
Joppe W. Bos (Microsoft Research), Craig Costello (Microsoft Research), !
 Andrea Miele (EPFL)"

"

 Elliptic and Hyperelliptic Curves: a
Practical Security Comparison"

1/13"

Motivation and Goal(s) !

✤  Elliptic curves (standard) and genus 2 hyper-elliptic curves (object of
research) over prime fields: similar performance [Gaudry07] [BCHL13]"

✤  Security: Pollard rho Using automorphisms"

1.  Estimate practical speed-up using automorphisms in genus 1 and genus 2!
Tradeoff: reduced search space vs. more costly iteration"

2.  Estimate complexity of the attack on 4 curves (128-bit security)"

3.  Implement Pollard rho for genus 1 and genus 2 curves (x86 64-bit)"

2/13"

O(|G |) ≈
π G

2(# Aut)

Curves used!

3/13"

NISTp-256 !
Genus: 1!
Field size: 256 bits!
#Aut: 2!
Theoretical security: 127.8 bits!

BN254 (pairing friendly)!
Genus: 1!
Field size: 254 bits!
#Aut: 6!
Theoretical security: 126.4 bits!
!

Generic-1271!
Genus: 2!
Field size: 127 bits!
#Aut: 2!
Theoretical security: 126.8 bits!
"

GLV4-BK!
Genus: 2!
Field size: 127 bits!
#Aut: 10!
Theoretical security: 125.7 bits!
"

Elliptic and genus 2 hyperelliptic curves in one slide… !

4/13"

y2=x3+a1x+a0!
#E(Fp) ≈ p"
Weierstrass coordinates: (x,y) !
Affine addition: 2m+1s+6a+1i"
Affine doubling: 2m+2s+7a+1i"

ℓ

•Q

•P

•

•
R

•P1 •
Q1

•P2

ℓ

•Q2 •

•R1

•

•R2

y2=x5+b4x4+b3x3+b2x2+b1x+b0!
#Jac(C(Fp)) ≈ p2"
Mumford coordinates: (u1,u0,v1,v0) !
Affine addition: 17m+4s+48a+1i"
Affine doubling: 19m+6s+52a+1i"

Pollard’s rho algorithm [P78]!

✤  Discrete log: given h in <g> = G
find integer k such that h=kg."

✤  Ideal rho, random walk:!
pi=aig+bih for i=0,1,2,…!
Expect collision pi=pj (j<i) in !
 steps, k = (ai-aj)/(bj-bi)."

✤  r-adding walk: table of random
fk=akg+bkh, 0 ≤ k ≤ r-1.!
p0=a0g, pi=pi-1+fl(pi-1) for i=1,2,…!
with 0 ≤ l(pi) ≤ r-1 (pi has index l(pi))."

π G
2

p0

p1

p2

p3

pµ�1

pµ

pµ+1

pµ+2 pµ+3

pµ+4

pµ+5

pµ+�

µ = � ⇡
p

⇡|G|
8

µ + � ⇡
s
⇡|G|
2

+fl(p0)

+fl(p1)

+fl(p2)

+fl(pµ�1)

+fl(pµ)

+fl(pµ+1)

+fl(pµ+2)

+fl(pµ+3)

+fl(pµ+4)

+fl(pµ+�)

5/13"

Parallelizable Pollard’s rho [VOW97]!

✤  Run m independent adding walks
using the same table.!
Define set of distinguished points
(easy to check property)."

✤  Each node reports dp’s to central node
that checks for dp collision (m-fold
speed-up if run on m nodes)."

✤  Simultaneous inversion trick [M87]:
(m)inv=3(m-1)mul+1inv.!
Extra steps due to dp’s: ≈ dm."

pi,0

pi,1

pi,2

pi,3

pj,0

pj,1

pj,2

pj,3

p�

p�+1

p�+2

p�+d

� ⇡ (µ+�)
m

P (pi is dp) = 1
d

+fl(pi,0)

+fl(pi,1)

+fl(pi,2)

+fl(pj,0)

+fl(pj,1)

+fl(pj,2)

+fl(p�)

+fl(p�+1)

6/13"

Using automorphisms [WZ99],[DGM99] !

✤  The group of curve automorphisms define equivalence classes of
points. The size of an equivalence class is the size of the Aut group"

✤  Idea: search for collision of equivalence classes of size #Aut!

✤  If #Aut = c the search space is reduce by a factor c (speed-up)"

✤  Ex., negation map: p ~ -p, search for collision of ±p (speed-up)"

✤  #Aut for cryptographically interesting curves over prime fields
Elliptic curves: min=2, max=6!
Genus 2 Hyperelliptic curves: min=2, max=10"

7/13"

�
G

�
�

Adding walk with automorphisms!

