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Point Lattices
● Set of all integer linear combinations of 

basis vectors B = [b1,...,bn] ⊂ Rn

● L(B)={Bx: x  Zn} ⊂ span(B)={Bx: x  Rn}
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Successive Minima
● For every n-dimensional lattice L, and 

i=1,...,n, the ith successive minimum 
i
(L) is 

the smallest radius r such that Ball(0,r) 
contains i linearly independent lattice vectors



2



  

Lattice problems

● Shortest Vector Problems (SVP)
– Given a lattice L, find the nonzero lattice 

vector v closest to the origin (||v||  1(L))

● Shortest Independent Vect. Prob. (SIVP)
– Given a lattice L, find n lin. independent 

vectors v1,...,vn of length maxi ||vi||  n(L)

● Approximation factor (n) usually a 
function of the lattice dimension n.



  

More lattice problems
● Closest Vector Problem (CVP):

– Given lattice L and target point t, find lattice 
vector v closest to t: ||v - t||  dist(t,L)

● Bounded Distance Decoding (BDD):

– CVP with promise that dist(t,L) < 1(L)/2

● Covering Radius Problem (CRP):

– (Approximately) compute (L)=maxt dist(t,L)

● ... but no bilinear generalized decisional 
gap longest uber sublattice problem, yet.



  

Relations among problems
● Approximation preserving reductions

– SVP reduces to CVP [GMSS]

– Also, approx. 1 reduces to approx. dist(t,L)

● Exact solution [K, BS]

– SVP reduces to computing 1

– CVP reduces to computing dist(t,L)

– Computing dist(t,L) reduces to n(L)

● Approximate reductions [K]

– CVP' reduces to SVP where ' = poly(,n)



  

Open problems

● Reduce search to decision

– Reduce SVP to approximating 1

– Reduce CVP to approximating dist(t,L)

● Missing reductions

– Reduce CVP to SIVP

– Reduce approx. n(L) to approx. dist(t,L)

● Remark

–  n(L) --> SIVP --> CVP -?-> dist(t,L)



  

Complexity of SVP, SIVP, CVP
O(1) n

NP
hard

n

coAM / coNP P / RP

2n

● NP-hard [vEB, Aj, ABSS, M, BS, K]
● coAM, coNP [GG, AR, GMR]
● P, RP [LLL, S, AKS]

● Open problem: =nO(1) factors

= n100



  

Cryptographic Assumption

● NP-hardness for cryptography
– Unnecessary: NP = P U NPC implies P=NP
– Insufficient: need average-case hardness

● Cryptographic assumption:
– SIVP is hard to approximate within =nc  [Aj]

– Best to date (n log(n))     [MR]

● Remarks
– Worst-case hardness assumption
– Still implies cryptographic applications



  

How to use lattices in 
cryptography

● Assumption: SIVP is worst-case hard
● Application: cryptographic function
● Proof of security:

– Assume can break (e.g., invert) random f(x)
– Use attack to solve SIVP on any lattice

Lattice problem
Worst-case hard

Cryptographic
function f(x)

AttackApproximation
algorithm

construction

security proof



  

Intuition

LATTICE random
noise

Rn

Every point in Rn can be written as the sum
 a = v + r

of a lattice point v and small error vector r



  

Lattice based Hash function
(oversimplified version)

● Construction:

– Key: random points a1,...,am in Rn

– Function: fA(x1,...,xm) = i aixi ,       (xi in {0,1})

– fA : {0,1}m --> Rn

● Technical problem

– Range Rn is infinite, so fA never compresses

– Problem can be solved using ZM
n instead of Rn



  

Security proof

● Proof of security:

– Generate random key as ai=vi+ri (i=1,...n)

– Find a collision fA(x1,...,xm)=fA(y1,...,ym)

– Notice:  i ai xi =  i ai yi 

● Substituting ai=vi+ri and rearranging:

i vi (xi-yi)  =  i ri (yi- xi)

Lattice
vector

short
vector



  

Worst-case/Average-case 
connection

● The set L = {z in Zm | fA(z)=0} is a lattice

● Collisions: z=x-y in L of norm ||z||max = 1

● Security proof:

Approximate SIVP
Arbitrary lattice
dimension = n

Exact (Lmax) SVP
Random lattice

dimension = m >> n
reduction

Worst-case
complexity assumption

Average-case
cryptanalysis



  

Setting security level

● Choose n large enough so that SIVP is 
hard to approximate
– Worst-case hard is enough for security
– How do we generate hardest (worst-case) 

challenge instances?

● Choose m large enough so that SVP is 
hard on average
– Easy to generate meaningful challenges
– But then, why prove security at all?



  

How to falsify worst-case 
assumptions

● Algorithmic approach
– Cryptanalyst comes up with SVP algorithm, 

and proves it achieves  approximation

– Too much burden on cryptanalyst?

● Reverse challenge approach
– Cryptanalyst comes up with SVP algorithm, 

and claims it achieves  approximation

– Cryptographer gives counterexample 
showing the algorithm does not achieve 

● Generic model for lattices?



  

“Abstract” provable security

● Security proof as a qualitative statements
– Attacks can be avoided by increasing security 

parameter
– No conceptual security flaw in cryptographic 

function
– Tell us what distribution should be used

● Use traditional cryptanalysis to determine 
suitable security parameters



  

Summary

● Classic lattice assumptions (SVP, CVP)
– All polynomially related up to polynomial 

factors

– Minor issue: decision (1) vs. search (SVP)

– Main issue: determine concrete worst-case 
hardness bounds

● Next: “ad-hoc” lattice assumptions
– Hardness of SVP, SIVP, etc. for special classes 

of lattices



  

Other cryptographic primitives

● Public key encryption [AD, R]
– Requires planting a trapdoor for decryption

– Can be done by using lattices where 1<< 2

● Unique SVP (uSVP)
– Solve SVP on special class of lattices such 

that 1<< 2

– Still worst-case assumption, but over smaller 
class of lattices



  

Faster cryptographic functions

● Subset-sum function fA(x1,...,xm) = i aixi 

– Key size and time complexity: |A| > mn > n2

● Generalized compact knapsack [M,LM,PR]
– Use polynomial ring Z[X]/(Xn-1) instead of Z
– Key size and time complexity is O(n log n)
– Hard to invert on the average, based on 

worst-case hardness of SIVP over cyclic 
lattices



  

Worst-case assumptions for 
lattices with special structure

● Geometric structure

– E.g., 1<< 2

– Application: embed trapdoor for PKE

● Algebraic structure
– E.g., Rot(L) = L
– Application: more efficient functions

● Question
– Are these legitimate assumptions? Can we 

still call them “worst-case”?



  

Conclusion

● Lattice based cryptography
– Only requires worst-case hardness of 

underlying problem
– Classic assumptions are fairly standard

● Less standard (ad-hoc) assumptions
– Motivated by cryptographic applications or 

efficiency considerations
– Worst-case assumptions for lattices with 

special structure



  

Things I didn't talk about

● Cryptographic functions based on 
average-case lattice problems
– E.g., [GGH], NTRU

● Unconditionally secure constructions
– Zero-Knowledge proofs for SVP, CVP [MV]

● CVP with preprocessing [M,FM,R,AKKV]
– Fixed lattice, only target is part of input
– Interesting for efficient cryptography

● Quantum complexity assumptions [R]


