Solving Random Subset Sum Problem by *l_p*-norm SVP Oracle

Gengran Hu joint work with Yanbin Pan, Feng Zhang

Key Laboratory of Mathematics Mechanization, NCMIS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences

> PKC2014 March 28, 2014

Gengran Hu joint work with Yanbin Pan, Feng Zhang Solving Random Subset Sum Problem by *l*_p-norm SVP Oracle

イロト イポト イヨト イヨト

3 Solving RSSP by l_p -norm SVP Oracle

Gengran Hu joint work with Yanbin Pan, Feng Zhang Solving Random Subset Sum Problem by *l*_p-norm SVP Oracle

(日)

2 Random Subset Sum Problem

3 Solving RSSP by *l_p*-norm SVP Oracle

Gengran Hu joint work with Yanbin Pan, Feng Zhang Solving Random Subset Sum Problem by *l*_p-norm SVP Oracle

(日)

Lattices

Definition (Lattice)

Given a matrix $B = (b_{ij}) \in \mathbb{R}^{m \times n}$ with rank *n*, the lattice $\mathcal{L}(B)$ spanned by the columns of *B* is

$$\mathcal{L}(B) = \{Bx = \sum_{i=1}^n x_i b_i | x_i \in \mathbb{Z}\},\$$

where b_i is the *i*-th column of *B*.

• Lattices can also be regarded as discrete subgroups of \mathbb{R}^m .

・ロト ・ 同ト ・ ヨト ・ ヨト

э.

Shortest Vector Problem

Definition (*l_p*-norm SVP)

Given a lattice basis *B*, the l_p -norm SVP asks to find a nonzero vector in $\mathcal{L}(B)$ with the smallest l_p -norm.

- SVP is one of the most famous computational problems of lattice.
- SVP's hardness is important in proving the security of almost all the lattice-based cryptography.

・ロット (雪) (日) (日)

Shortest Vector Problem

Definition (*l_p*-norm SVP)

Given a lattice basis *B*, the l_p -norm SVP asks to find a nonzero vector in $\mathcal{L}(B)$ with the smallest l_p -norm.

- SVP is one of the most famous computational problems of lattice.
- SVP's hardness is important in proving the security of almost all the lattice-based cryptography.

ヘロン 人間 とくほ とくほ とう

Hardness of SVP

- The *l*_∞-norm SVP is NP-hard under deterministic reduction.
- However, SVP for other norms can only be proved to be NP-hard under randomized reduction. (Ajtai 1998, Micciancio 2001, 2012)

Gengran Hu joint work with Yanbin Pan, Feng Zhang Solving Random Subset Sum Problem by *l*_p-norm SVP Oracle

э.

Outline

3 Solving RSSP by lp-norm SVP Oracle

Gengran Hu joint work with Yanbin Pan, Feng Zhang Solving Random Subset Sum Problem by Ip-norm SVP Oracle

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Subset Sum Problem

Definition (SSP)

Given $\mathbf{a} = (a_1, a_2 \dots a_n)$ in $[1, A]^n$ and $s = \sum_{i=1}^n e_i a_i$ where $\mathbf{e} = (e_1 e_2 \dots e_n) \in \{0, 1\}^n$ is independent of \mathbf{a} , SSP refers to finding some $\mathbf{c} = (c_1 c_2 \dots c_n) \in \{0, 1\}^n$ s.t. $s = \sum_{i=1}^n c_i a_i$ without knowing \mathbf{e} .

• SSP is a well-known NP-hard problem.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● のへの

Subset Sum Problem

Definition (SSP)

Given $\mathbf{a} = (a_1, a_2 \dots a_n)$ in $[1, A]^n$ and $s = \sum_{i=1}^n e_i a_i$ where $\mathbf{e} = (e_1 e_2 \dots e_n) \in \{0, 1\}^n$ is independent of \mathbf{a} , SSP refers to finding some $\mathbf{c} = (c_1 c_2 \dots c_n) \in \{0, 1\}^n$ s.t. $s = \sum_{i=1}^n c_i a_i$ without knowing \mathbf{e} .

