
Constant-Overhead Secure Computation

using Preprocessing

Ivan Damgård, Sarah Zakarias
Aarhus University, Denmark

Multiparty Computation

Goal: Compute circuit UC-securely

Unlike previous talk:
I d i Interested in
complexity of
protocol when

. . . xnx1
protocol when
circuit size grows

۩ ۪

f ሺ ሻ
Sarah Zakarias 2/21

f ሺ x1 ,, . . . , xn ሻ ൌ y

MCP Flavour in this talk

Dishonest Majority• Dishonest Majority

• N players, up to N -1 corruptedp y p p
• No info. theo. sec. from scratch

Need pk encryption• Need pk-encryption
• No termination guarantee
• Natural model for 2-party case . . . xnx1

• Boolean Circuits
۩ ۪

f ሺ x1 ,, . . . , xn ሻ ൌ y

Sarah Zakarias 3/21

Preprocessing Model

Online phase (our protocol)
● Assume trusted dealer providing ‘raw material’

● Use only cheap information theoretic primitives● Use only cheap information theoretic primitives

● Evaluate circuit given inputs

Preprocessing (not this talk)Preprocessing (not this talk)
● Implement trusted dealer (independent of circuit/inputs)● p e e us ed dea e (depe de o c cu / pu s)

● Use public-key techniques

● Run any time prior to the computation

Sarah Zakarias 4/21

A couple of notions
Preprocessing model

Universal No knowledge about circuit nor inputs● Universal. No knowledge about circuit nor inputs

● Dedicated. Circuit known but inputs unknown

Overhead for on-line phaseOverhead for on line phase
(how much resource per player per gate)

Data Total number of bits to store divided by N |C|● Data. Total number of bits to store divided by N|C|

● Communication. Communication complexity divided by N|C|

● Computation. Computational complexity divided by N|C|

Sarah Zakarias 5/21

Previous Work in Preprocessing Model

[Damgård, Pastro, Smart, Zakarias 12] [g , , ,]

[Damgård, Ishai, Krøigaard 10]

[Nielsen, Nordholt, Orlandi, Burra 12]

For large fields F (|F| ≈ 2k k is security parameter)For large fields F (|F| ≈ 2 , k is security parameter),

overheads are O(1)

For small fields, overheads are Ω(k) or N polylog(k) log(|C|).

- Can we get O(1) overhead also for small fields, say F2?

Sarah Zakarias 6/21

Our Results

There exists an N-party protocol in the preprocessing model for y g
computing a Boolean circuit C statistically secure against N -1

active corruptions. p

For error probability 2-k the overheads are:
O(1) d t d i ti d O(1 k/N)• O(1) data and communication, and O(1 + k/N)
computation in the dedicated preprocessing modelp p p g

• O(log(|C|)) data/comm, and O(log(|C|) (1 + k/N))
t ti i th i l i d lcomputation in the universal preprocessing model

Sarah Zakarias 7/21

What can we hope for?

● In [DPSZ12], lower bound: data and computational overhead for
universal preprocessing must be Ω(1)universal preprocessing must be Ω(1).

● Bound for data overhead holds also for dedicated preprocessing.

● Intuition suggests that computation overhead should be Ω(1) in
general.g

● [Ishai et al 13]: Subconstant data and communication overhead
would require breakthrough in PIR protocolswould require breakthrough in PIR protocols.

So: from current knowledge, O(1) overheads seems to be the best
we can realistically hope forwe can realistically hope for.

Sarah Zakarias 8/21

Some basic (known) ideas

[DIK 10] Can assume we evaluate circuit by [] y
blockwise computations:
x + y (x x) + (y y) (x + y x + y)x + y = (x1, …, xn) + (y1, … yn) = (x1 + y1, … , xn + yn)

x * y = (x1, …, xn) * (y1, … yn) = (x1  y1, … , xn  yn) y (1 n) (y1 yn) (1 y1 n yn)

[DPSZ 12] Authenticate with global key and secret share

x1 m1 2 2
x = x1 + x2

[] g y

x1
, m1

∈ {0,1}n
x2

, m2

∈ {0,1}nMAC(x) = α * x = m1 + m2

Global secret key

Sarah Zakarias 9/21

Combining Ideas

P bl T t h t ith 1 bit MAC !Problem: Too easy to cheat with 1-bit MACs!

Authenticate with global key and secret share

1 1
x = x1 + x2

ut e t cate t g oba ey a d sec et s a e

x1
, m1

∈ {0,1}n
x2

, m2

∈ {0,1}nMAC(x) = α * x = m1 + m2

Sarah Zakarias 10/21

Combining Ideas

P bl T t h t ith 1 bit MAC !

Solution: Good Linear Error Correcting Code C

Problem: Too easy to cheat with 1-bit MACs!

