Constant-Overhead Secure Computation

using Preprocessing

lvan Damgard, Sarah Zakarias

Aarhus University, Denmark

Multiparty Computation

Goal:

Unlike previous talk:
Interested in
complexity of
protocol when
circuit size grows

Sarah Zakarias

ompute circuit UC-securely

i V -
] [.] }
j. =g 1 & Lh : “_
j ¥
]
G

F(xq,...

<
=
—
|l
<

2/21

MCP Flavour in this talk

Dishonest Majority

N players, up to N -1 corrupted
No info. theo. sec. from scratch

»iE
g ﬂ;

ey

f(Xy,..., %)=y

Need pk-encryption

No termination guarantee
Natural model for 2-party case

Boolean Circuits

Sarah Zakarias 3/21

Preprocessing Model

Online phase (our protocol)

e Assume trusted dealer providing ‘raw material’
e Use only cheap information theoretic primitives

e Evaluate circuit given inputs

Preprocessing (not this talk)

e Implement trusted dealer (independent of circuit/inputs)
e Use public-key techniques

e Run any time prior to the computation

Sarah Zakarias

4/21

A couple of notions

Preprocessing model
e Universal. No knowledge about circuit nor inputs

e Dedicated. Circuit known but inputs unknown

Overhead for on-line phase
(how much resource per player per gate)

e Data. Total number of bits to store divided by N-|C|
¢ Communication. Communication complexity divided by N-|C]

e Computation. Computational complexity divided by N-|C|

Sarah Zakarias 5/21

Previous Work in Preprocessing Model

‘Damgard, Pastro, Smart, Zakarias 12]

'Damgard, Ishai, Krgigaard 10]

Nielsen, Nordholt, Orlandi, Burra 12]

For large fields F (|F| = 2%, k is security parameter),

overheads are O(1)
For small fields, overheads are Q(k) or N polylog(k) log(|C|).

- Can we get O(1) overhead also for small fields, say F,?

Sarah Zakarias 6/21

Our Results

There exists an N-party protocol in the preprocessing model for
computing a Boolean circuit C statistically secure against N -1
active corruptions.

For error probability 2 the overheads are:
« O(1) data and communication, and O(1 + k/N)

computation in the dedicated preprocessing model
* O(log(|C])) data/lcomm, and O(log(|C|) (1 + k/N))
computation in the universal preprocessing model

Sarah Zakarias 7/21

What can we hope for?

e In[DPSZ12], lower bound: data and computational overhead for
universal preprocessing must be Q(1).

e Bound for data overhead holds also for dedicated preprocessing.

e Intuition suggests that computation overhead should be Q(1) in
general.

e [Ishai et al 13]: Subconstant data and communication overhead
would require breakthrough in PIR protocols.

So: from current knowledge, O(1) overheads seems to be the best
we can realistically hope for.

Sarah Zakarias 8/21

Some basic (known) ideas

[DIK 10] Can assume we evaluate circuit by
blockwise computations:

X+Y=(Xq, o0, Xp) F(Yqy oo V) = (X F Y, o, Xt YY)

X y = (X‘I’ BRE Xn) : (y‘l’ yn) = (X1 B ATIEEEN Xn'yn)
[DPSZ 12] Authenticate with global key and secret share

X2 m?
5 < {0,1)r

| MAC(x) =f1 *X=m'+m?

Global secret key

Sarah Zakarias 9/21

Combining Ideas

Problem: Too easy to cheat with 1-bit MACs!

Sarah Zakarias 10/21

Combining Ideas

Problem: Too easy to cheat with 1-bit MACs!

Solution: Good Linear Error Correcting Code C
C(x) € {0,1}" is encoding of x € {0,1}in C

Authenticate with global key and secret share

=3 C(x2) m?2
MAC(C(x)) = a* C(x) (% & (0,1}
=m'+m?2

Sarah Zakarias 11/21

Authentication based on Linear Codes

message C(x) € C C(x)
m(x) = a *C(x)
(many 1-bit MACs in parallel) <~ C(X) te
<€ e,
Check:
* m(x)+e =a* (C(x) +e) Adversary wins if:
 C(x) + e is a codeword e # 0 & check is OK

e must be a codeword
=adversary must cheat in many positions to win.

Sarah Zakarias 12/21

Secret Representation

C(x) = C(x;)*+ C(x,)

m(x) = a ™ C(x) = m(x); + m(x),

C(\X1), m(X)- C()jz),m(X)z

Y
[x]

a generated in preprocessing, will be released as needed
Cannot check MACs during protocol (a known =» forgery)

Partial openings : open shares, check valid codewords
but postpone checking of MACs

Sarah Zakarias 13/21

Computations

Sum of [x] and [y]

Locally & component-wise e

>

Problem: the product of _—y SO

two codewords is not a C(x) + Cly; Clxo) + Cly,)
codeword! \ m(m(x), + m(y), J
Multiplication of [x], [y] x { Vi

Beavers Circuit Randomization
- Preproc. gives random [a], [b], [c] st.c=a™* b
- Open € =C(x-a) = [x] - [a], &= C(y-b) = [y] - [b]

- Compute [x*y] =[c] +&*[b] + 0 *[a] +

Sarah Zakarias

14/21

Linear Codes - now with multiplication

 C:[n, Kk, d]linear code, length n, dimension k, min. distance d
« C*={c*c’|c,c’ € C}isthe Schur-transform of C

« C*:[n, k¥, d*] linear code with d* < d, and k* =2 k

 C*(x) := codeword in C* where x appears first

* C(x)"C(y)=C'(x*y)

« Asymptotically good constructions with different trade-offs

using Reed-Solomon or Algebraic Geometry Codes [CCX11]

Sarah Zakarias 15/21

Computations

Linear Computations

Locally & component-wise e

>

Multiplication b £ g
.) C(x) + C(y; C(x,) + C(y,)

codewords introduce
vectors in C*. \ m(m(x), + m(y), }
Multiplication |

[x +y]
Beavers Circuit Randomization

- Preproc. gives random [a], [b], [c]sst.c=a™* b
- Partially open codewords € = [x] —[a], © = [y] — [b]
- Compute [x*y] =[c] +e*[b]+ 0 *[a]+&€*d

Sarah Zakarias 16/21

Further Technigques for Computation

Converting Representations [w]* >
[w]Preprocessing provides [r], [r]* for randomr.

Open [w]*-[r]*, add w-r to [r].

Reorganizing bits between layers

- see paper for details

Sarah Zakarias

17/21

Technigues for Optimizing Complexity

To open values, send shares to one player, he
reconstructs locally, does encoding if needed and sends

result to all players.

Sarah Zakarias 18/21

Technigues for Optimizing Complexity

Players need to check that the opened value is in C (or
C*). We have a technique for checking that n vectors are
codewords in time O(n?) with error prob 2-4n)

Actually, this is a new algorithm that can verify Boolean

matrix product in time O(n?).

Sarah Zakarias 19/21

Output phase

1. Players stop just before output and commit to

« Shares of MACs on all values partially opened so far

(Actually a random linear combination of them)

« Shares of values and MACs of final output

2. Open a

3. Players open first set of commitments and check MACs

4. Players open shares of output value/MAC and check

Sarah Zakarias 20/21

Conclusion

* A protocol in the preprocessing model for securely
computing Boolean Circuits.

« Data, Computation and Communication overheads
essentially O(1).

* Linearly homomorphic MACs based on good codes
with extra multiplication property.

* New algorithm that can verify Boolean matrix product in

time O(n?) with error probability 2-¢M).

Sarah Zakarias 21/21