• SSP is a well-known NP-hard problem.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Random Subset Sum Problem

- When all of the elements in SSP, say *a*₁, *a*₂... *a_n* are uniformly random over [1, *A*], SSP becomes RSSP, which is also a significant computational problem.
- The density of such random subset sum instance is defined as

$$\delta = \frac{n}{\log_2 A}.$$

ヘロト ヘアト ヘヨト ヘヨト

Random Subset Sum Problem

- When all of the elements in SSP, say a₁, a₂... a_n are uniformly random over [1, A], SSP becomes RSSP, which is also a significant computational problem.
- The density of such random subset sum instance is defined as

$$\delta = \frac{n}{\log_2 A}.$$

< 口 > < 同 > < 臣 > < 臣 > -

Hardness of RSSP

The hardness of RSSP is depending on its density:

- If δ < 1/n, RSSP can be efficiently solved by LLL algorithm. (Lagarias & Odlyzko, 1985)
- If δ > Ω(ⁿ/_{log₂n}), RSSP can be efficiently solved by dynamic programming.
- The hardest instances of RSSP lie in those with $\delta = 1$. (Impagliazzo & Naor, 1996)

・ロト ・ 同ト ・ ヨト ・ ヨー ・ つへつ

Hardness of RSSP

The hardness of RSSP is depending on its density:

- If δ < 1/n, RSSP can be efficiently solved by LLL algorithm. (Lagarias & Odlyzko, 1985)
- If δ > Ω(<u>n</u>log₂n), RSSP can be efficiently solved by dynamic programming.
- The hardest instances of RSSP lie in those with $\delta = 1$. (Impagliazzo & Naor, 1996)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Solving RSSP by SVP oracle

Given an l_p -norm SVP oracle, RSSP can be almost solved with:

- $\delta < 0.9408(p = 2)$.(Coster et al, 1992)
- $\delta < +\infty(p = +\infty).$
- Q1:How to improve the density bound from 0.9408 to 1 or larger?
- Q2:How to explain the gap between 0.9408 and $+\infty$?

Solving RSSP by SVP oracle

Given an l_p -norm SVP oracle, RSSP can be almost solved with:

- $\delta < 0.9408 (p = 2)$.(Coster et al, 1992)
- $\delta < +\infty(p = +\infty).$
- Q1:How to improve the density bound from 0.9408 to 1 or larger?
- Q2:How to explain the gap between 0.9408 and $+\infty$?

◆□ → ◆□ → ◆ □ → ◆ □ → ◆ ○ ◆ ◆ ○ ◆

Solving RSSP by SVP oracle

We answer the second question:

 For p ∈ Z⁺, p ≥ 2, given the l_p-norm SVP oracle, almost all RSSP instances can be solved with density δ s.t.

$$\delta < \delta_p = \frac{1}{2^p} \log_2(2^{p+1} - 2) + \log_2(1 + \frac{1}{(2^p - 1)(1 - (\frac{1}{2^{p+1} - 2})^{(2^p - 1)})}).$$

(Asymptotically, $\delta_p \approx 2^p/(p+2)$)

< 口 > < 同 > < 臣 > < 臣 > -

Solving RSSP by SVP oracle

• The table below gives the values of δ_p for p from two to five:

p	2	3	4	5
δ_p	0.9408	1.4957	2.5013	4.3122

• More specifically, we have $\delta_p > 1 (p \ge 3)$ and

 $\delta_p \to +\infty (p \to +\infty).$

Solving RSSP by SVP oracle

• The table below gives the values of δ_p for p from two to five:

p	2	3	4	5
δ_p	0.9408	1.4957	2.5013	4.3122

• More specifically, we have $\delta_p > 1 (p \ge 3)$ and

$$\delta_p \to +\infty (p \to +\infty).$$

・ロト ・得 ト ・ヨト ・ヨト

Outline

2 Random Subset Sum Problem

3 Solving RSSP by l_p -norm SVP Oracle

Gengran Hu joint work with Yanbin Pan, Feng Zhang Solving Random Subset Sum Problem by Ip-norm SVP Oracle

(日)

Revisiting RSSP

- An RSSP instance consists of a = (a₁, a₂...a_n) distributed uniformly in [1, A]ⁿ and s = ∑_{i=1}ⁿ e_ia_i with private
 e = (e₁e₂...e_n) ∈ {0, 1}ⁿ.
- The density of this instance is

$$\delta = \frac{n}{\log_2 A}.$$

• Our goal is to find some $\mathbf{c} = (c_1 c_2 \dots c_n) \in \{0, 1\}^n$ s.t. $s = \sum_{i=1}^n c_i a_i.$

Constructing respective lattice

 From RSSP instance, we construct the lattice basis matrix to be

$$B = \begin{pmatrix} 1 & 0 & \dots & 0 & \frac{1}{2} \\ 0 & 1 & \dots & 0 & \frac{1}{2} \\ \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & \dots & 1 & \frac{1}{2} \\ 0 & 0 & \dots & 0 & \frac{1}{2} \\ Na_1 & Na_2 & \dots & Na_n & Ns \end{pmatrix},$$

where $N > \frac{1}{2}(n+1)^{\frac{1}{p}}$ is an positive integer.

