# Constant-Overhead Secure Computation using Preprocessing

# Ivan Damgård, Sarah Zakarias Aarhus University, Denmark

## **Multiparty Computation**

#### Goal: Compute circuit UC-securely

Unlike previous talk: Interested in complexity of protocol when circuit size grows



## MCP Flavour in this talk

#### Dishonest Majority

- . N players, up to N-1 corrupted
- No info. theo. sec. from scratch
- Need pk-encryption
- . No termination guarantee
- Natural model for 2-party case
- Boolean Circuits



## **Preprocessing Model**

#### **Online phase (our protocol)**

- Assume trusted dealer providing 'raw material'
- Use only cheap information theoretic primitives
- Evaluate circuit given inputs

## **Preprocessing (not this talk)**

- Implement trusted dealer (independent of circuit/inputs)
- Use public-key techniques
- Run any time prior to the computation

## A couple of notions

#### **Preprocessing model**

- Universal. No knowledge about circuit nor inputs
- **Dedicated**. Circuit known but inputs unknown

#### Overhead for on-line phase (how much resource per player per gate)

- **Data**. Total number of bits to store divided by  $N \cdot |C|$
- **Communication**. Communication complexity divided by N/C
- **Computation**. Computational complexity divided by  $N \cdot |C|$

## Previous Work in Preprocessing Model

[Damgård, Pastro, Smart, Zakarias 12] [Damgård, Ishai, Krøigaard 10] [Nielsen, Nordholt, Orlandi, Burra 12] For large fields F ( $|F| \approx 2^k$ , k is security parameter), overheads are O(1)

For small fields, overheads are  $\Omega(k)$  or N polylog(k) log(|C|).

- Can we get O(1) overhead also for small fields, say  $F_2$ ?

## **Our Results**

There exists an N-party protocol in the preprocessing model for computing a Boolean circuit *C* statistically secure against *N* -1 active corruptions.

For error probability  $2^{-k}$  the overheads are:

- O(1) data and communication, and O(1 + k/N) computation in the dedicated preprocessing model
- O(log(|C|)) data/comm, and O(log(|C|) (1 + k/N))
  computation in the universal preprocessing model

#### What can we hope for?

- In [DPSZ12], lower bound: data and computational overhead for universal preprocessing must be Ω(1).
- Bound for data overhead holds also for dedicated preprocessing.
- Intuition suggests that computation overhead should be Ω(1) in general.
- [Ishai et al 13]: Subconstant data *and* communication overhead would require breakthrough in PIR protocols.

So: from current knowledge, O(1) overheads seems to be the best we can realistically hope for.

#### Some basic (known) ideas

[DIK 10] Can assume we evaluate circuit by blockwise computations:

$$\mathbf{x} + \mathbf{y} = (x_1, \dots, x_n) + (y_1, \dots, y_n) = (x_1 + y_1, \dots, x_n + y_n)$$
$$\mathbf{x} * \mathbf{y} = (x_1, \dots, x_n) * (y_1, \dots, y_n) = (x_1 \cdot y_1, \dots, x_n \cdot y_n)$$

[DPSZ 12] Authenticate with global key and secret share



#### **Problem**: Too easy to cheat with 1-bit MACs!

#### Authenticate with global key and secret share



Problem: Too easy to cheat with 1-bit MACs! Solution: Good Linear Error Correcting Code C  $C(\mathbf{x}) \in \{0,1\}^n$  is encoding of  $\mathbf{x} \in \{0,1\}^k$  in C

Authenticate with global key and secret share



$$\mathbf{C}(\mathbf{x}) = \mathbf{C}(\mathbf{x}^1) + \mathbf{C}(\mathbf{x}^2)$$

```
MAC(C(\mathbf{x})) = \mathbf{\alpha} * C(\mathbf{x})= \mathbf{m}^{1} + \mathbf{m}^{2}
```



C( $\mathbf{x}^2$ ),  $\mathbf{m}^2$ ∈ {0,1}<sup>n</sup>

## Authentication based on Linear Codes

message  $C(\mathbf{x}) \in C$ 

 $m(\mathbf{x}) = \alpha * C(\mathbf{x})$ (many 1-bit MACs in parallel)



Check:

• 
$$m(x) + e' = \alpha * (C(x) + e)$$

C(x) + e is a codeword

Adversary wins if:  $e \neq 0$  & check is OK

#### e must be a codeword

 $\Rightarrow$  adversary must cheat in many positions to win.

