Lattice Problems

Daniele Micciancio UC San Diego

TCC 2007 Special Event: Assumptions for cryptography

Outline

- Lattice Problems
 - Introduction to Lattices, SVP, SIVP, etc.
- Cryptographic assumptions
 - Average-case vs. worst-case complexity
- Example Application
- Issues/Discussion
 - Choosing security parameters
 - Using lattices with special properties

Point Lattices

- Set of all integer linear combinations of basis vectors $B = [b_1, ..., b_n] \subset R^n$
- $L(B) = \{Bx: x \in Z^n\} \subset span(B) = \{Bx: x \in R^n\}$

Successive Minima

 For every n-dimensional lattice L, and i=1,...,n, the ith successive minimum λ_i(L) is the smallest radius r such that Ball(0,r) contains i linearly independent lattice vectors

Lattice problems

- Shortest Vector Problems (SVP)
 - Given a lattice L, find the nonzero lattice vector v closest to the origin $(||v|| \leq \gamma \lambda_1(L))$
- Shortest Independent Vect. Prob. (SIVP)
 - Given a lattice L, find n lin. independent vectors $v_1, ..., v_n$ of length $\max_i ||v_i|| \le \gamma \lambda_n(L)$
- Approximation factor $\gamma(n)$ usually a function of the lattice dimension n.

More lattice problems

- Closest Vector Problem (CVP):
 - Given lattice L and target point t, find lattice vector v closest to t: $||v t|| \le \gamma \text{dist}(t,L)$
- Bounded Distance Decoding (BDD):
 - CVP with promise that $dist(t,L) < \lambda_1(L)/2$
- Covering Radius Problem (CRP):

- (Approximately) compute $\rho(L) = max_t dist(t,L)$

• ... but no bilinear generalized decisional gap longest uber sublattice problem, yet.

Relations among problems

- Approximation preserving reductions
 - SVP_{γ} reduces to CVP_{γ} [GMSS]
 - Also, approx. λ_1 reduces to approx. dist(t,L)
- Exact solution [K, BS]
 - SVP reduces to computing λ_1
 - CVP reduces to computing dist(t,L)
 - Computing dist(t,L) reduces to $\lambda_n(L)$
- Approximate reductions [K]

- $CVP_{\gamma'}$ reduces to SVP_{γ} where $\gamma' = poly(\gamma, n)$

Open problems

- Reduce search to decision
 - Reduce SVP_{γ} to approximating λ_1
 - Reduce CVP, to approximating dist(t,L)
- Missing reductions
 - Reduce CVP_{γ} to $SIVP_{\gamma}$
 - Reduce approx. $\lambda_n(L)$ to approx. dist(t,L)
- Remark

- $\lambda_n(L) \rightarrow SIVP_{\gamma} \rightarrow CVP_{\gamma} \rightarrow dist(t,L)$

Complexity of SVP, SIVP, CVP

- NP-hard [vEB, Aj, ABSS, M, BS, K]
- coAM, coNP [GG, AR, GMR]
- P, RP [LLL, S, AKS]
- Open problem: $\gamma = n^{O(1)}$ factors

Cryptographic Assumption

- NP-hardness for cryptography
 - Unnecessary: NP = P U NPC implies P=NP
 - Insufficient: need average-case hardness
- Cryptographic assumption:
 - SIVP is hard to approximate within $\gamma = n^c$ [Aj]
 - Best to date $\gamma = \omega(n \log(n))$ [MR]
- Remarks
 - Worst-case hardness assumption
 - Still implies cryptographic applications

How to use lattices in cryptography

- Assumption: SIVP is worst-case hard
- Application: cryptographic function
- Proof of security:
 - Assume can break (e.g., invert) random f(x)
 - Use attack to solve SIVP on any lattice

Intuition

LATTICE random Rⁿ noise

Every point in \mathbb{R}^n can be written as the sum a = v + rof a lattice point v and small error vector r

Lattice based Hash function (oversimplified version)

- Construction:
 - Key: random points a_1, \dots, a_m in \mathbb{R}^n
 - Function: $f_A(x_1,...,x_m) = \sum_i a_i x_i$, (x_i in {0,1})
 - $f_A : \{0,1\}^m --> \mathbb{R}^n$
- Technical problem
 - Range \mathbb{R}^n is infinite, so f_A never compresses
 - Problem can be solved using Z_M^n instead of R^n