Solution: Good Linear Error Correcting Code C

C(x) ∈ {0,1}n is encoding of x ∈ {0,1}k in C

Authenticate with global key and secret share

C(1) 1
C(x) = C(x1) + C(x2)

ut e t cate t g oba ey a d sec et s a e

C(x1), m1

∈ {0,1}n
C(x2), m2

∈ {0,1}nMAC(C(x)) = α * C(x)
1 2= m1 + m2

Sarah Zakarias 11/21

Authentication based on Linear Codes

C() Cmessage C(x) ∈ C

m(x) = α *C(x)

C(x)

C(x) + em(x) α C(x)
(many 1-bit MACs in parallel)

C(x) + e

e’

Check:
• m(x) + e’ = α * (C(x) + e) Adversary wins if:m(x) e α (C(x) e)
• C(x) + e is a codeword

d e sa y s
e ≠ 0 & check is OK

e must be a codeword
⇒adversary must cheat in many positions to win⇒adversary must cheat in many positions to win.

Sarah Zakarias 12/21

Secret Representation

C(x) = C(x)+ C(x)

m(x) = α * C(x) = m(x)1 + m(x)2

C(x) = C(x1)+ C(x2)

C(x1), m(x)1 C(x2),m(x)2

[x]

• α generated in preprocessing, will be released as needed

[x]

• Cannot check MACs during protocol (α known  forgery)
• Partial openings : open shares check valid codewords• Partial openings : open shares, check valid codewords

but postpone checking of MACs

Sarah Zakarias 13/21

Computations

Sum of [x] and [y]
• Locally & component-wise

C(x1) + C(y1)
m(x) + m(y)

C(x2) + C(y2)
m(x) + m(y)

Problem: the product of
two codewords is not a

d d!

Multiplication of [x], [y] [x + y]

m(x)1 + m(y)1 m(x)2 + m(y)2codeword!

p [] [y]
• Beavers Circuit Randomization

[x + y]

- Preproc. gives random [a], [b], [c] st. c = a * b
- Open ε = C(x-a) = [x] – [a] δ = C(y-b) = [y] – [b]Open ε C(x a) [x] [a], δ C(y b) [y] [b]

- Compute [x*y] = [c] + ε * [b] + δ *[a] + ε * δ

Sarah Zakarias 14/21

Linear Codes – now with multiplication

• C: [n, k, d] linear code, length n, dimension k, min. distance d

• C* := {c * c’ | c, c’ ∈ C } is the Schur-transform of C

C* [k* d*] li d ith d* ≤ d d k* ≥ k• C* : [n, k*, d*] linear code with d* ≤ d, and k* ≥ k

• C*(x) := codeword in C* where x appears first() pp

• C(x) * C(y) = C*(x * y)

• Asymptotically good constructions with different trade-offs

using Reed-Solomon or Algebraic Geometry Codes [CCX11]g g y []

Sarah Zakarias 15/21

Computations

Linear Computations
• Locally & component-wise

C(x1) + C(y1)
m(x) + m(y)

C(x2) + C(y2)
m(x) + m(y)

Multiplication by
codewords introduce

 i C*

Multiplication [x + y]

m(x)1 + m(y)1 m(x)2 + m(y)2vectors in C*.

p
• Beavers Circuit Randomization

[x + y]

- Preproc. gives random [a], [b], [c] st. c = a * b
- Partially open codewords ε = [x] – [a] δ = [y] – [b]

*

Partially open codewords ε [x] [a], δ [y] [b]

- Compute [x*y] = [c] + ε * [b] + δ *[a] + ε * δ* *

Sarah Zakarias 16/21

Further Techniques for Computation

Converting Representations [w]* 

[w]Preprocessing provides [r], [r]* for random r.
O []* []* dd t []Open [w]*-[r]*, add w-r to [r].

Reorganizing bits between layersReorganizing bits between layers
- see paper for details

Sarah Zakarias 17/21

Techniques for Optimizing Complexity

To open values send shares to one player heTo open values, send shares to one player, he

reconstructs locally, does encoding if needed and sends

result to all players.a

Sarah Zakarias 18/21

Techniques for Optimizing Complexity

Players need to check that the opened value is in C (orPlayers need to check that the opened value is in C (or

C*). We have a technique for checking that n vectors are

codewords in time O(n2) with error prob 2-Ω(n)

Actually, this is a new algorithm that can verify Boolean

matrix product in time O(n2)matrix product in time O(n2).

Sarah Zakarias 19/21

Output phase

1. Players stop just before output and commit to
• Shares of MACs on all values partially opened so far

(Actually a random linear combination of them)(Actually a random linear combination of them)

• Shares of values and MACs of final output

2. Open α
aa

3. Players open first set of commitments and check MACs

4. Players open shares of output value/MAC and check

Sarah Zakarias 20/21

Conclusion

• A protocol in the preprocessing model for securelyA protocol in the preprocessing model for securely

computing Boolean Circuits.

• Data, Computation and Communication overheads

essentially O(1).

• Linearly homomorphic MACs based on good codes• Linearly homomorphic MACs based on good codes

with extra multiplication property.

• New algorithm that can verify Boolean matrix product in

time O(n2) with error probability 2-Ω(n).

Sarah Zakarias 21/21