<ロ> (四) (四) (三) (三) (三) (三)

Calling SVP oracle

- we see $\mathcal{L}(B)$ contains a corresponding short lattice vector $\mathbf{e}' = (e'_1 \dots e'_n, -\frac{1}{2}, 0)$ with $e'_i = e_i \frac{1}{2} \in \{-\frac{1}{2}, \frac{1}{2}\}.$
- If SVP oracle returns $\pm e'$, we can recover our e from $\pm e'$.
- In fact, Considering the set
 S_n = {(y₁, y₂ ... y_{n+1}, 0)^T| |y_i| = 1/2}, if our SVP oracle returns an x ∈ S_n, we can also recover an solution c of RSSP.
- What if $\mathbf{x} \notin S_n$?

・ロト ・ 同ト ・ ヨト ・ ヨー ・ つへつ

Calling SVP oracle

- we see $\mathcal{L}(B)$ contains a corresponding short lattice vector $\mathbf{e}' = (e'_1 \dots e'_n, -\frac{1}{2}, 0)$ with $e'_i = e_i \frac{1}{2} \in \{-\frac{1}{2}, \frac{1}{2}\}.$
- If SVP oracle returns $\pm e'$, we can recover our e from $\pm e'$.
- In fact, Considering the set $S_n = \{(y_1, y_2 \dots y_{n+1}, 0)^T | |y_i| = \frac{1}{2}\}$, if our SVP oracle returns an $\mathbf{x} \in S_n$, we can also recover an solution **c** of RSSP.
- What if $\mathbf{x} \notin S_n$?

・ロト ・ 同ト ・ ヨト ・ ヨー ・ つへつ

Failure Probability

• We fail to solve RSSP if $\mathbf{x} \notin S_n$.

• Denote *P* the probability of $\mathbf{x} \notin S_n$, we can still almost solve RSSP if $P \le 1/2^{\Omega(n)}$.

Gengran Hu joint work with Yanbin Pan, Feng Zhang Solving Random Subset Sum Problem by *l*_p-norm SVP Oracle

Failure Probability

- We fail to solve RSSP if $\mathbf{x} \notin S_n$.
- Denote *P* the probability of $\mathbf{x} \notin S_n$, we can still almost solve RSSP if $P \le 1/2^{\Omega(n)}$.

Failure Probability

• Formally,

 $P = \Pr(\exists \mathbf{x} \quad \text{s.t.} \quad 0 < ||\mathbf{x}||_p \le ||\mathbf{e}'||_p, \mathbf{x} \in \mathcal{L}(B) \setminus S_n).$

We can bound P as

$$P \leq \sum_{0 < \|\mathbf{x}\|_{p} \leq \|\mathbf{e}'\|_{p}} \Pr(\mathbf{x} \in \mathcal{L}(B) \setminus S_{n})$$

$$\leq \max_{0 < \|\mathbf{x}\|_{p} \leq \|\mathbf{e}'\|_{p}} \Pr(\mathbf{x} \in \mathcal{L}(B) \setminus S_{n}) \cdot \#\{\mathbf{x} \in \mathbb{Z}^{n+1} \| \|\mathbf{x}\|_{p} \leq \frac{1}{2}(n+1)^{\frac{1}{p}}$$

}

イロト イポト イヨト イヨト

Gengran Hu joint work with Yanbin Pan, Feng Zhang Solving Random Subset Sum Problem by *l*_p-norm SVP Oracle

Failure Probability

Considering any $\mathbf{x} \in \mathcal{L}(B) \setminus S_n$, taking $z_i = x_i + 2x_{n+1}e_i - x_{n+1}$, then $\sum_{i=1}^n z_i a_i = 0$ and $\exists j$ s.t. $z_j \neq 0$. Let $z' = -\sum_{i \neq j} z_i a_i/z_j$, then

