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Motivation and Goal(s) !

✤  Elliptic curves (standard) and genus 2 hyper-elliptic curves (object of 
research) over prime fields: similar performance [Gaudry07] [BCHL13]"

✤  Security:   Pollard rho                       Using automorphisms"

1.  Estimate practical speed-up using automorphisms in genus 1 and genus 2!
Tradeoff: reduced search space vs. more costly iteration"

2.  Estimate complexity of the attack on 4 curves (128-bit security)"

3.  Implement Pollard rho for genus 1 and genus 2 curves (x86 64-bit)"
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Curves used!
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NISTp-256 !
Genus: 1!
Field size: 256 bits!
#Aut: 2!
Theoretical security: 127.8 bits!

BN254 (pairing friendly)!
Genus: 1!
Field size: 254 bits!
#Aut: 6!
Theoretical security: 126.4 bits!
!

Generic-1271!
Genus: 2!
Field size: 127 bits!
#Aut: 2!
Theoretical security: 126.8 bits!
"

GLV4-BK!
Genus: 2!
Field size: 127 bits!
#Aut: 10!
Theoretical security: 125.7 bits!
"



Elliptic and genus 2 hyperelliptic curves in one slide… !
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y2=x3+a1x+a0!
#E(Fp) ≈ p"
Weierstrass coordinates: (x,y) !
Affine addition: 2m+1s+6a+1i"
Affine doubling: 2m+2s+7a+1i"
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y2=x5+b4x4+b3x3+b2x2+b1x+b0!
#Jac(C(Fp)) ≈ p2"
Mumford coordinates: (u1,u0,v1,v0) !
Affine addition: 17m+4s+48a+1i"
Affine doubling: 19m+6s+52a+1i"



Pollard’s rho algorithm [P78]!

✤  Discrete log: given h in <g> = G 
find integer k such that h=kg."

✤  Ideal rho, random walk:!
pi=aig+bih for i=0,1,2,…!
Expect collision pi=pj (j<i) in             !
           steps, k = (ai-aj)/(bj-bi)."

✤  r-adding walk: table of random 
fk=akg+bkh, 0 ≤ k ≤ r-1.!
p0=a0g, pi=pi-1+fl(pi-1) for i=1,2,…!
with 0 ≤ l(pi) ≤ r-1 (pi has index l(pi))."
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Parallelizable Pollard’s rho [VOW97]!

✤  Run m independent adding walks 
using the same table.!
Define set of distinguished points 
(easy to check property)."

✤  Each node reports dp’s to central node 
that checks for dp collision (m-fold 
speed-up if run on m nodes )."

✤  Simultaneous inversion trick [M87]: 
(m)inv=3(m-1)mul+1inv.!
Extra steps due to dp’s: ≈ dm."
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Using automorphisms [WZ99],[DGM99] !

✤  The group of curve automorphisms define equivalence classes of 
points. The size of an equivalence class is the size of the Aut group"

✤  Idea: search for collision of equivalence classes of size #Aut!

✤  If #Aut = c the search space is reduce by a factor c  (      speed-up)"

✤  Ex., negation map: p ~ -p, search for collision of ±p (      speed-up)"

✤  #Aut for cryptographically interesting curves over prime fields  
Elliptic curves: min=2, max=6!
Genus 2 Hyperelliptic curves: min=2, max=10"

7/13"

�
G

�
�



Adding walk with automorphisms!
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f0 = a0g+b0h"
f1 = a1g+b1h"
…"
fj = ajg+bjh"
…"
fr-1 = ar-1g+br-1h"

l(pi)=j"

Selection (remark: -(x,y)=(x,-y) on E, -(u1,u0,v1,v0) =(u1,u0,-v1,-v0) on Jac(C))"
1.  #Aut = 2: choose point with odd value in y (v1) coord."
2.  #Aut > 2: choose ±Φk(pi+fj) with least value in x (u1) and odd value in y (v1)."

pi"

For 0 ≤ k < (#Aut)/2 
compute ±Φk(pi+fj) ~ pi+fj."
Select one point uniquely."
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Selected curves: iteration cost !
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NISTp-256!
- (neg): (x,y) -> (x,-y)!
Aut: {id,-}!
Regular iteration: 6m!
Aut overhead: negligible"
Slowdown factor: 1!

BN254!
±ϕi: (x,y) -> (ξix, ±y), ξ3=1 mod p !
Aut: {id, -, -ϕ, ϕ,  -ϕ2, ϕ2}!
Regular iteration: 6m!
Aut overhead: 1m!
Slowdown factor: 0.857!

Generic-1271!
- (neg): (u1,u0,v1,v0)->(u1,u0,-v1,-v0) !
Aut: {id,-}!
Regular iteration: 24m!
Aut overhead: negligible"
Slowdown factor: 1!

GLV4-BK!
±ϕi: (u1,u0,v1,v0) -> (ξiu1, ξ2iu0, ±ξ4iv1, ±v0), ξ5=1 mod p!

Aut: {id, -, -ϕ, ϕ, …, -ϕ4, ϕ4}!
Regular iteration: 24m!
Aut overhead: 6m + (1/5)m!
Slowdown factor: 0.795!
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Fruitless cycles!

✤  Adding walk with automorphisms: 
fruitless cycles!

✤  Fruitless cycle sizes: all multiples!
of primes dividing c=#Aut!

✤  The shorter the more likely…"
Most frequent: 2-cycles, P=1/(cr) !

✤  The larger r, the less likely are the 
cycles, but will eventually occur…"
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          2-cycle example!

pi�1 pi

If (2): l(pi) = j then (3): pi+1 = pi�1

P ((1)) = 1/c and P ((2)) = 1/r so

P ((3)) = P ((1)) · P ((2)) = 1/(cr)

After computing l(pi�1) = j and pi�1+fj
assume (1): rep{pi�1 + fj} = �pi�1 � fj

�pi�1 � fj

rep({pi + fj}) = pi�1



Cycle reduction, detection and escape!

✤  Detection and escape by doubling a point in the cycle !
 (lcm): After α iterations record point p. After β more iterations check 
if current point is equal to p. Detects cycles of length divisible by β!

✤  Reduction"
No: just detect and escape more often. Good for SIMD archs [BLS11]. !

✤  Best combination depends on architecture used…"
Analysis of overhead given memory constraints + tests  "
"
!

!
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Extra table: f’i for 0≤i<r. If l(pi)=l(pi+1)=k, set  pi+1=pi+f’k.  P=1/(cr3).!
"

(trail): After α iterations record trail of β points. Look for collision.!
Detects cycles of length divisible by 2 up to β. !



Performance using automorphisms!
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Curve" Ideal 
speed-up"

Updated"
speed-up"

Measured"
speed-up1"

Core-years1" Relative 
security"

NIST CurveP-256" 0.947" 3.946 x 1024" 128.0!
BN254" 0.857" 0.790 " 9.486 x 1023" 125.9"
Generic 1271" 0.940" 1.736 x 1024" 126.8"
4GLV127-BK"  0.795" 0.784" 1.309 x 1024" 126.4"
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Without" 32" 2048"

With" 1024" 2048"
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1Intel Core i7-3520M (Ivy Bridge), 2893.484 MHz"



Conclusions!
✤  In all cases automorphisms can be profitably used in practice, but the 

ideal speed-up is not achieved due to increased iteration complexity."

✤  Better understanding of the practical trade-off in the case of genus 2 
hyperelliptic curves and elliptic curves with #Aut > 2, like BN254."

✤  Useful analysis when constant factors matter, e.g., solving ECDLP 
challenges."
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