Practical Cryptanalysis of a Public-Key Encryption Scheme Based on New Multivariate Quadratic Assumptions

Martin R. Albrecht¹, Jean-Charles Faugere^{2,3,4}, <u>Robert Fitzpatrick⁵</u>, Ludovic Perret^{2,3,4}, <u>Yosuke Todo⁶</u>, Keita Xagawa⁶

Technical University of Denmark, 2 Sorbonne Universités, 3 INRIA, 4 CNRS,
 Royal Holloway, University of London, 6 NTT Secure Platform Laboratories

Summary

- We revisit an MQ-based cryptosystem proposed by Huang, Liu and Yang at PKC2012.
- We can regard HLY12 as lattice-based cryptosystems.
- A Core i7 PC finds the secret keys in 5 16 min by using LLL for proposed parameter sets.
- Recommendation parameters.

Agenda

- Introduction
 - MQ-based cryptography
- The HLY12 Cryptosystem
- Attack for Lattice
- New Security Estimation
- Recommendation Parameters
- Conclusion

MQ (Multivariate Quadratic Polynomials)

- Quantum computers break RSA, DH and so on.
- We are working on Post-Quantum cryptography
 - Code-based cryptography
 - Lattice-based cryptography
 - Multivariate-based cryptography

MQ (Multivariate Quadratic Polynomials)

We let $Q = \{f \in \mathbb{F}[x_1, \dots, x_n] | \deg(f) \le 2\}$

MQ Problem

Input: $F = (f_1, \dots, f_m) \in Q^m$ and $\vec{y} = (y_1, \dots, y_m) \in \mathbb{F}^m$ Output: $\vec{s} = (s_1, \dots, s_n) \in \mathbb{F}^n$ s.t. $F(\vec{s}) = \vec{y}$

• This problem is NP-hard.

Agenda

Introduction

MQ-based cryptography

- The HLY12 Cryptosystem
- Attack for Lattice
- New Security Estimation
- Recommendation Parameters
- Conclusion

Several MQ-based cipher's Idea

• Make F as a trapdoor function

– Choose $G \in Q^m$ which is easily invertible

Several MQ-based cipher's Idea

HLY12's Idea #1

- F should be chosen randomly as possible
 - -F is NOT a trapdoor function.
 - Change the roles of F, \vec{y} , \vec{s}

HLY12's Idea #2

• F consists of two parts

HLY12's Encryption

• Choose random \vec{r}

HLY12's Decryption

• The 1st term of $\langle \vec{s}, \vec{u} \rangle$ is the same as that of *c*

HLY12's Decryption

• If $Q(\vec{s}) \cdot \vec{r}$ is short, *m* can be recovered.

Suggested Parameters

Given $(L, Q, \vec{y}) \in \mathbb{Z}_q^{n \times m} \times (\mathbb{Z}_q^{n \times n})^m \times \mathbb{Z}_q^m$, finding \vec{s} .

 (T, μ) : no solver running in time less than T can solve the system with prob. $\geq \mu$.

Agenda

Introduction

MQ-based cryptography

- The HLY12 Cryptosystem
- Attack for Lattice
- New Security Estimation
- Recommendation Parameters
- Conclusion

Security of the HLY12

- The security is estimated by the XL algorithm.
 Two recommendation parameters were given.
- We can regard HLY12 as lattice-based cryptosystems.
 - $-Q(\vec{s})$ is very small vectors

Lattice-based cryptography?

• We can regard $Q(\vec{s})$ as error vectors

Observation

If we regard $Q(\vec{s})$ as error vectors, HLY12 is similar to the Regev Cryptosystem

Observation

We can attack HLY12 in practical time by using lattice reduction algorithms

Second Lattice (NTRU-like lattice)

• \vec{s} is very short compared with $Q(\vec{s})$

Observation The dimension is so huge...

Third Lattice (Truncated lattice)

• We can truncate the matrix

Observation

We should choose s_i from [N(0,10)] to avoid our lattice attack.

