pl(n))$	certifying set $\subset [n]$
To full agreement		$O(n \cdot pl(n))$	Permutation on [<i>n</i>]:
Input commitment		$\ell \cdot pl(n)$	$n \cdot \log(n)$ bits
Gen shuffle perm		$O(n \cdot pl(n))$	For <i>adaptive</i> algorithms
Implementing shuffle		$\ell \cdot pl(n)$	
Choosing inputs	$q \cdot pl(n)$	$\ell \cdot pl(n)$	O(q) + pl(n)
Evalua C talks to q ing committees		$\frac{\ell \cdot pl(n)}{pl(n)} = pl(n)$	$a) = O\big(polylog(n)\big)$

This Talk:



Sanjam Garg Abhishek Jain Amit Sahai Stefano Tessaro Shafi Goldwasser Yael Tauman Gil Segev Daniel Wichs

Achieving *Full* Agreement

What about isolated honest parties??

Solution: Enlightened parties P_i "spread the word" to new polylog(n)-size groups C_i

