Elliptic and Hyperelliptic Curves: a Practical Security Comparison

Microsoft® Research

Joppe W. Bos (Microsoft Research), Craig Costello (Microsoft Research), Andrea Miele (EPFL)

Motivation and Goal(s)

- Elliptic curves (standard) and genus 2 hyper-elliptic curves (object of research) over prime fields: similar performance [Gaudry07] [BCHL13]
- Security: Pollard rho $O(\sqrt{|G|})$ Using automorphisms $\approx \sqrt{\frac{\pi |G|}{2(\# Aut)}}$
- 1. Estimate practical speed-up using automorphisms in genus 1 and genus 2 Tradeoff: reduced search space vs. more costly iteration
- 2. Estimate complexity of the attack on 4 curves (128-bit security)
- 3. Implement Pollard rho for genus 1 and genus 2 curves (x86 64-bit)

Curves used

NISTp-256	BN254 (pairing friendly)
Genus: 1	Genus: 1
Field size: 256 bits	Field size: 254 bits
# Aut: 2	# Aut: 6
Theoretical security: 127.8 bits	Theoretical security: 126.4 bits
Generic-1271	GLV4-BK
Genus: 2	Genus: 2
Field size: 127 bits	Field size: 127 bits
# Aut: 2	# Aut: 10
Theoretical security: 126.8 bits	Theoretical security: 125.7 bits

Elliptic and genus 2 hyperelliptic curves in one slide...

 $y^2 = x^3 + a_1 x + a_0$ #E(F_p) \approx p Weierstrass coordinates: (x,y) Affine addition: 2m+1s+6a+1i Affine doubling: 2m+2s+7a+1i

 $y^2 = x^5 + b_4 x^4 + b_3 x^3 + b_2 x^2 + b_1 x + b_0$ #Jac(C(F_p)) \approx p² Mumford coordinates: (u₁, u₀, v₁, v₀) Affine addition: 17m+4s+48a+1i Affine doubling: 19m+6s+52a+1i

Pollard's rho algorithm [P78]

- Discrete log: given h in <g> = G
 find integer k such that h=kg.
- * Ideal rho, random walk: $p_i=a_ig+b_ih$ for i=0,1,2,...Expect collision $p_i=p_j$ (j<i) in $\sqrt{\frac{\pi|G|}{2}}$ steps, $k = (a_i-a_j)/(b_j-b_i)$.
- * r-adding walk: table of random
 f_k=a_kg+b_kh, 0 ≤ k ≤ r-1.
 p₀=a₀g, p_i=p_{i-1}+f_{l(p_{i-1})} for i=1,2,...
 with 0 ≤ l(p_i) ≤ r-1 (p_i has index l(p_i)).

Parallelizable Pollard's rho [VOW97]

- Run m independent adding walks using the same table.
 Define set of distinguished points (easy to check property).
- Each node reports dp's to central node that checks for dp collision (m-fold speed-up if run on m nodes).
- Simultaneous inversion trick [M87]: (m)inv=3(m-1)mul+1inv.
 Extra steps due to dp's: ≈ dm.

Using automorphisms [WZ99],[DGM99]

- The group of curve automorphisms define equivalence classes of points. The size of an equivalence class is the size of the Aut group
- Idea: search for collision of equivalence classes of size # Aut
- If # Aut = c the search space is reduce by a factor c (\sqrt{c} speed-up)
- * Ex., negation map: $p \sim -p$, search for collision of $\pm p (\sqrt{2} \text{ speed-up})$
- # Aut for cryptographically interesting curves over prime fields Elliptic curves: min=2, max=6 Genus 2 Hyperelliptic curves: min=2, max=10

Adding walk with automorphisms

Selection (remark: -(x,y)=(x,-y) on E, -(u_1, u_0, v_1, v_0) =($u_1, u_0, -v_1, -v_0$) on Jac(C))

- 1. # Aut = 2: choose point with odd value in y (v₁) coord.
- 2. # Aut > 2: choose $\pm \Phi^k(p_i + f_j)$ with least value in $\mathbf{x}(\mathbf{u}_1)$ and odd value in $\mathbf{y}(\mathbf{v}_1)$.