Agenda

- Introduction
 - MQ-based cryptography
- The HLY12 Cryptosystem
- Attack for Lattice
- New Security Estimation
- Recommendation Parameters
- Conclusion

<u>Robert</u> will talk the remaining contents

Practical Cryptanalysis of a Public-Key Encryption Scheme Based on New Multivariate Quadratic Assumptions

> Martin R. Albrecht ¹ Jean-Charles Faugére ^{2,3} <u>Robert Fitzpatrick^{4,5} Ludovic Perret^{2,3}</u> <u>Yosuke Todo</u>⁶ Keita Xagawa⁶

> > Technical University of Denmark

INRIA & CNRS ISG, Royal Holloway, University of London, IIS, Academia Sinica NTT Secure Platform Laboratories

Robert Fitzpatrick PKC 2014, Buenos Aires

イロト イポト イヨト イヨト

2 Security Conditions for HLY

イロト イポト イヨト イヨト

3

Estimating LWE Security (i)

If we view HLY from an LWE perspective...

How to estimate the practical security of LWE/LWE-like functions?

- In practise, by examining the cost of: dual-lattice-reduction + distinguishing (MR09); lattice-reduction + decoding (LP10, LN13) or embedding lattice reduction (AFG13).
- Dual-lattice distinguishing
- Reduction + decoding
- Embedding
- (and BKW)
- In general, security closely related to q/σ .

くロト (過) (目) (日)

Estimating LWE Security (i)

If we view HLY from an LWE perspective...

How to estimate the practical security of LWE/LWE-like functions?

- In practise, by examining the cost of: dual-lattice-reduction + distinguishing (MR09); lattice-reduction + decoding (LP10, LN13) or embedding lattice reduction (AFG13).
- Dual-lattice distinguishing
- Reduction + decoding
- Embedding
- (and BKW)
- In general, security closely related to q/σ .

くロト (過) (目) (日)

Estimating LWE Security (i)

If we view HLY from an LWE perspective...

How to estimate the practical security of LWE/LWE-like functions?

- In practise, by examining the cost of: dual-lattice-reduction + distinguishing (MR09); lattice-reduction + decoding (LP10, LN13) or embedding lattice reduction (AFG13).
- Dual-lattice distinguishing
- Reduction + decoding
- Embedding
- (and BKW)
- In general, security closely related to q/σ .

イロト イポト イヨト イヨト

Estimating LWE Security (i)

If we view HLY from an LWE perspective...

How to estimate the practical security of LWE/LWE-like functions?

- In practise, by examining the cost of: dual-lattice-reduction + distinguishing (MR09); lattice-reduction + decoding (LP10, LN13) or embedding lattice reduction (AFG13).
- Dual-lattice distinguishing
- Reduction + decoding
- Embedding
- (and BKW)
- In general, security closely related to q/σ .

ヘロト ヘワト ヘビト ヘビト

Estimating LWE Security (i)

If we view HLY from an LWE perspective...

How to estimate the practical security of LWE/LWE-like functions?

- In practise, by examining the cost of: dual-lattice-reduction + distinguishing (MR09); lattice-reduction + decoding (LP10, LN13) or embedding lattice reduction (AFG13).
- Dual-lattice distinguishing
- Reduction + decoding
- Embedding
- (and BKW)
- In general, security closely related to q/σ .

ヘロト ヘワト ヘビト ヘビト

Estimating LWE Security (i)

If we view HLY from an LWE perspective...

How to estimate the practical security of LWE/LWE-like functions?

- In practise, by examining the cost of: dual-lattice-reduction + distinguishing (MR09); lattice-reduction + decoding (LP10, LN13) or embedding lattice reduction (AFG13).
- Dual-lattice distinguishing
- Reduction + decoding
- Embedding
- (and BKW)
- In general, security closely related to q/σ .

イロト イポト イヨト イヨト

э

Estimating LWE Security (i)

If we view HLY from an LWE perspective...

How to estimate the practical security of LWE/LWE-like functions?

- In practise, by examining the cost of: dual-lattice-reduction + distinguishing (MR09); lattice-reduction + decoding (LP10, LN13) or embedding lattice reduction (AFG13).
- Dual-lattice distinguishing
- Reduction + decoding
- Embedding
- (and BKW)
- In general, security closely related to q/σ.

イロト イポト イヨト イヨト

э

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Dual-Lattice Distinguishing

• Find a short $\vec{y} \in \mathcal{L}^{\perp}$ (scaled dual *q*-ary lattice): check if $\langle \vec{y}, \vec{c} \rangle = \langle \vec{y}, \mathbf{A}^T \vec{s} + \vec{e} \rangle = \langle \vec{y}, \vec{e} \rangle$ is short.

