

Lattice Problems

Daniele Micciancio
UC San Diego

TCC 2007 Special Event:
Assumptions for cryptography

Outline

● Lattice Problems
– Introduction to Lattices, SVP, SIVP, etc.

● Cryptographic assumptions
– Average-case vs. worst-case complexity

● Example Application
● Issues/Discussion

– Choosing security parameters
– Using lattices with special properties

Point Lattices
● Set of all integer linear combinations of

basis vectors B = [b1,...,bn] ⊂ Rn

● L(B)={Bx: x  Zn} ⊂ span(B)={Bx: x  Rn}

B
b1+3b2

b2

b1

Successive Minima
● For every n-dimensional lattice L, and

i=1,...,n, the ith successive minimum 
i
(L) is

the smallest radius r such that Ball(0,r)
contains i linearly independent lattice vectors



2

Lattice problems

● Shortest Vector Problems (SVP)
– Given a lattice L, find the nonzero lattice

vector v closest to the origin (||v|| 1(L))

● Shortest Independent Vect. Prob. (SIVP)
– Given a lattice L, find n lin. independent

vectors v1,...,vn of length maxi ||vi||  n(L)

● Approximation factor (n) usually a
function of the lattice dimension n.

More lattice problems
● Closest Vector Problem (CVP):

– Given lattice L and target point t, find lattice
vector v closest to t: ||v - t|| dist(t,L)

● Bounded Distance Decoding (BDD):

– CVP with promise that dist(t,L) < 1(L)/2

● Covering Radius Problem (CRP):

– (Approximately) compute (L)=maxt dist(t,L)

● ... but no bilinear generalized decisional
gap longest uber sublattice problem, yet.

Relations among problems
● Approximation preserving reductions

– SVP reduces to CVP [GMSS]

– Also, approx. 1 reduces to approx. dist(t,L)

● Exact solution [K, BS]

– SVP reduces to computing 1

– CVP reduces to computing dist(t,L)

– Computing dist(t,L) reduces to n(L)

● Approximate reductions [K]

– CVP' reduces to SVP where ' = poly(,n)

Open problems

● Reduce search to decision

– Reduce SVP to approximating 1

– Reduce CVP to approximating dist(t,L)

● Missing reductions

– Reduce CVP to SIVP

– Reduce approx. n(L) to approx. dist(t,L)

● Remark

– n(L) --> SIVP --> CVP -?-> dist(t,L)

Complexity of SVP, SIVP, CVP
O(1) n

NP
hard

n

coAM / coNP P / RP

2n

● NP-hard [vEB, Aj, ABSS, M, BS, K]
● coAM, coNP [GG, AR, GMR]
● P, RP [LLL, S, AKS]

● Open problem: =nO(1) factors

= n100

Cryptographic Assumption

● NP-hardness for cryptography
– Unnecessary: NP = P U NPC implies P=NP
– Insufficient: need average-case hardness

● Cryptographic assumption:
– SIVP is hard to approximate within =nc [Aj]

– Best to date (n log(n)) [MR]

● Remarks
– Worst-case hardness assumption
– Still implies cryptographic applications

How to use lattices in
cryptography

● Assumption: SIVP is worst-case hard
● Application: cryptographic function
● Proof of security:

– Assume can break (e.g., invert) random f(x)
– Use attack to solve SIVP on any lattice

Lattice problem
Worst-case hard

Cryptographic
function f(x)

AttackApproximation
algorithm

construction

security proof

Intuition

LATTICE random
noise

Rn

Every point in Rn can be written as the sum
 a = v + r

of a lattice point v and small error vector r

Lattice based Hash function
(oversimplified version)

● Construction:

– Key: random points a1,...,am in Rn

– Function: fA(x1,...,xm) = i aixi , (xi in {0,1})

– fA : {0,1}m --> Rn

● Technical problem

– Range Rn is infinite, so fA never compresses

– Problem can be solved using ZM
n instead of Rn

Security proof

● Proof of security:

– Generate random key as ai=vi+ri (i=1,...n)

– Find a collision fA(x1,...,xm)=fA(y1,...,ym)

– Notice: i ai xi = i ai yi

● Substituting ai=vi+ri and rearranging:

i vi (xi-yi) = i ri (yi- xi)

Lattice
vector

short
vector

Worst-case/Average-case
connection

● The set L = {z in Zm | fA(z)=0} is a lattice

● Collisions: z=x-y in L of norm ||z||max = 1

● Security proof:

Approximate SIVP
Arbitrary lattice
dimension = n

Exact (Lmax) SVP
Random lattice

dimension = m >> n
reduction

Worst-case
complexity assumption

Average-case
cryptanalysis

Setting security level

● Choose n large enough so that SIVP is
hard to approximate
– Worst-case hard is enough for security
– How do we generate hardest (worst-case)

challenge instances?

● Choose m large enough so that SVP is
hard on average
– Easy to generate meaningful challenges
– But then, why prove security at all?

How to falsify worst-case
assumptions

● Algorithmic approach
– Cryptanalyst comes up with SVP algorithm,

and proves it achieves  approximation

– Too much burden on cryptanalyst?

● Reverse challenge approach
– Cryptanalyst comes up with SVP algorithm,

and claims it achieves  approximation

– Cryptographer gives counterexample
showing the algorithm does not achieve 

● Generic model for lattices?

“Abstract” provable security

● Security proof as a qualitative statements
– Attacks can be avoided by increasing security

parameter
– No conceptual security flaw in cryptographic

function
– Tell us what distribution should be used

● Use traditional cryptanalysis to determine
suitable security parameters

Summary

● Classic lattice assumptions (SVP, CVP)
– All polynomially related up to polynomial

factors

– Minor issue: decision (1) vs. search (SVP)

– Main issue: determine concrete worst-case
hardness bounds

● Next: “ad-hoc” lattice assumptions
– Hardness of SVP, SIVP, etc. for special classes

of lattices

Other cryptographic primitives

● Public key encryption [AD, R]
– Requires planting a trapdoor for decryption

– Can be done by using lattices where 1<< 2

● Unique SVP (uSVP)
– Solve SVP on special class of lattices such

that 1<< 2

– Still worst-case assumption, but over smaller
class of lattices

Faster cryptographic functions

● Subset-sum function fA(x1,...,xm) = i aixi

– Key size and time complexity: |A| > mn > n2

● Generalized compact knapsack [M,LM,PR]
– Use polynomial ring Z[X]/(Xn-1) instead of Z
– Key size and time complexity is O(n log n)
– Hard to invert on the average, based on

worst-case hardness of SIVP over cyclic
lattices

Worst-case assumptions for
lattices with special structure

● Geometric structure

– E.g., 1<< 2

– Application: embed trapdoor for PKE

● Algebraic structure
– E.g., Rot(L) = L
– Application: more efficient functions

● Question
– Are these legitimate assumptions? Can we

still call them “worst-case”?

Conclusion

● Lattice based cryptography
– Only requires worst-case hardness of

underlying problem
– Classic assumptions are fairly standard

● Less standard (ad-hoc) assumptions
– Motivated by cryptographic applications or

efficiency considerations
– Worst-case assumptions for lattices with

special structure

Things I didn't talk about

● Cryptographic functions based on
average-case lattice problems
– E.g., [GGH], NTRU

● Unconditionally secure constructions
– Zero-Knowledge proofs for SVP, CVP [MV]

● CVP with preprocessing [M,FM,R,AKKV]
– Fixed lattice, only target is part of input
– Interesting for efficient cryptography

● Quantum complexity assumptions [R]