Security proof

- Proof of security:
 - Generate random key as $a_i = v_i + r_i$ (i=1,...n)
 - Find a collision $f_A(x_1,...,x_m) = f_A(y_1,...,y_m)$
 - Notice: $\Sigma_i \mathbf{a}_i \mathbf{x}_i = \Sigma_i \mathbf{a}_i \mathbf{y}_i$
- Substituting $a_i = v_i + r_i$ and rearranging:

$$\Sigma_{i} \mathbf{v}_{i} (\mathbf{x}_{i} - \mathbf{y}_{i}) = \Sigma_{i} \mathbf{r}_{i} (\mathbf{y}_{i} - \mathbf{x}_{i})$$
Lattice vector short vector

Worst-case/Average-case connection

- The set $L = \{z \text{ in } Z^m \mid f_A(z)=0\}$ is a lattice
- Collisions: z=x-y in L of norm $||z||_{max} = 1$
- Security proof:

Worst-case complexity assumption

Average-case cryptanalysis

Setting security level

- Choose n large enough so that SIVP is hard to approximate
 - Worst-case hard is enough for security
 - How do we generate hardest (worst-case) challenge instances?
- Choose m large enough so that SVP is hard on average
 - Easy to generate meaningful challenges
 - But then, why prove security at all?

How to falsify worst-case assumptions

- Algorithmic approach
 - Cryptanalyst comes up with SVP algorithm, and proves it achieves γ approximation
 - Too much burden on cryptanalyst?
- Reverse challenge approach
 - Cryptanalyst comes up with SVP algorithm, and claims it achieves γ approximation
 - Cryptographer gives counterexample showing the algorithm does not achieve γ
- Generic model for lattices?

"Abstract" provable security

- Security proof as a qualitative statements
 - Attacks can be avoided by increasing security parameter
 - No conceptual security flaw in cryptographic function
 - Tell us what distribution should be used
- Use traditional cryptanalysis to determine suitable security parameters

Summary

- Classic lattice assumptions (SVP, CVP)
 - All polynomially related up to polynomial factors
 - Minor issue: decision (λ_1) vs. search (SVP)
 - Main issue: determine concrete worst-case hardness bounds
- Next: "ad-hoc" lattice assumptions
 - Hardness of SVP, SIVP, etc. for special classes of lattices

Other cryptographic primitives

- Public key encryption [AD, R]
 - Requires planting a trapdoor for decryption
 - Can be done by using lattices where $\lambda_1 < < \lambda_2$
- Unique SVP (uSVP)
 - Solve SVP on special class of lattices such that $\lambda_1\!<\!<\lambda_2$
 - Still worst-case assumption, but over smaller class of lattices

Faster cryptographic functions

- Subset-sum function $f_A(x_1,...,x_m) = \Sigma_i a_i x_i$
 - Key size and time complexity: $|A| > mn > n^2$
- Generalized compact knapsack [M,LM,PR]
 - Use polynomial ring $Z[X]/(X^n-1)$ instead of Z
 - Key size and time complexity is O(n log n)
 - Hard to invert on the average, based on worst-case hardness of SIVP over cyclic lattices

Worst-case assumptions for lattices with special structure

- Geometric structure
 - E.g., $\lambda_1 << \lambda_2$
 - Application: embed trapdoor for PKE
- Algebraic structure
 - E.g., Rot(L) = L
 - Application: more efficient functions
- Question
 - Are these legitimate assumptions? Can we still call them "worst-case"?

Conclusion

- Lattice based cryptography
 - Only requires worst-case hardness of underlying problem
 - Classic assumptions are fairly standard
- Less standard (ad-hoc) assumptions
 - Motivated by cryptographic applications or efficiency considerations
 - Worst-case assumptions for lattices with special structure

Things I didn't talk about

- Cryptographic functions based on average-case lattice problems
 - E.g., [GGH], NTRU
- Unconditionally secure constructions
 - Zero-Knowledge proofs for SVP, CVP [MV]
- CVP with preprocessing [M,FM,R,AKKV]
 - Fixed lattice, only target is part of input
 - Interesting for efficient cryptography
- Quantum complexity assumptions [R]