• Distinguishing advantage: $\varepsilon \approx \exp\left(-\pi \cdot (\|\vec{y}\| \cdot \sigma \sqrt{2\pi}/q)^2\right)$

ヘロン 人間 とくほ とくほ とう

Dual-Lattice Distinguishing

• Find a short $\vec{y} \in \mathcal{L}^{\perp}$ (scaled dual *q*-ary lattice): check if $\langle \vec{y}, \vec{c} \rangle = \langle \vec{y}, \mathbf{A}^T \vec{s} + \vec{e} \rangle = \langle \vec{y}, \vec{e} \rangle$ is short.

• Distinguishing advantage: $\varepsilon \approx \exp\left(-\pi \cdot (\|\vec{y}\| \cdot \sigma \sqrt{2\pi}/q)^2\right)$

イロト イポト イヨト イヨト

Reduction + Decoding

Reduce the primal basis

- Then carry out Klein's algorithm to find closest vector (or a pruned version [LN13])
- Most effective method in practice

くロト (過) (目) (日)

Reduction + Decoding

- Reduce the primal basis
- Then carry out Klein's algorithm to find closest vector (or a pruned version [LN13])
- Most effective method in practice

ヘロト 人間 ト ヘヨト ヘヨト

Reduction + Decoding

- Reduce the primal basis
- Then carry out Klein's algorithm to find closest vector (or a pruned version [LN13])
- Most effective method in practice

イロト イ理ト イヨト イヨト

Embedding and BKW

• Embedding attack: Given a matrix-LWE sample (\mathbf{A}, \vec{c}) we construct

$$\mathbf{A}' = \begin{pmatrix} \mathbf{I} & \mathbf{A} \\ \mathbf{0} & q\mathbf{I} \end{pmatrix} \mathbf{P}^{-1}$$

Then construct

$$\mathbf{B} = \left(\begin{array}{cc} \mathbf{A}' & \mathbf{0} \\ \mathbf{t} & t \end{array}\right)$$

- [t t] shortest vector in L(B). Second minimum is first minimum of L(A'). Resulting unique-SVP instance somehow easier...
- BKW: previous talk also breaks the proposed parameters but not as effectively as lattice attacks

ヘロト 人間 ト ヘヨト ヘヨト

Embedding and BKW

• Embedding attack: Given a matrix-LWE sample (\mathbf{A}, \vec{c}) we construct

$$\mathbf{A}' = \left(\begin{array}{cc} \mathbf{I} & \overline{\mathbf{A}} \\ \mathbf{0} & q\mathbf{I} \end{array}\right) \mathbf{P}^{-1}$$

Then construct

$$\mathbf{B} = \left(\begin{array}{cc} \mathbf{A}' & \mathbf{0} \\ \mathbf{t} & t \end{array}\right)$$

- [t t] shortest vector in L(B). Second minimum is first minimum of L(A'). Resulting unique-SVP instance somehow easier...
- BKW: previous talk also breaks the proposed parameters but not as effectively as lattice attacks

イロト イポト イヨト イヨト

Embedding and BKW

• Embedding attack: Given a matrix-LWE sample (\mathbf{A}, \vec{c}) we construct

$$\mathbf{A}' = \left(egin{array}{cc} \mathbf{I} & \overline{\mathbf{A}} \ \mathbf{0} & q\mathbf{I} \end{array}
ight) \mathbf{P}^{-1}$$

Then construct

$$\mathbf{B} = \left(\begin{array}{cc} \mathbf{A}' & \mathbf{0} \\ \mathbf{t} & t \end{array}\right)$$

- [t t] shortest vector in L(B). Second minimum is first minimum of L(A'). Resulting unique-SVP instance somehow easier...
- BKW: previous talk also breaks the proposed parameters but not as effectively as lattice attacks

イロト イポト イヨト イヨト

Embedding and BKW

• Embedding attack: Given a matrix-LWE sample (\mathbf{A}, \vec{c}) we construct

$$\mathbf{A}' = \left(\begin{array}{cc} \mathbf{I} & \overline{\mathbf{A}} \\ \mathbf{0} & q\mathbf{I} \end{array}\right) \mathbf{P}^{-1}$$