 $\max_{0 < ||\mathbf{x}||_{p} \le ||\mathbf{e}'||_{p}} \Pr(\mathbf{x} \in \mathcal{L}(B) \setminus S_{n}) \le \Pr(\sum_{i=1}^{n} z_{i}a_{i} = 0, z_{j} \neq 0)$ $= \Pr(a_i = z')$ $=\sum_{i=1}^{A} \Pr(a_{j}=k) \cdot \Pr(z^{'}=k)$ $=\frac{1}{A}\sum_{i=1}^{A}\Pr(z^{'}=k)$ $\leq \frac{1}{4}$.

Gengran Hu joint work with Yanbin Pan, Feng Zhang

Solving Random Subset Sum Problem by *l_p*-norm SVP Oracle

Failure Probability

• Thus we've obtained

$$P \le \frac{1}{A} \cdot \#\{\mathbf{x} \in \mathbb{Z}^{n+1} |||\mathbf{x}||_p \le \frac{1}{2}(n+1)^{\frac{1}{p}}\}$$

Gengran Hu joint work with Yanbin Pan, Feng Zhang Solving Random Subset Sum Problem by *l_p*-norm SVP Oracle

Failure Probability

• If we find suitable u_p s.t. $#\{\mathbf{x} \in \mathbb{Z}^n |||\mathbf{x}||_p \le \frac{1}{2}n^{\frac{1}{p}}\} \le 2^{u_p n}$ for every *n*, then

J

$$P \le \frac{2^{u_p(n+1)}}{A} = \frac{2^{u_p(n+1)}}{2^{(\frac{1}{\delta}n)}}$$

When δ < 1/u_p ≜ δ_p, P ≤ 1/2^{Ω(n)}, thus we can solve RSSP with high probability.

Gengran Hu joint work with Yanbin Pan, Feng Zhang Solving Random Subset Sum Problem by *lp*-norm SVP Oracle

イロト 不得 とくほ とくほう

Estimating integer points in *l_p* ball

• We can find an upper bound

$$u_p = \frac{1}{2^p} \log_2(2^{p+1} - 2) + \log_2(1 + \frac{1}{(2^p - 1)(1 - (\frac{1}{2^{p+1} - 2})^{(2^p - 1)})})$$

(Asymptotically, $u_p \approx (p+2)/2^p$) to make sure

$$\#\{\mathbf{x}\in\mathbb{Z}^{n}|||\mathbf{x}||_{p}\leq\frac{1}{2}n^{\frac{1}{p}}\}\leq2^{u_{p}n}.$$

• On the other hand, for large enough *n*, there is a lower bound:

$$#\{\mathbf{x} \in \mathbb{Z}^n |||\mathbf{x}||_p \le \frac{1}{2}n^{\frac{1}{p}}\} \ge \frac{1}{\Omega(n^{3/2})}2^{l_p n}.$$

・ロト ・ ア・ ・ ヨト ・ ヨト

Estimating integer points in *l_p* ball

• The u_p and l_p are so close:

p	2	3	4	5
up	1.0613	0.6686	0.3998	0.2319
l_p	1.0630	0.6686	0.3998	0.2319

In fact, we can prove the error bound:

$$\frac{u_p - l_p}{u_p} < (2^p - 1)^{-(2^p - 1)}.$$

イロト イポト イヨト イヨト

Conclusion

Since RSSP with density = 1 is the hardest and δ_p > 1 when p ≥ 3, we have a probabilistic reduction from RSSP to l_p-norm SVP(p ≥ 3).

Gengran Hu joint work with Yanbin Pan, Feng Zhang Solving Random Subset Sum Problem by *lp*-norm SVP Oracle

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Open Problems

- Proving RSSP is NP-hard will lead to another probabilistic reduction to show *l_p*-norm SVP(*p* ≥ 3) is NP-hard.
- Finding SVP algorithm for *l*_p-norm is also interesting.

Gengran Hu joint work with Yanbin Pan, Feng Zhang Solving Random Subset Sum Problem by Ip-norm SVP Oracle

イロト イポト イヨト イヨト

Thanks!

Gengran Hu joint work with Yanbin Pan, Feng Zhang Solving Random Subset Sum Problem by Ip-norm SVP Oracl

(a)