8/13"

f0 = a0g+b0h"
f1 = a1g+b1h"
…"
fj = ajg+bjh"
…"
fr-1 = ar-1g+br-1h"

l(pi)=j"

Selection (remark: -(x,y)=(x,-y) on E, -(u1,u0,v1,v0) =(u1,u0,-v1,-v0) on Jac(C))"
1.  #Aut = 2: choose point with odd value in y (v1) coord."
2.  #Aut > 2: choose ±Φk(pi+fj) with least value in x (u1) and odd value in y (v1)."

pi"

For 0 ≤ k < (#Aut)/2
compute ±Φk(pi+fj) ~ pi+fj."
Select one point uniquely."

"
"
"

✚"
Index "

function"

pi"

pi+1"

Selected curves: iteration cost !

9/13"

NISTp-256!
- (neg): (x,y) -> (x,-y)!
Aut: {id,-}!
Regular iteration: 6m!
Aut overhead: negligible"
Slowdown factor: 1!

BN254!
±ϕi: (x,y) -> (ξix, ±y), ξ3=1 mod p !
Aut: {id, -, -ϕ, ϕ, -ϕ2, ϕ2}!
Regular iteration: 6m!
Aut overhead: 1m!
Slowdown factor: 0.857!

Generic-1271!
- (neg): (u1,u0,v1,v0)->(u1,u0,-v1,-v0) !
Aut: {id,-}!
Regular iteration: 24m!
Aut overhead: negligible"
Slowdown factor: 1!

GLV4-BK!
±ϕi: (u1,u0,v1,v0) -> (ξiu1, ξ2iu0, ±ξ4iv1, ±v0), ξ5=1 mod p!

Aut: {id, -, -ϕ, ϕ, …, -ϕ4, ϕ4}!
Regular iteration: 24m!
Aut overhead: 6m + (1/5)m!
Slowdown factor: 0.795!

2

2

6

10

Fruitless cycles!

✤  Adding walk with automorphisms:
fruitless cycles!

✤  Fruitless cycle sizes: all multiples!
of primes dividing c=#Aut!

✤  The shorter the more likely…"
Most frequent: 2-cycles, P=1/(cr) !

✤  The larger r, the less likely are the
cycles, but will eventually occur…"

10/13"

 2-cycle example!

pi�1 pi

If (2): l(pi) = j then (3): pi+1 = pi�1

P ((1)) = 1/c and P ((2)) = 1/r so

P ((3)) = P ((1)) · P ((2)) = 1/(cr)

After computing l(pi�1) = j and pi�1+fj
assume (1): rep{pi�1 + fj} = �pi�1 � fj

�pi�1 � fj

rep({pi + fj}) = pi�1

Cycle reduction, detection and escape!

✤  Detection and escape by doubling a point in the cycle !
 (lcm): After α iterations record point p. After β more iterations check
if current point is equal to p. Detects cycles of length divisible by β!

✤  Reduction"
No: just detect and escape more often. Good for SIMD archs [BLS11]. !

✤  Best combination depends on architecture used…"
Analysis of overhead given memory constraints + tests "
"
!

!

11/13"

Extra table: f’i for 0≤i<r. If l(pi)=l(pi+1)=k, set pi+1=pi+f’k. P=1/(cr3).!
"

(trail): After α iterations record trail of β points. Look for collision.!
Detects cycles of length divisible by 2 up to β. !

Performance using automorphisms!

12/13"

Curve" Ideal
speed-up"

Updated"
speed-up"

Measured"
speed-up1"

Core-years1" Relative
security"

NIST CurveP-256" 0.947" 3.946 x 1024" 128.0!
BN254" 0.857" 0.790 " 9.486 x 1023" 125.9"
Generic 1271" 0.940" 1.736 x 1024" 126.8"
4GLV127-BK" 0.795" 0.784" 1.309 x 1024" 126.4"

2

2
6

10

Automorphisms" r" #walks"
Without" 32" 2048"

With" 1024" 2048"

2

2
6

10

2
6

10
2

1Intel Core i7-3520M (Ivy Bridge), 2893.484 MHz"

Conclusions!
✤  In all cases automorphisms can be profitably used in practice, but the

ideal speed-up is not achieved due to increased iteration complexity."

✤  Better understanding of the practical trade-off in the case of genus 2
hyperelliptic curves and elliptic curves with #Aut > 2, like BN254."

✤  Useful analysis when constant factors matter, e.g., solving ECDLP
challenges."

13/13"