Then construct

$$\mathbf{B} = \left(\begin{array}{cc} \mathbf{A}' & \mathbf{0} \\ \mathbf{t} & t \end{array}\right)$$

- [t t] shortest vector in L(B). Second minimum is first minimum of L(A'). Resulting unique-SVP instance somehow easier...
- BKW: previous talk also breaks the proposed parameters but not as effectively as lattice attacks

ヨト イヨト

Embedding and BKW

• Embedding attack: Given a matrix-LWE sample (\mathbf{A}, \vec{c}) we construct

$$\mathbf{A}' = \left(\begin{array}{cc} \mathbf{I} & \overline{\mathbf{A}} \\ \mathbf{0} & q\mathbf{I} \end{array}\right) \mathbf{P}^{-1}$$

Then construct

$$\mathbf{B} = \left(\begin{array}{cc} \mathbf{A}' & \mathbf{0} \\ \mathbf{t} & t \end{array}\right)$$

- [t t] shortest vector in L(B). Second minimum is first minimum of L(A'). Resulting unique-SVP instance somehow easier...
- BKW: previous talk also breaks the proposed parameters but not as effectively as lattice attacks

< 🗆 > < 🗇 >

Estimating LWE Security (ii)

Simply, characterise 'strength' of lattice reduction by Hermite root factor, δ_0 . $\delta_0^{LLL} \approx 1.0219$, $\delta_0^{BKZ-20} \approx 1.0128$ $\delta_0 = 1.009$: roughly limit of current algorithms. $\delta_0 = 1.005$: "well-beyond reach".

Running time of BKZ?

- Still problematic to predict too many variables. Block-size, choice of SVP sub-routine (further variables), pre-processing of local bases, early termination etc.
- BKZ 2.0 simulator, simple model of Lindner & Peikert
- $\log_2 T_{\rm sec} = 1.8 / \log_2 \delta_0 110$

ヘロン 人間 とくほ とくほ とう

Estimating LWE Security (ii)

Simply, characterise 'strength' of lattice reduction by Hermite root factor, δ_0 . $\delta_0^{LLL} \approx 1.0219$, $\delta_0^{BKZ-20} \approx 1.0128$ $\delta_0 = 1.009$: roughly limit of current algorithms. $\delta_0 = 1.005$: "well-beyond reach".

Running time of BKZ?

- Still problematic to predict too many variables. Block-size, choice of SVP sub-routine (further variables), pre-processing of local bases, early termination etc.
- BKZ 2.0 simulator, simple model of Lindner & Peikert
- $\log_2 T_{\rm sec} = 1.8 / \log_2 \delta_0 110$

ヘロン 人間 とくほ とくほ とう

Estimating LWE Security (ii)

Simply, characterise 'strength' of lattice reduction by Hermite root factor, δ_0 . $\delta_0^{LLL} \approx 1.0219$, $\delta_0^{BKZ-20} \approx 1.0128$ $\delta_0 = 1.009$: roughly limit of current algorithms. $\delta_0 = 1.005$: "well-beyond reach".

Running time of BKZ?

- Still problematic to predict too many variables. Block-size, choice of SVP sub-routine (further variables), pre-processing of local bases, early termination etc.
- BKZ 2.0 simulator, simple model of Lindner & Peikert
- $\log_2 T_{\text{sec}} = 1.8 / \log_2 \delta_0 110$

ヘロト 人間 ト ヘヨト ヘヨト

Estimating LWE Security (ii)

Simply, characterise 'strength' of lattice reduction by Hermite root factor, δ_0 . $\delta_0^{LLL} \approx 1.0219$, $\delta_0^{BKZ-20} \approx 1.0128$ $\delta_0 = 1.009$: roughly limit of current algorithms. $\delta_0 = 1.005$: "well-beyond reach".

Running time of BKZ?

- Still problematic to predict too many variables. Block-size, choice of SVP sub-routine (further variables), pre-processing of local bases, early termination etc.
- BKZ 2.0 simulator, simple model of Lindner & Peikert
- $\log_2 T_{\rm sec} = 1.8 / \log_2 \delta_0 110$

イロト イポト イヨト イヨト

Estimating LWE Security (ii)

Simply, characterise 'strength' of lattice reduction by Hermite root factor, δ_0 . $\delta_0^{LLL} \approx 1.0219$, $\delta_0^{BKZ-20} \approx 1.0128$ $\delta_0 = 1.009$: roughly limit of current algorithms. $\delta_0 = 1.005$: "well-beyond reach".