## **Secret Representation**



- **α** generated in preprocessing, will be released as needed
- Cannot check MACs during protocol ( $\alpha$  known  $\rightarrow$  forgery)
- Partial openings : open shares, check valid codewords but postpone checking of MACs

## Computations

# Sum of [x] and [y]

Locally & component-wise

Problem: the product of two codewords is not a codeword!





## **Multiplication of [x], [y]**

[**x** + **y**]

- Beavers Circuit Randomization
  - Preproc. gives random [a], [b], [c] st. c = a \* b
  - Open  $\epsilon = C(x-a) = [x] [a], \delta = C(y-b) = [y] [b]$
  - Compute [**x**\***y**] = [**c**] + ε \* [**b**] + δ \*[**a**] + ε \* δ

#### Linear Codes - now with multiplication

- C: [*n, k, d*] linear code, length n, dimension k, min. distance d
- $C^* := \{ \mathbf{c}^* \mathbf{c}' \mid \mathbf{c}, \mathbf{c}' \in C \}$  is the Schur-transform of C
- $C^*$ : [n, k<sup>\*</sup>, d<sup>\*</sup>] linear code with d<sup>\*</sup>  $\leq$  d, and k<sup>\*</sup>  $\geq$  k
- C\*(x) := codeword in C\* where x appears first
- $C(x) * C(y) = C^*(x * y)$
- Asymptotically good constructions with different trade-offs using Reed-Solomon or Algebraic Geometry Codes [CCX11]

## Computations

## **Linear Computations**

Locally & component-wise

Multiplication by codewords introduce vectors in C\*.

#### **Multiplication**

- Beavers Circuit Randomization
  - Preproc. gives random [a], [b], [c]\*st. c = a \* b
  - Partially open codewords  $\boldsymbol{\epsilon} = [\mathbf{x}] [\mathbf{a}], \quad \boldsymbol{\delta} = [\mathbf{y}] [\mathbf{b}]$
  - Compute  $[x^*y]^* = [c]^* + \epsilon * [b] + \delta *[a] + \epsilon * \delta$

 $C(x_1) + C(y_1)$ m(x)<sub>1</sub> + m(y)<sub>1</sub>

[x + v]



## **Further Techniques for Computation**

#### **Converting Representations [w]\*** →

```
[w]Preprocessing provides [r], [r]* for random r.
```

```
Open [w]*-[r]*, add w-r to [r].
```

#### **Reorganizing bits between layers**

- see paper for details

# **Techniques for Optimizing Complexity**

To open values, send shares to one player, he

reconstructs locally, does encoding if needed and sends result to all players.

# **Techniques for Optimizing Complexity**

Players need to check that the opened value is in C (or

- C\*). We have a technique for checking that n vectors are codewords in time  $O(n^2)$  with error prob  $2^{-\Omega(n)}$
- Actually, this is a new algorithm that can verify Boolean matrix product in time  $O(n^2)$ .

## Output phase

- 1. Players stop just before output and commit to
  - Shares of MACs on all values partially opened so far (Actually a random linear combination of them)
  - Shares of values and MACs of final output
- 2. Open **α**
- 3. Players open first set of commitments and check MACs
- 4. Players open shares of output value/MAC and check

- A protocol in the preprocessing model for securely computing Boolean Circuits.
- Data, Computation and Communication overheads essentially O(1).
- Linearly homomorphic MACs based on good codes with extra multiplication property.
- New algorithm that can verify Boolean matrix product in time  $O(n^2)$  with error probability  $2^{-\Omega(n)}$ .