Selected curves: iteration cost

NISTp-256 $\sqrt{2}$	BN254 $\sqrt{6}$
- (neg): (x,y) -> (x,-y)	$\pm \phi^{i}$: (x,y) -> ($\xi^{i}x, \pm y$), $\xi^{3}=1 \mod p$
Aut: { id,- }	Aut: { id , -, - ϕ , ϕ , - ϕ^2 , ϕ^2 }
Regular iteration: 6m	Regular iteration: 6m
Aut overhead: negligible	Aut overhead: 1m
Slowdown factor: 1	Slowdown factor: <u>0.857</u>
Generic-1271 $\sqrt{2}$ - (neg): $(u_1, u_0, v_1, v_0) \rightarrow (u_1, u_0, -v_1, -v_0)$ Aut: {id,-}Regular iteration: 24mAut overhead: negligibleSlowdown factor: 1	GLV4-BK $\sqrt{10}$ $\pm \phi^{i:} (u_1, u_0, v_1, v_0) \rightarrow (\xi^i u_1, \xi^{2i} u_0, \pm \xi^{4i} v_1, \pm v_0), \xi^5 = 1 \mod p$ Aut: { id , -, - ϕ , ϕ ,, - ϕ^4 , ϕ^4 } Regular iteration: 24m Aut overhead: 6m + (1/5)m Slowdown factor: 0.795

Fruitless cycles

- Adding walk with automorphisms:
 fruitless cycles
- Fruitless cycle sizes: all multiples
 of primes dividing c=# Aut
- The shorter the more likely...
 Most frequent: 2-cycles, P=1/(cr)
- The larger r, the less likely are the cycles, but will eventually occur...

2-cycle example

After computing $l(p_{i-1}) = j$ and $p_{i-1}+f_j$ assume (1): $rep\{p_{i-1}+f_j\} = -p_{i-1}-f_j$

If (2): $l(p_i) = j$ then (3): $p_{i+1} = p_{i-1}$

P((1)) = 1/c and P((2)) = 1/r so $P((3)) = P((1)) \cdot P((2)) = 1/(cr)$

Cycle reduction, detection and escape

Detection and escape by doubling a point in the cycle

 (lcm): After α iterations record point p. After β more iterations check
 if current point is equal to p. Detects cycles of length divisible by β

(trail): After α iterations record trail of β points. Look for collision. Detects cycles of length divisible by 2 up to β .

Reduction No: just detect and escape more often. Good for SIMD archs [BLS11].

Extra table: f'_i for $0 \le i < r$. If $l(p_i) = l(p_{i+1}) = k$, set $p_{i+1} = p_i + f'_k$. **P=1/(cr³)**.

Best combination depends on architecture used...
 Analysis of overhead given memory constraints + tests

Performance using automorphisms

Automorphisms	r	#walks	
Without	32	2048	
With	1024	2048	

Curve	Ideal speed-up	Updated speed-up	Measured speed-up ¹	Core-years ¹	Relative security
NIST CurveP-256	$\sqrt{2}$	$\sqrt{2}$	$0.947 \ \sqrt{2}$	$3.946 \ge 10^{24}$	128.0
BN254	$\sqrt{6}$	$0.857\sqrt{6}$	$0.790 \ \sqrt{6}$	$9.486 \ge 10^{23}$	125.9
Generic 1271	$\sqrt{2}$	$\sqrt{2}$	$0.940 \ \sqrt{2}$	$1.736 \ge 10^{24}$	126.8
4GLV127-BK	$\sqrt{10}$	$0.795\sqrt{10}$	$0.784 \sqrt{10}$	$1.309 \ge 10^{24}$	126.4

¹Intel Core i7-3520M (Ivy Bridge), 2893.484 MHz

Conclusions

- In all cases automorphisms can be profitably used in practice, but the ideal speed-up is not achieved due to increased iteration complexity.
- Better understanding of the practical trade-off in the case of genus 2 hyperelliptic curves and elliptic curves with # Aut > 2, like BN254.
- Useful analysis when constant factors matter, e.g., solving ECDLP challenges.