Running time of BKZ?

- Still problematic to predict too many variables. Block-size, choice of SVP sub-routine (further variables), pre-processing of local bases, early termination etc.
- BKZ 2.0 simulator, simple model of Lindner & Peikert
- $\log_2 T_{\rm sec} = 1.8 / \log_2 \delta_0 110$

イロト イポト イヨト イヨト

Estimating LWE Security (ii)

Simply, characterise 'strength' of lattice reduction by Hermite root factor, δ_0 . $\delta_0^{LLL} \approx 1.0219$, $\delta_0^{BKZ-20} \approx 1.0128$ $\delta_0 = 1.009$: roughly limit of current algorithms. $\delta_0 = 1.005$: "well-beyond reach".

Running time of BKZ?

- Still problematic to predict too many variables. Block-size, choice of SVP sub-routine (further variables), pre-processing of local bases, early termination etc.
- BKZ 2.0 simulator, simple model of Lindner & Peikert

•
$$\log_2 T_{\rm sec} = 1.8 / \log_2 \delta_0 - 110$$

< □ > < 同 > < 三 > <

HLY Security Conditions (i)

HLY Conditions

- $k \cdot \zeta \cdot n^{2+\lambda} \cdot m \cdot \beta^2 \le q/4$ (correct decryption)
- *m* · log(2*n*^λ + 1) ≥ (*n* + 1) log *q* + 2*k* (hardness of subset sum problem)
- n, m, q, ζ, β satisfy MQ hardness assumption

For security against the distinguishing attack:

LWE-derived Conditions

•
$$\exp\left(-\frac{\pi^2}{12\beta^2}\cdot(ck)^{-2}\cdot n^{-4}\cdot 2^{3.6cn/(\tau+78.9)}\right) = d$$

ヘロト 人間 とくほとくほとう

HLY Security Conditions (i)

HLY Conditions

- $k \cdot \zeta \cdot n^{2+\lambda} \cdot m \cdot \beta^2 \le q/4$ (correct decryption)
- *m* · log(2*n*^λ + 1) ≥ (*n* + 1) log *q* + 2*k* (hardness of subset sum problem)
- n, m, q, ζ, β satisfy MQ hardness assumption

For security against the distinguishing attack:

_WE-derived Conditions

•
$$\exp\left(-\frac{\pi^2}{12\beta^2}\cdot(ck)^{-2}\cdot n^{-4}\cdot 2^{3.6cn/(\tau+78.9)}\right) = d$$

ヘロト 人間 とくほとく ほとう

HLY Security Conditions (i)

HLY Conditions

- $k \cdot \zeta \cdot n^{2+\lambda} \cdot m \cdot \beta^2 \le q/4$ (correct decryption)
- *m* · log(2*n*^λ + 1) ≥ (*n* + 1) log *q* + 2*k* (hardness of subset sum problem)
- n, m, q, ζ, β satisfy MQ hardness assumption

For security against the distinguishing attack:

LWE-derived Conditions

•
$$\exp\left(-\frac{\pi^2}{12\beta^2}\cdot(ck)^{-2}\cdot n^{-4}\cdot 2^{3.6cn/(\tau+78.9)}\right)=d$$

・ロト ・ 理 ト ・ ヨ ト ・

Implications for Required Key Sizes

To reconcile HLY with security against the distinguishing attack, we have the following:

- 80-bit security \Rightarrow (*n* = 1140) \Rightarrow public-key size: 1.03 GB
- 128-bit security \Rightarrow (n = 1530) \Rightarrow public-key size: 2.49 GB

イロト イポト イヨト イヨト

Conclusions

- Scheme of HLY represents an interesting and rigorous approach to construct a provably-secure MQ PKC.
- Commendable that concrete parameters were proposed.
- However the extra structure required to describe it as MQ instead of LWE leads to prohibitive key sizes
- Ring-LWE analogue?

ヘロト 人間 ト ヘヨト ヘヨト

Questions?

Robert Fitzpatrick PKC 2014, Buenos Aires